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Abstract. In this paper, we investigate the problem of extending isometric operators from unit sphere of complex

Lp spaces (1 < p < ∞, p 6= 2) to general complex Banach spaces. By studying the isometric operators, we prove

the Tingley problem on complex Lp spaces and provide a positive answer under some conditions. That is, it is

proved that for a surjective isometry V0 on any complex Lp[0,1] unit sphere to any general complex Banach space

E unit sphere, Under some conditions,V0 can be extended to a linear isometry from the entire space Lp[0,1] to E.
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1. INTRODUCTION

The classical Mazur-Ulam theorem [1] states that if X and Y are real normed spaces and

T : X → Y is a surjective isometry, then T is affine. In particular, if T (0) = 0, then T is a linear

isometry. However, local surjective isometries often lack desirable properties, leading to the

following question raised by Tingley in 1987.

Tingley Problem [2]: Let X and Y be two normed spaces, and T0 be a surjective isometry

between the unit spheres S(X) and S(Y ). Is there a linear isometry T : X → Y defined on the

entire space such that T |S(X) = T0?
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The formulation of the Tingley problem has been a milestone in the study of isometries.

Its significance lies in the fact that if the conclusion holds, then the geometric properties of a

mapping on the unit sphere in a spatial context will determine its properties throughout the entire

space. In 2011, L. Cheng and Y. Dong introduced the concept of Mazur-Ulam property related

to the Tingley problem and the Mazur-Ulam theorem [3], making significant contributions to

the study of isometric problems. The Mazur-Ulam property states that if a surjective isometry

from the unit sphere of a normed space X to the unit sphere of an arbitrary normed space Y can

be extended to a real linear isometry on the entire space, then the normed space X is said to

have the Mazur-Ulam property [3] (MUP).

In recent years, researchers have primarily focused on the study of isometric extension prob-

lems in similar or different types of classical Banach spaces. Ding Guanggui and other scholars

have summarized the conclusions regarding isometric problems in these spaces. In the case of

similar type spaces, Ding Guanggui [4] proved in 2007 that two surjective isometries between

the unit spheres of l∞(Γ)-type spaces can be extended to real linear isometries on the entire

spaces. In 2011 and 2012, Tan Dongni provided affirmative answers to the Tingley problem on

the F-spaces (Lp(v),0 < p < 1) and Tsirelson space, James space (see [5, 6]), respectively. In

the case of different type spaces [7], Ding Guanggui initially proved that a surjective isometry

from the unit sphere S(E) of an arbitrary Banach space E to the unit sphere S(C[0,1]) of the

space of continuous functions on [0,1] can be extended to a linear isometry on the entire space

under certain conditions. Later, Wang Jianhua and Fang Xinian [8] made improvements by re-

moving the additional conditions. Subsequently, Liu Rui [9] proved that the surjective isometry

from the unit sphere of L∞(µ)-type spaces to the unit sphere of an arbitrary Banach space, as

well as Tan Dongni [10], proved that the isometry between the unit spheres of Banach spaces

is linearly extendable when the Banach space is a locally GL space, thereby providing more

general results. In 2012, Tan Dongni [11] studied Lp(µ,H) spaces (where H is a Hilbert space,

1 < p < ∞, and p 6= 2) and also provided exact conclusions.

Most of the research on the Tingley problem in real Banach spaces has been conducted by

scholars (for further references, see [12, 13, 14, 15, 16, 17, 18]). While it is not always possible

to extend a surjective isometry between the unit spheres of arbitrary complex Banach spaces
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to complex linear or conjugate linear operators on the entire space, this problem holds true for

certain classical complex Banach spaces. In 2014, Yi Jijin, Wang Ruidong, and Wang Xiaoxiao

[19] established that any surjective isometry from the unit sphere of a complex lp(Γ) space

(where 1 < p < ∞ and p 6= 2) to the unit sphere of a complex lp(∆) space can be extended to a

real linear isometry on the entire space.

