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Abstract. The main aim of this work is to investigate the existence of traveling waves of an epidemic model with
temporary immunity acquired by vaccination. The incidence rate of the disease used in the epidemic model is of the
form Hattaf-Yousfi that includes many types existing in the literature. By means of Schauder fixed point theorem
and construction of a pair of upper and lower solutions, the existence of traveling wave solution that connects the
disease-free equilibrium and the endemic equilibrium is obtained and characterized by two parameters that are the
basic reproduction number and the minimal wave speed.
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1. INTRODUCTION

In epidemiology, the existence of traveling wave which describes the transition of disease-
free equilibrium to endemic equilibrium has been investigated by many authors. For instance,
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in 1995, Hosono and Ilyas [1] investigated the existence of traveling wave solution of diffusive
epidemic model. In 2011, Yang et al. [2] interested to the existence of traveling waves to a SIR
epidemic model with nonlinear incidence rate, spatial diffusion and time delay. In 2014, Xu [3]
studied the traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent
period. In [4], the authors studied the existence of solution of traveling waves of a delayed
diffusive epidemic model with specific nonlinear incidence rate. In this study, we propose the

following system with general incidence rate and temporary immunity acquired by vaccination:

r asg;,t) = DsAS+A — h(S(x,1),1(x,t —T))I(x,t — T)
—(L+p)S(x,t)+p /ODOS(x,t —u)g(u)e M du,
N a’f;i’” = DyAI+h(S(x,1),1(x,t =) I(x,t = T) — (L +d +r)I(x,1),
| 8Rgtc,t) = DRAR + I (x,t) — R (x,1) — p /0 " (et — u)g(u)eMidu + pS(r.1),

where S(x,1), I(x,7) and R(x,t) represent respectively the densities of susceptible, infected and
removed individuals at position x and time #. The constants Dg, Dy and Dgr denote the corre-
sponding diffusion coefficients for the susceptible, infected and removed populations. A is the
recruitment rate of susceptible population, u is the natural death rate of the population, d is
the death rate due to disease, 7 is the latent period, and r is the recovery rate of the infected
population. p is the rate of vaccination, and g(u)du is the probability of losing immunity be-

tween u and u + du, where g(u) is the density of probability satisfying f0+°° g(u)du = 1. The

BS

incidence rate of infection is modeled by Hattaf-Yousfi function A(S,I) = W@ STl Taasl [5],

with o, a1, 0, 03 > 0 are constants and 8 > 0 is the infection process. This general incidence
rate generalizes many type of incidence rate used in [6, 7, 8, 9].
Since the variable of removed individuals R does not appears in the first two equations of (1),

then system (1) can be reduced to the following model:

8Sg;,l) = dgAS+A — h(S(x,t),I(x,t — 7)) (x,t — T)
) —(u+p)S(x,0)+p /0 St — ugluw)e Hdu
\ al(a?t) = AL+ h(S(x 1), 1(x,t = ) (0,0 = T) = (+d +1)I(x,1),
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with homogeneous Neumann boundary conditions

as dI
(3) 5—5—0, on 8QX(0,+°°),
and initial conditions
“4) S(x79) :¢1(x76)7 I(x76) :¢2(X,9), era S [—T,O],

where Q is a bounded domain in R” with smooth boundary dQ and aa—v denotes the outward
normal derivative on dQ.

The rest of this paper is outlined as follows. Section 2 is devoted to the reproduction number
and steady states. Section 3 deals with the existence of traveling waves by means of Schauder
fixed point theorem. Section 4 treats the nonexistence of traveling waves. Finally, the paper

ends with a conclusion.

2. REPRODUCTION NUMBER AND STEADY STATES

In this section, we study the existence of equilibria of system (2).
Let = [y g(u)e *du. It is obvious that E° (qupA;—pn’O) is the unique disease-free steady
state. Hence, the basic reproduction number is as follows

BA
pao+pao(l—n)+aA) (u+d+r)

Ro=1

Theorem 2.1.

(): If Ry < 1, then system (2) has a disease-free equilibrium point given by

0 A
E <u+p—pn ’ 0)'
(ii): If Ry > 1, then the system (2) has a unique endemic equilibrium of the form E*(S*,I*)
. A
with S* € (0, W) and I > 0.

Proof. Any uniform steady state of system (2) satisfies

©) A—(u+p)S—h(S,)I+pnS=0,

(6) h(S,1)I—(u+d+rI=0.

From (6), we get [ =0 or h(S,I) = pu+d+r.
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If I = 0, then we obtain the disease-free equilibrium point E° (ﬁ,O) .

If I # 0, then using (5) and (6) we get the following equation

L (S A—(u+p(1=n))S
’ w+d+r

(7) >=u+d+r.

We have I = ‘H‘Ltrp—cw > 0 implies that § < m. Hence, there is no positive equilib-

A
p+p(l-n)

Now, we consider the following function L defined on the interval [0

rium point if § >

A
’u+p(1—n)] as

LS) = h <S7A— (H+p(1—m))S

(Wtdtr) )—(u-i-d-l—r).

Since, L(0) = —(u+d +r) < 0 andL(m> — (u+d+7r)(Ry—1) >0 for Ry > 1.

Further, L'(S) = % — %% > 0. Therefore, there exists a unique endemic equilibrium

* [ Q% Pk . * A *
E (S ,I)WlthS E(O,m)andl > 0. |

3. EXISTENCE OF TRAVELING WAVES

In this section, we study the existence of traveling waves by means of Schauder fixed point
theorem.

Using the following transformations in system (2)

A < 1 7 1
= S(x,t)=-S(xvDp,t), I(x,t)=—I(x\/Dy,t),
Sy SE0=SvDun), Hwn =l (e/Dri)
DS ~ ~ ~ ~ ~ 2
b=%5, B=¢B, =0, wm=¢a, =50, 03=¢03,
we get
IS(x,t)  3S(x,1) A~
P _DST—{—E—h(S(X,t),I(X,l—T))I(x,t—f)
(8) —(,u+p)S(x,t)—|—p/0 S(x,t —u)g(u)e *du,
ol(x,1)  M(x,t) ~
|5, = a2 TSN, I =)t = 1) = (h+d +r)l(x,0),
where

h(S,I) = Bs
o &0+&1S+&21+&3SI'
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In this case, system (8) has always a disease-free equilibrium E 9(1,0) and an endemic equilib-

rium E* (S—;, %) . The traveling wave solution of our new system connecting the disease-free

equilibrium and the endemic equilibrium is a special solution of the form

(SCe,1),1(x,2)) = (§(x+ct), & (x+ct)),

where £, & € C>(R,R) and ¢ > 0 is a constant representing the wave speed. By substituting

{(x+ct) and & (x+ ct) into (8) and denoting x + ct by y, we obtain two equations

c¢'(y) =DE"(y) +% —(u+p)C(») —h(C(y),E(y—cT)é(y—cT)

©) o

+p /0 E(y—cu)g(u)e *du,
(10) c&'(y) = &" () +h(E(),E(y—cD)E(y—ct) — (n+d+1)E(),
with the boundary conditions,

St rr
(1D) (€,8)(—=2) = (1,0) and (£, &) (o) = )
On the other hand, the characteristic equation of equation (10) at EY satisfies
(12) Ad,c) =A% —cA+ = E~ et (u4d+r).
0o + 0

Hence, it is easy to prove the following result.
Lemma 3.1. Suppose that Ry > 1, then there exist ¢* > 0 and A* > 0 such that % =0

and A (A*,c*) = 0. Furthermore,
(): If 0<c<c*, then A(A,c) >0, forall A > 0;
(ii): If ¢ > c*, then A(A,c) = 0 has two positive solutions Ai(c) and Ay(c) such that

0< Ai(c) < A* < Ay(c) and A(A,c) >0, A €[0,Ai(c))U(Az(c),e0),

<0, A€ Ae),Aa(c)).

To establish the existence of traveling wave solution of equations (9)-(10), we construct a
pair of upper and lower solutions. For the rest of this section, we assume that Ry > 1 and ¢ > ¢*.

Let A; = A;(c¢),i = 1,2. Define the following functions

(13) ) =1
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Lemma 3.2. The function ({, &) is an upper solution of equations (9)-(10).

Proof. Let be the following function

21(E().E(y) = DI"(y)—cl'(y)+
—(u+p)C») —h(C(),E(r—cT)E(y—cT) +pnl(y).