Building upon the inspiration from the aforementioned papers, this study considers the com-

plex Lp[0,1] spaces and aims to prove that any surjective isometry from the unit sphere of a

complex Lp[0,1] space (where 1 < p < ∞ and p 6= 2) to the unit sphere of an arbitrary complex

Banach space can always be linearly extended to the entire space.

2. PRELIMINARY KNOWLEDGE

Definition 2.1. Introduces the definition of the complex Lp[0,1]space as follows:

Lp[0,1] :=
{

f : [0,1]→ C
∣∣∣∣∫

[0,1]

∣∣∣∣ f
∣∣∣∣p dt <+∞

}
.

Here, p ∈ (1,∞) and p 6= 2. The norm on the space is defined as:

‖ f‖p =

(∫
Ω

| f |pdt
)1/p

.

Definition 2.2. States that for normed spaces X and Y, an operator V : X→ Y is said to be a

1−Lipschitz mapping if it satisfies:

‖V (x)−V (y)‖ ≤ ‖x− y‖ (∀x,y ∈ X).

If ‖V (x)−V (y)‖= ‖x− y‖ for all x,y ∈ X, then V is called an isometric operator.

Definition 2.3. Defines the support of a function f ∈ S(Lp[0,1]) as supp f := {ω ∈Ω | f (ω) 6=

0}. If supp f ∩ suppg = /0, then f ∧g = 0.

3. RELATED LEMMAS AND RESULTS

Theorem 3.1. Let E be a complex Banach space, V0 be a surjective isometry from complex

S(Lp[0,1]) to complex S(E), where 1 < p < ∞ and p 6= 2. V0 satisfies V0(a+ x)−V0(a) =

V0(b+x)−V0(b) for a,b,a+x,b+x ∈ S(Lp[0,1]) with a∧x = 0 and b∧x = 0. And V0(λ f ) =
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λV0( f ) for all f ∈ S(Lp[0,1]),λ ∈ T, where |λ |= 1. Then V0 can be linearly and isometrically

extended to the whole space Lp[0,1].

In order to prove this theorem, we need to introduce some notations and symbols, which will

be used throughout this section.

Notations:

(1) The mapping V0 : complex S(Lp[0,1])→ complex S(E) is a surjective isometry.

(2) For positive real numbers α and β , we have α p +β p = 1. For f ,g ∈ S (Lp[0,1]),

we denote f ∧g = 0.And denote T= {λ ∈ C | |λ |= 1}.

(3) We use the expressions

Hg(α f ,βg) =V−1
0

(
V0(α f +βg)+V0(βg−α f )

2β

)
,

H f (α f ,βg) =V−1
0

(
V0(α f +βg)+V0(α f −βg)

2α

)
.

to represent elements in complex S (Lp[0,1]).

The representation in (3) is justified because we have the following Lemma 3.2, which guar-

antees: ∥∥∥∥V0(α f +βg)+V0(βg−α f )
2β

∥∥∥∥= 1.

The proof is mainly divided into two cases: 1 < p < 2 and 2 < p < ∞. For the case of

2 < p < ∞,the following inequality in Lp[0,1] space, with 1 < p < ∞ and p 6= 2, is known as the

Clarkson inequality and is an important inequality in Lp[0,1] space with 1 < p < ∞ and p 6= 2.

Lemma 3.2. For S (Lp[0,1]) (1< p<∞, and p 6= 2), for any two elements f and g, the following

hold:

(i) ‖ f +g‖p +‖ f −g‖p ≥ 2(‖ f‖p +‖g‖p), 2 < p < ∞.

(ii) ‖ f +g‖p +‖ f −g‖p ≤ 2(‖ f‖p +‖g‖p), 1 < p < 2.

Moreover, equality holds in (i) and (ii) if and only if f ⊥ g.

This certification is detailed in the reference [12].