We have

—(u+p) —h(E»),E(y—cT)E(y—cT)+pN

IA
o

Then, we conclude

(15) c4'<y>zz>5"<y>+g‘—<u+p>5<y>—ﬁ<€<y>,é<y ct)E(y—ct) +pnl(y).

It remains to prove that the function & satisfies
(16) c€'(y) 2 &" () +h(EM),E(y—c1))E(y —eT) — (L +d+1)E(y),

forall y#y1 == A In <ggjg; (Ro— 1)) .
If y < y1, then & (y) = €M, Let the following function

2(8(),E0)) =E"(0) —c&'(y) +h(L(1),E(y—c1)E(y—cT) — (L +d +r)E(y).

We have

Z0).E0)) < AP — et — (e d )b+ B

= MYA(M0).

By Lemma 3.1, we have A (A4;,¢) = 0. Then we deduce (16).
If y > yy, then (y) = ] (Rp—1) and

0 +0i

h(CB),E(y—c1)E(y—ct)— (H+d+1r)E(y) =
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Therefore, we conclude inequality (16). =

Lemma 3.3. Let 0 € (0,A1) sufficiently small. Then the function §(y) = max {1 —

satisfies

Cf(y)SD_"(y)Jré—h(ﬁ(y) E(y—ct)é(y—ct)— (L+p)L()
17 °

forally # y, := élnc.

Proof. If y > y,, then we verify immediately the inequality (17) since {(y) =

On the other hand if y <y, then {(y) =1 — ée"y . Let the following function

53(60),60)) = DL"K)— 'y )+——h(C( ),E(r—ct)E(y—c7)

—(u+p)¢ —l—p/ y—cu)g(u)e *du.

We have

—Doe? +ce™ +pu+p(1—n)—pu(l— ée"y)

™
w
—~
[
YamnS
=
S—
(VA
—~
=
SN—r
N—"
V4

Lo Loy spm )

+Becy(1 - /°° e~ (OCT g (1) du)
o 0

—Doe® +ce® — Nﬁel‘ 0=t (1 — ledy)

>

% o
> —Doe% 4 ce® — Nﬁell (—e7)
N o
> €% —Do+c— geﬂ'“le(’ll*o)y
N 2
>

oy —Do +c— ﬁeil]crallgc 5
0o

By the choice of o we get

B

et _M=°
—Do+c—=—e M0 >0.

Then we conclude the inequality (17). =

ée"y,O} .
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Lemma 3.4. Let ¢ > 1 sufficiently large, 0 < @ < min{0o,A1,A4p —A;}. Then the function
&(y) = max {e’lly (1—¢pe™) ,0} satisfies the following inequality

(18) c&'(y) <E"() +h(().E(y—cT)E(y—cT) — (u+d+)E(),

forally # y3 := %l

‘GI»—‘

Proof. If y > y3, then we verify immediately the inequality (18), since § (y)=0.
On the other hand if y < y3, then §(y) = eMY (1 — ge®). Let ¢ = e(!772)? and we choice ¢

<a2+a3_|_1/6>5
O{Q+O€1
¢>max{ AL 0.0 ,¢1,1}.

We have {(y) =1 %e"y since y3 < y;.

By simple calculus, we have

BLOE(y —c)
o+ ou&(y)+ s (y—ct)+af(y)§(y—ct)’
BE(y—cT)
o+ (y) + @ (y—ct)+ 03 (y)E(y—c7)
B )
o+ a1 §(y) + @€ (y—ct) + 3l (y)E(y—c1)
BE(y—cT)
o+ (8)+mE(y—ct)+ ()& (y—rcr)
_Eé(y—c’c) Bg()’ cT)
O + O 0 + Oy
B Bleoé(y—cr)
o+ o (y) + s (y—ct)+af(»E(y—ct)

h(E(),E(y—c1))é(y—cT) =

Y

Then

h(E(y).E(y—cT)é(y—cT) > ﬁ?—v(y _ff) _B (~5‘2 +~5‘3)§2(y_”) _B’ée(cml)y
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and we verify immediately that

REOED) = E0)—cg)+ e CD Bt ) my gl oen,

B - ®o + 0 Qo+ 0y c
—(p+d+né(y),
= _A(ll—f—(i) C) d)e(ll-i-a))y ﬁ(a2—|-a3) 2A1y E_e(d+7tl)y
’ o+
Ba+d) =1) .
> —A )4 — — ( 1+0)y
( re.09 O+ 0 ﬁo ’

where

Z4(80),E0) = E" () = &' () +h(E (), E(y —T))E(y—cT) — (L +d +1)E().

By the choice of ¢ we have —A (A + @,c) ¢ — P21 %) _ g > 0.

This completes the proof. m

Next to verify Schauder fixed point theorem conditions, we use the upper and lower solutions

(£,6) and (£, &) constructed above. Let the following functions

H(8,8)(y) = ?’C(y)ﬂL%1 ~(u+p)C) —h(EX),E(y—cT)E(y—c7)

(19) +p /0 Ly cu)g(u)e Midu,
Hy(C.E)(y) = YE () + (). Ey— ct)E(y —eT) — (1 +d +1)E),

where y > max{u+d+r,u+§/2+p}.
Let I' the set defined as follows

r={¢.9HeCc®R)/(H <8<}
2

We can verify that I is nonempty, closed and convex in C (]R, ) Consider the operator

F:I'—C (]R,]R2) defined by
F(8,8)() = (F(8,8),F2(8,8)) (v),
with

ACO0 = 5| [+ [ b o

y
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REO0) = gt e [0 b g

where

c—+/c2+4Dy c++/c2+4Dy

A= "D , A= "D :
c—/c2+4y c++c2+4y
lzlzf, lzzzf-

We verify easily that any fixed point of F is a solution of (19). Hence, the existence of solution
of (9)-(10) is reduced to verify that the operator F satisfies the conditions of Schauder fixed

point theorem. Here, we divide the proof into three lemmas.
Lemma 3.5. The operator F maps I into T

Proof. We can verify easily by the choice of 7, that H; is monotone increasing in { and mono-

tone decreasing in &, then we get for all y € R

(20) Fi(8,8)(y) <F(S.E)(y) <F(L,E) ).

By (17), we get

A0 2 go gy | e [ ool
X [ygx) +cg'(x) —Dg”(x)} dx.

for all y # y5.
If y > y,, then

v

REH0) > ooz | [+ ) -pg' ] ax

—o0 - - -

; yelll( —X) X c /x _ //x »
+D(7L12—l11)/y2 ’ [Yg( ) +c8(x) =DE( )}d

; +°°e},12(C—X) X c / ) — 1 ; §
+D(7L12—3~11)/y [Yg( )+ 6 (x) =D& ( )]d

MO0 (y,—)

2V A2 — A

v
[U™x
P
<
~
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By the same technique, we get for all y <y, Fi({ E)y) > C(y). From the continuity of
F (¢, é)(y) and {(y), we deduce

1) F(8,E)(y) > ¢(), WeR.

(22) F(EE() <1, WeR
By inequalities (20)-(22), we deduce
(23) L) <AGE)() <L), WeR

Similarly H, is monotone increasing in { and &, then we get for all y € R,

(24) F(8,8)(y) <F(8,8)(y) <F(E,8)().
By (16), we get for all y # y;
FE ; Y 21 0—x) +w6122( —X)
RO < gty { [ A [T
< [¥E () +c&'(x) — E"(x)] dix.

If y <y, then

- = ; Y eA,ZI( *X) _x C_/x __Nx x
B8y < (/122_/121)/_00 ) [yE (x) 4 €' (x) — E"(x)]
1 Y1e/122( ) T (x) 4 cE'(x) — E"(x)] dxc

*(xzz—m/,c 7 [YE (x) + & (x) — E"(x)] d

Y1

—f—m/erelzz(y—x) [YE(X)—i—cé/(x) —é”(x)} dx

IA
g
—
<

~

If y > yq, then

REO) < Gt { [ o [T e ar
= ().

A

From the continuity of F»(,E)(y) and &(y), we deduce

(25) R(EE() <EWY), WeR.
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From (18), we have for all y # y3

RGO 2 ot { [y [Tamonl
X [V (x) + €' (x) — & ()] a.

Similarly, then as well

(26) F(8,8)(y) 26(), VyeR.