Lemma 3.3. Suppose X and Y are complex Banach spaces, and let V0 : S(X)→ S(Y ) be a

surjective isometry.Then, X is strictly convex if and only if Y is strictly convex. Moreover, for

every x ∈ S(X) and y ∈ S(Y ), we have V0(−x) =−V0(x) and V0
−1(−y) =−V0

−1(y).
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This certification is detailed in the reference [20]. It will not be proved here. From this

theorem, we can deduce that in a strictly convex space, for any x,y, we have ‖x+y‖= ‖V0(x)+

V0(y)‖ holds. Thus, in notation (3), we have ‖V0(α f +βg)+V0(βg−α f )‖ = ‖2βg‖ = 2β ,

which leads to: ∥∥∥∥V0(α f +βg)+V0(βg−α f )
2β

∥∥∥∥= 1.

The following proof comes from the references [11] slightly modified. For completeness, we

give the proof.

Lemma 3.4. Let E be a complex Banach space, and V0 : S(Lp[0,1])→ S(E) be a surjective

isometry. Let f ,g ∈ S(Lp[0,1]) be complex-valued functions satisfying f ∧ g = 0. Let α and

β be positive real numbers such that α p + β p = 1. Suppose V0 satisfies V0(a+ x)−V0(a) =

V0(b+ x)−V0(b) for a,b,a+ x,b+ x ∈ S(Lp[0,1]) with a∧ x = 0 and b∧ x = 0. Then, the

following hold:

(i) Hg(α f ,βg) = Hg(β f ,αg), H f (α f ,βg) = H f (β f ,αg).

(ii) Hg(α f ,βg)⊥ H f (α f ,βg).

(iii) H f (α f ,β g
λ
) = H f (α f ,βg), where λ ∈ T and T is the unit sphere in the complex plane.

Proof: Case 1: When 2 < p < ∞ and assuming β ≥ α . From the given conditions and Lemma

3.3, it follows that for any w,u ∈ S(Lp[0,1]), we have ‖V0(w)±V0(u)‖ = ‖w± u‖. Note that

f ∧g = 0. Now, let’s consider:

(3.2)

∥∥H f (αg,β f )+Hg(α f ,βg)
∥∥

=

∥∥∥∥V−1
0

(
V0(αg+β f )+V0(β f −αg)

2β

)
+V−1

0

(
V0(α f +βg)+V0(βg−α f )

2β

)∥∥∥∥
=

∥∥∥∥V0(αg+β f )+V0(β f −αg)
2β

+
V0(α f +βg)+V0(βg−α f )

2β

∥∥∥∥
=

∥∥∥∥V0(αg+β f )+V0(α f +βg)
2β

+
V0(β f −αg)+V0(βg−α f )

2β

∥∥∥∥
≤‖V0(αg+β f )+V0(α f +βg)‖+‖V0(β f −αg)+V0(βg−α f )‖

2β

=
(α +β )‖ f +g‖+(β −α)‖ f +g‖

2β
= ‖ f +g‖.

On the other hand, let’s examine:
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(3.3)

∥∥H f (αg,β f )−Hg(α f ,βg)
∥∥

=

∥∥∥∥V−1
0

(
V0(αg+β f )+V0(β f −αg)

2β

)
−V−1

0

(
V0(α f +βg)+V0(βg−α f )

2β

)∥∥∥∥
=

∥∥∥∥V0(αg+β f )+V0(β f −αg)
2β

− V0(α f +βg)+V0(βg−α f )
2β

∥∥∥∥
=

∥∥∥∥V0(αg+β f )−V0(α f +βg)
2β

+
V0(β f −αg)−V0(βg−α f )

2β

∥∥∥∥
≤‖V0(αg+β f )−V0(α f +βg)‖+‖V0(β f −αg)−V0(βg−α f )‖

2β
= ‖ f −g‖.

By equations (3.2) and (3.3), together with Lemma 3.1 (i), we can deduce the following:

(3.4)

4 = 2
∥∥H f (αg,β f )

∥∥p
+2
∥∥Hg(α f ,βg)

∥∥p

≤
∥∥H f (αg,β f )+Hg(α f ,βg)

∥∥p
+
∥∥H f (αg,β f )−Hg(α f ,βg)

∥∥p

≤ ‖ f +g‖p +‖ f −g‖p = 4.