From (24)-(26), we deduce

(27) EG) <BEEM) <ED), WeR

By (23) and (27), we conclude that F maps I'to I [ |

Let v > 0 be a constant such that v < min {—A;1,— 21,2}, and

By (RR?) = {(C,@ eCsup{ |50l } < oo, sup{[E(Ie ] <w},

yeR yeR

we can verify that B, (R, Rz) is a Banach space with the norm |.|,, defined by

(£,8)]y = max {sup|g(y)|e—vy,sup |5(y)|e—v|y|} ,

yeR yeR

Lemma 3.6. The operator F is continuous with respect to the norm |- |, in B, (R,Rz).

Proof. Let ®| = ({;,&1) € T and &, = ({,,&,) € T, we verify that

‘E<Cl ), & (=) E(y—cT) = h (L), & —c1) &y - CT)‘ <

(%%) |cl<y>—c2<y>|+§02<1+a1>|§1<y—cr>—¢z<y—cr>|.

Then

|F1(81,81) () — F1(&2,82) ()]

Y_N_p y A ( _x) /+°° A ( —x)
< _— 1y 12 B
_D(llz—lll){/_we + L€ G100 =l
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B(1+ ) Y Ao +ooe/112(_x) NP
+D5‘05‘2(112—/111){/—m ’ +/y g }|§1() &(x)|d

B(l+a) {/y Aar (= T 2l
4+ — ellyx)+/ elz(yx)
D3 (A —At) | J/—wo y

X & (x—ct)—&E(x—cT)|dx

P /y A1 (y—x) /+°o llz(y—x)}
+ +
D(Mz—ln){ o y

X {/000 161 (x —cu) — & (x— cu)|g(u)e_””du} dx.

Therefore,

\F1(81,81) (v) — Fi1 (&, &) (v)] eVl

Y—p—p /y A1 (=) /+°° i (—x)}
<« _+ P F =) 4 12(y
_D(Mz—ln){ . y ¢

x e M8y (x) = G (x) e Mdx

B(1+x) {/y =0 [ il
4+ 11yx_|_/ 12(y—x)
Dot Az — A1) |- v C

x MM (x) = Lo ()] e Mdx

B(l+a) {/g At (y— T -
4! M1y x)_|_/ eM2(y—x)
Dog (A2 — A1) |/ y

x e MRt |E (x — 1) — & (x — 1) | e ldx

P /y A1 (y—x) /+°o /’le(y_x)} —vly|
e o oY -
DA — A1) { ° ¢ ¢

X {/Ooo |81 (x—cu) — & (x— cu)| e_V|x_C”|g(u)eV|x_C”|e_“”du} dx.

We have

{/y Mi—x) /+°o eM2(y=x) } e "WV gy < 1 — 1 )
oo y “Ap—v A +v

Then

a0
D()le —7(‘11) (7(42 —V) ()Lll +V)

where 1y = [;7 g(u)e=H="dy,

(A1 — A2 +2v) <y_ U+ B1+3%) | ﬁ(]a%al)evcr 4 — 1))
|F1 _F2|v S

|P) — Dy,

Hence , F| : I' — I is continuous with respect to the norm |- |,. similarly, we show that
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F, :T'— T is continuous with respect to the norm |-|,. Therefore we conclude that, F is

continuous with respect to the norm |- |, in B, (R, Rz). [ |
Lemma 3.7. The operator F is compact with respect to the norm | - |, in B, (R,Rz).

Proof. Let ({,&) € T, we have

d (vtp+w) Al 7 20—
—F (¢, < =)y
‘dy I(C g)(y)‘ = D<2412_2'11) _ooe X
(Y+p+ )i /*‘” Aa(y—x)

d
D (A2 — A1) Jy ¢ g

_ 2r+p+u)
D(A2— A1)

+

On the other hand, H>(&,&)(y) < (v+ B )O‘Oﬂx1 (Rp — 1). Further, we get similarly

o0 +03

B
p <7+%> (o + o) (Ro—1)|A21] o
‘dng(C V) (y )‘ < (A2z — A21) (0 + 3) /oo e

(Y+%) (@o+ar)(Ro—1) A2
/ lzzy x)
(A2 — A1) (2 + 03) y
2 (r+£) Go+an) (ko)
(A2 — A1) (2 + 03)