Hence, the equality holds in equation (3.4), as well as in equations (3.2) and (3.3).

Furthermore, since the complex Lp[0,1] space is strictly convex, from Lemma 3.3, we can

conclude that the space E is also strictly convex. Moreover, based on equations (3.2) and (3.3),

we have:

(β −α)(V0(αg+β f )+V0(α f +βg)) = (β +α)(V0(−αg+β f )+V0(−α f +βg)) ,

(β +α)(V0(αg+β f )−V0(α f +βg)) = (β −α)(V0(−αg+β f )−V0(−α f +βg)) .

Apologies for the repeated content. It seems there was an issue with the response. Let’s continue

with the proof:

By adding and subtracting the previous two equations, we have:

2βV0(αg+β f )−2αV0(α f +βg) = 2βV0(−αg+β f )+2αV0(−α f +βg),

−2αV0(αg+β f )+2βV0(α f +βg) = 2αV0(−αg+β f )+2βV0(−α f +βg).

From these equations, we can deduce:

Hg(α f ,βg) = Hg(β f ,αg), H f (α f ,βg) = H f (β f ,αg).

Let’s prove statement (ii): Hg(α f ,βg)⊥ H f (α f ,βg).
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From equation (3.4), we observe the following relation:

2
(∥∥H f (αg,β f )

∥∥p
+
∥∥Hg(α f ,βg)

∥∥p)
=
∥∥H f (αg,β f )+Hg(α f ,βg)

∥∥p
+‖H f (αg,β f )−Hg(α f ,βg)‖p

=4.

Based on Lemma 3.2 (i), this equation holds with equality if and only if Hg(α f ,βg) ⊥

H f (αg,β f ).

The above proof also applies to the case when β ≤ α . Therefore, the result holds.

Case 2: When 1 < p < 2 and assuming β ≤ α , we can use the same approach as in Case 1 to

obtain:∥∥H f (αg,β f )+Hg(α f ,βg)
∥∥≥ ‖ f +g‖,

∥∥H f (αg,β f )−Hg(α f ,βg)
∥∥≥ ‖ f −g‖.

Similar to the steps in Case 1, we can verify statements (i) and (ii).

To prove statement (iii), we want to show that H f
(
α f ,β g

λ

)
= H f (α f ,βg). Based on the

definition of the operator H, we can rewrite this as:

(3.5) V0

(
α f +β

g
λ

)
+V0

(
α f −β

g
λ

)
=V0(α f +βg)+V0(α f −βg).

Since α f +β
g
λ
− (α f +βg) = α f −βg−

(
α f −β

g
λ

)
, and f ∧g = 0, we can apply the prop-

erties of V0 to obtain:

V0

(
α f +β

g
λ

)
−V0(α f +βg) =V0(α f −βg)−V0

(
α f −β

g
λ

)
.

Hence, equation (3.5) is proven. �

Lemma 3.5. Suppose T0 is a 1-Lipschitz mapping from S(Lp[0,1]) to S(Lp[0,1]), satisfying

T0(λ f ) = λT0( f ) for all f ∈ S(Lp[0,1]) and λ ∈ T, where |λ |= 1. If f ∧g = 0 implies T0( f )∧

T0(g) = 0 for f ,g∈ S(Lp[0,1]), then T0 can be extended to a linear isometry on the entire space.

Proof: The theorem will be proven in three steps.

Step 1: Let ∀ f ∈ S(Lp[0,1]), where f = ∑
n
i=1 ai fi, with fi ∧ f j = 0 for i 6= j, ai ∈ T, and

{ fi}n
i=1 ∈ S(Lp[0,1]). We have ∑

n
i=1 |ai|p = 1. The goal is to prove that for ∀1≤ i≤ n, we have:

T0( f ) =
n

∑
i=1

aiT0( fi). (where ai ∈ T )
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Let’s denote Ai = supp(T0( fi)), which means T0( f )|Ai
= {T0( f )|x : x ∈ Ai}.