_|_

For every n € N, let F"" an operator defined by

(F2.0)0),  yelnn
F'8,8)(y) = { F(C,E)(=n), y€ (—o0,—n)
F(£,8)(n), yé&(n,+o)

we can verify that F" is uniformly bounded and equicontinuous for ({,&) € I'. By applying
Arzela-Ascoli theorem, we get that F" : I' — I' is compact with respect to the super norm in

C (R,R?). Thus, F" : T — I is compact with respect to the norm |- |, in B, (R,R?).
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Hence, {F "}aL * is a compact series, In addition, we have

[F"(,8) )~ F(E.E)0), = sup|F"(£,&)(y) —F(L,8)(y)]e ™™

yeR

= sup F"(£,8) () ~F(£.8)()] e

ye (—<x>7—n]U[n,+<>0)

oo+ a
< sup {1 + (160 + Nl (Ro— 1)} e Wl
YE(—o0,~n]Uln, ) 0+ 03
oo+ a
< [1—1— (icO+~l (Ro—l)] e —0 as n— oo
o+ 03

Thus, {F ”‘}(’)L * converges to F in I with respect to the norm | - |,. From Proposition 2.1 in [10],

we deduce that F : I" — I" is also compact with respect to the norm |- [v. =

Theorem 3.8. For Ry > 1 and ¢ > ¢*, system (8) admits a traveling wave solution (§(x +

ct),E(x+ct)) connecting the disease-free equilibrium E°(1,0) and the endemic equilibrium

E* (S—* E). Moreover, 1_i>m E(y)e MY =1.
y——oo

Proof. From Lemma 3.6 and 3.7, we conclude that the operator F satisfies the conditions of
Schauder fixed point theorem. Then F admits a fixed point ({,&) € I'. We verify immediately
that this fixed point is a solution of (9) and (10).

On the other hand, we verify that the fixed point (£, &) satisfies the boundary conditions (11).
Since (§,&) €T, wehave 1 — Le% < {(y) < 1and 0 < &(y) < eM?. Then {(—o0) =1, &(—o0) =
0.

Is is not hard to prove that the endemic equilibrium is globally asymptotically stable when
Ry > 1. Then {(+e0) = %* and & (4o0) = %*
Since £ € T, we have 1 — gpe® < E(y)e ™Y <1, and we get, lim E(y)e ™ =1. m

y—r—oo

Corollary 3.9. For Ry > 1 and ¢ > c*, system (1) admits a traveling wave solution con-

A 0 Ap(1-1)
mt+p—pn’ 7 p(u+p—pn

necting the disease-free equilibrium Q(

Q* (S*,I",R*).

)) and the endemic equilibrium

Proof. We have to prove that R(—co) = %% and R(+o0) = R*.

By the wave equation of R(y), we get

R () = DeR!(y) + r1(y) ~ () ~p | (v cu)gluwpe ™ du-+ pS(y).
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Let w; < 0 < @, be the solutions of the characteristic equation Dg®? — cw — 1t = 0.
Then
r y e
R(y) = Dr (@ — 1) (/ e (y_x)l(x)dx+/ eah(y_x)l(x)dx)

Dg (@2 — o y

P ([ b / o)
Dr (@ — o)) (/_ooe J(x)dx+ | e J(x)dx

—+o0
/y ewl(y_x)S(x)dx—l—/ e“h(y_x)S(x)dx),
. y

with J(x) = [y°S(x —cu)g(u)e *'du
From Hopital rule, we obtain

r . (fzwe—ww() Jy e x )dx) r’

— 1
Dgr (a& — a)l) y_l)IEw e~ w1y e_a)Zé

e OrS(x T e X G () dx S
. x Jy (W)dx\ _p |
Dgr ((Dz ) ) y—+ee e— 01y o~y L
and
; [P e %] (x) + f+°°e*wzx‘]( )dx pns*
im =
Dg (0}2 ) ) y—r+eo e— 01y e~y T
Hence, R(+o0) = R* = TP 1 ripU=m)s”
Similarly, we get R(—e0) = ﬁ [

4. NONEXISTENCE OF TRAVELING WAVES

In this section, we study the nonexistence of nontrivial traveling wave solutions of system

(1), connecting the disease-free equilibrium and the endemic equilibrium.