Given that T0( fi)∧T0( f j) = 0 for i 6= j, by definition, we have supp(T0( fi))∩supp(T0( f j)) =

/0 holds. In other words, we have Ai∩A j = /0 for i 6= j. It can be deduced that:
n

∑
i=1

∥∥T0( f )|Ai

∥∥p ≤ 1.

Step 2: Next, we will mainly prove that T0( f )|Ai
= aiT0 ( fi) (where ai ∈ T).

Let ai ∈ T, and we can write ai = |ai|eiθi , where sign(ai) = eiθi . Since T0 is 1-Lipschitz and

T0(λ f ) = λT0( f ) for λ ∈ T, we have the following:

(i) ‖T0( f )− sign(ai)T0 ( fi)‖p =
∥∥T0( f )− eiθiT0 ( fi)

∥∥p
=
∥∥T0( f )−T0

(
eiθi fi

)∥∥p≤ 1−|ai|p+

(1−|ai|)p.

(ii) On the other hand, we have ‖T0( f )− sign(ai)T0 ( fi)‖p =
∥∥T0( f )− eiθiT0 ( fi)

∥∥p

=
∥∥∥T0( f )|Ai

+ T0( f )|
Ω\Ai
− eiθiT0 ( fi)

∥∥∥p

=
∥∥∥T0( f )|Ai

−T0

(
eiθi fi

)∥∥∥p
+1−

∥∥T0( f )|Ai

∥∥p

≥
∥∥∥∥∥T0( f )|Ai

∥∥−∥∥∥T0

(
−eiθi fi

)∥∥∥∥∥∥p
+1−

∥∥T0( f )|Ai

∥∥p
.

Here,
∥∥T0
(
−eiθi fi

)∥∥= 1. Therefore, we have:∥∥∥T0( f )− eiθiT0 ( fi)
∥∥∥p
≥
(
1−
∥∥T0( f )|Ai

∥∥)p
+1−

∥∥T0( f )|Ai

∥∥p
.

Combining (i) and (ii), we obtain:

(3.6) (1−|ai|)p +1−|ai|p ≥
(
1−
∥∥T0( f )|Ai

∥∥)p
+1−

∥∥T0( f )|Ai

∥∥p
.

By observing that the form of equation (3.6) is consistent, let’s assume the function ϕ(t) =

(1− t)p + t p, where t ∈ [0,1]. It is easy to see that ϕ(t) is a monotonically decreasing function

for t ∈ [0,1]. Using equation (3.6), we have:

|ai| ≤
∥∥T0( f )|Ai

∥∥ .
Furthermore, from the conclusion obtained in Step 1, we have ∑

n
i=1 |ai|p = ∑

n
i=1

∥∥T0( f )|Ai

∥∥p

= 1. Thus, we can deduce that |ai|=
∥∥T0( f )|Ai

∥∥. Therefore, we can easily obtain:∥∥∥T0( f )|Ai
− eiθiT0 ( fi)

∥∥∥p
=
(
1−
∥∥T0( f )|Ai

∥∥)p
.

Here, we have 1 =
∥∥T0
(
eiθi fi

)∥∥= ∥∥eiθiT0 ( fi)
∥∥. Therefore,
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(3.7)
∥∥∥T0( f )|Ai

− eiθiT0 ( fi)
∥∥∥= ∥∥∥eiθiT0 ( fi)

∥∥∥−∥∥T0( f )|Ai

∥∥ .
Given that the complex space Lp[0,1] is strictly convex, equation (3.7) holds if and only if α > 0

and T0( f )|Ai
= αeiθiT0 ( fi). We will prove that αeiθi = ai.

Since T0( f )|Ai
= αeiθiT0 ( fi) and |ai|=

∥∥T0( f )|Ai

∥∥, we have:∥∥T0( f )|Ai

∥∥= ∣∣∣αeiθi
∣∣∣‖T0 ( fi)‖=

∣∣∣αeiθi
∣∣∣= |ai| .

If αeiθi = −ai, then it contradicts the given condition. Hence, we conclude that αeiθi = ai.

In conclusion, we have shown that T0( f )|Ai
= aiT0 ( fi), which implies V0( f ) = ∑

n
i=1 aiV0 ( fi)

(where ai ∈ T).

Step 3: Let X denote the space of all simple functions in Lp[0,1]. We construct an operator

on the space X as follows:

T : Lp[0,1]→ Lp[0,1]

T( f ) =


‖ f‖T0

(
f
‖ f‖

)
, if f 6= 0.

0, if f = 0.Here, f ∈ Lp[0,1].

Let Lp[0,1] be a complex function space. Consider any simple function in this space:

g =
m

∑
i=1

aixiχEi

where Ei∩E j = /0 for i 6= j, {ai}n
i=1 ⊂ C, {xi}n

i=1 ⊂ Lp[0,1], and aixi 6= 0.

(i) First, we prove that the operator T is isometric:

‖T(g)‖= ‖‖g‖T0

(
g
‖g‖

)
‖= ‖g‖.

(ii) We prove that the operator T is linear on the space X, using the definition of T and the

properties of T0 from Step 2:

T(g) = T

(
m

∑
i=1

aixiχEi

)
=

∥∥∥∥∥ m

∑
i=1

aixiχEi

∥∥∥∥∥T0

(
∑

m
i=1 aixiχEi

‖∑m
i=1 aixiχEi‖

)

=

∥∥∥∥∥ m

∑
i=1

aixiχEi

∥∥∥∥∥ ∑
m
i=1 ai

‖∑m
i=1 ai‖

T0

(
xiχEi

‖xiχEi‖

)
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=
m

∑
i=1

ai ‖xiχEi‖T0

(
xiχEi

‖xiχEi‖

)
=

m

∑
i=1

ai T(xiχEi) .

Thus, T is a linear isometry on the space X. Furthermore, since X is dense in Lp[0,1], T being

an isometry on the space X can be linearly extended to the entire space Lp[0,1].

�

Lemma 3.5 is an important lemma in complex Lp[0,1], and as a consequence, we obtain the

following.

Corollary 3.6. Let T0 be a 1-Lipschitz mapping from S(Lp[0,1]) to S(Lp[0,1]), where 2 < p <

∞, and T0(λ f ) = λT0( f ) for all f ∈ S(Lp[0,1]) and λ ∈ T, where |λ | = 1. If T0 satisfies the

condition

−T0 (S(Lp[0,1]))⊆ T0 (S(Lp[0,1])) ,

then T0 can be isometrically extended to the entire complex Lp[0,1] space.

Proof: Given the assumption on T0 in the condition, for any f ∈ S(Lp[0,1]), let f̃ ∈ S(Lp[0,1])

such that T0( f̃ ) =−T0( f ). Since T0 is a 1-Lipschitz mapping, we have:

2 =
∥∥T0( f̃ )−T0( f )

∥∥≤ ‖ f̃ − f‖ ≤ ‖ f̃‖+‖ f‖= 2.

Hence,
∥∥T0( f̃ )−T0( f )

∥∥= ‖ f̃ − f‖, which implies f̃ =− f .

From T0( f̃ ) =−T0( f ), we can conclude that T0 is an odd function, i.e., T0(− f ) =−T0( f ) holds.

Then, for any f ,g ∈ S(Lp[0,1]) (where f ∧ g = 0) satisfying condition (i) in Lemma 3.2, we

examine the following expression:

4 = 2(‖T0( f )‖p +2‖T0(g)‖p)≤ ‖T0( f )−T0(g)‖p +‖T0( f )+T0(g)‖p

= ‖T0( f )−T0(g)‖p +‖T0( f )−T0(−g)‖p

= ‖ f −g‖p +‖ f +g‖p = 4.

According to the equality condition in Lemma 3.2, we can see that equality holds if and only if

T0( f )∧T0(g) = 0.

Therefore, by utilizing the conclusion in Lemma 3.5, we can deduce that T0 can be uniquely

linearly extended to the entire complex Lp[0,1] space.