Theorem 4.1. If Ry > 1 and ¢ € (0,¢*), or Ry < 1, then system (9)-(10) with the boundary

conditions (11) has no nontrivial positive solution.

Proof. First, for Ry > 1 and ¢ € (0,c¢*), we suppose that problem (9)-(10) admits a positive

solution (&, &). By the result of Lemma 3.1, there exists a € > 0 sufficiently small such that the

equation

2 = ﬁ —Acr
1 2 -
A CA + — _1( £)e (u+d+r)—0,
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has no real solution for ¢ € (O, #)
Since {(—o0) = 1, then there exists N > 0 such that 1 —& < {(y) < 1, for any y < —Ng.

Therefore, for y < —Ng, we get

B(1—¢g)S(y—cT)

)2 Ot G Tt ) By et

" ﬁ(l—S)g(y—CT)
>
2 O Gt a1 (Gt G)E( et

)—(u+d+r)§(y)

NG —(u+d+r)é(y), Vh>0.

Hence,
cE'(y) = ")+ F(E(y—cr)) — (L+d+r)E(y),
with
i B(1—e)v
u)= inf |
f( ) VG(Mggig;(Ro—l)) [a0+&1+(&2+a3)v]h+1

Hence, the positive function u(x,t) = & (y+ ct) satisfies

oulet) > P 4 pu(x,t — 1)) — (1 +d+r)ux,),x € Ryt >0,

u(x,s) =wyx+ces)>0,xeR se[-1,0].
By the comparison principal theorem [11], u(x,7) is an upper solution of the following initial
value problem

ow(xt) _ Pw(xt

o axz)+f(W(x»f—T))—(H+d+r)W(x,t),xeR,r>0,

w(x,s) =& (x+cs) >0,x e R,s € [—1,0].
By the theory of asymptotic spreading [12], we get

c+c*
2

o <
(28) ltlgligfw(x,t) >0, Jx<

Hence,

c+c*
f.

liminfu(x,7) > liminfw(x,7) > 0, |x| <
f—+oo t—Feo

If —x= Cgc*t, then x + ¢t — —oo ast — +oo, and

*
lim wu(x,1) =0,—x= cre

t
t—>foo 2
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which contradicts (28). Then, system (9)-(10) has no nontrivial positive solution satisfying (11)

when Ry > 1 and ¢ € (0,c*).
On the other hand, for any speed ¢ > 0, let Ry < 1. The wave equation of £ (y) is given by

cg'(y) =&")+r(E(),6(r—c1)E(y—ct) = (u+d+7)50)
Let A5, < 0 < A}, such that 2 — cA — (1 +d +r) = 0. Hence, we have

1 S N N
)= Gy ([0 e eogtoe oy

+/y+w e%z(Y*X)Z(C(x),é(x— 1)) (x— CT)dX)

1 oo
= 737 a7\ 61213‘ —x ¢ e .
(Mo —23,) (/o h(E(y—x),8(y )&y o)

+ [ =) 60— D)0 —x—er)dx)
Then we have

e 1 oo
/m E()dy = M/w (S (x),E(x—c1)E(x—cT)dy

3 ; -
S@ra @rdrn ). VDD

—r [ ey

—o0

o0
< E(y)dy.

—o0

This is a contradiction. Hence, we conclude that there is no nontrivial traveling wave when

Ro>1landce (0,c*),orRp<1. m

According to the above theorem, we deduce immediately the following result.

Corollary 4.2. If Ry > 1 and c € (0,¢*), or Ry < 1, then system (1) has no nontrivial posi-

tive traveling wave solution connecting the disease-free equilibrium Q s ( TES ;‘_ on ,0, uatp -S;—?Z’)Tl y )

and the endemic equilibrium Q* (S*,I*,R*).
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5. CONCLUSION

In this work, we have proposed an epidemic model with diffusion, Hattaf-Yousfi incidence
rate and temporary immunity acquired by vaccination. The proposed model contains two delays
one is discrete representing the latent period and the other is infinite distributed delay modeling
immunity period. We first determined the basic reproduction number and steady states of the
proposed model. The existence of traveling waves describing the transition of disease-free
equilibrium to endemic equilibrium has been established by means of Schauder fixed point
theory. In addition, we have studied the nonexistence of nontrivial traveling wave solution of

the proposed model.
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