�



THE TINGLEY PROBLEM ON THE UNIT SPHERE OF COMPLEX Lp SPACE 11

Theorem 3.7. Let E be a complex Banach space, and let V0 be a surjective isometry from

S(Lp[0,1]) to S(E), where 2 < p < ∞, satisfying V0(λ f ) = λV0( f ) for all f ∈ S(Lp[0,1]) and

λ ∈ T, where |λ |= 1. And V0 satisfies V0(a+ x)−V0(a) =V0(b+ x)−V0(b) for a,b,a+ x,b+

x ∈ S(Lp[0,1]) with a∧ x = 0 and b∧ x = 0.Suppose there exist positive real numbers α and β

such that α p +β p = 1. Let f be a fixed element on the unit sphere of S(Lp[0,1]). Then, for any

element g on the unit sphere that is orthogonal to f , we define the mapping:

Φ f (g) : g 7→ Hg(α f ,βg).

Then, (i) the mapping Φ f (g) is a linear isometry. (ii) For all elements g1 and g2 in S(Lp[0,1])

satisfying f ∧g1 = 0 and f ∧g2 = 0, we have H f (α f ,βg1) = H f (α f ,βg2).

Proof: (i) Let’s first prove that Φ f (λg) = λΦ f (g).

From the conditions and definitions, it is straightforward to see that Hλg(α f ,βλg) =

Hλg(αλ f ,βλg) =V−1
0

(
V0(αλ f+βλg)+V0(βλg−αλ f )

2β

)
= λHg(α f ,βg) = λΦ f (g). Therefore, we

have shown that Φ f (λg) = λΦ f (g).

Now, let A0 = supp f . In fact, the defined mapping Φ f (g) can be seen as a mapping from the

unit sphere S(Lp[0,1]\A0) to the unit sphere S(Lp[0,1]). According to Corollary 3.6, we only

need to prove that this mapping is 1-Lipschitz and its range is symmetric.

To prove that Φ f (g) is 1-Lipschitz: consider any g1,g2 ∈ S(Lp[0,1]) such that f ∧g1 = 0 and

f ∧g2 = 0. We have:

(3.8)

∥∥Φ f (g1)−Φ f (g2)
∥∥= ∥∥Hg1(α f ,βg1)−Hg2(α f ,βg2)

∥∥
=

∥∥∥∥V−1
0

(
V0(α f +βg1)+V0(βg1−α f )

2β

)
−V−1

0

(
V0(α f +βg2)+V0(βg2−α f )

2β

)∥∥∥∥
=

∥∥∥∥V0(α f +βg1)+V0(βg1−α f )
2β

− V0(α f +βg2)+V0(βg2−α f )
2β

∥∥∥∥
≤ 1

2β
(β‖g1−g2‖+β‖g1−g2‖) = ‖g1−g2‖.

Therefore, we have shown that Φ f (g) is 1-Lipschitz.

Next, we prove that the range of Φ f (g) is symmetric:From the definition of Hg(α f ,βg) and

Lemma 3.3, we know that H−g(α f ,β (−g)) = −Hg(α f ,βg). Therefore, by Corollary 3.6,

Φ f (g) is a linear isometry.
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Now, we prove (ii). Since Φ f (g) is an isometry, Equation (3.8) becomes an equality. Hence,

we obtain:

V0 (α f +βg1)−V0 (α f +βg2) =V0 (βg1−α f )−V0 (βg2−α f ) .

Using Lemma 3.3, we have:

V0 (α f +βg1)+V0 (α f −βg1) =V0 (α f +βg2)+V0 (α f −βg2)

V−1
0

(
V0 (α f +βg1)+V0 (α f −βg1)

2α

)
=V−1

0

(
V0 (α f +βg2)+V0 (α f −βg2)

2α

)
This implies that H f (α f ,βg1) = H f (α f ,βg2). Thus, we have proved (ii). �

Theorem 3.8. Let E be a complex Banach space, and let V0 be a surjective isometry from

S(Lp[0,1]) to S(E), satisfying V0(λ f ) = λV0( f ) for all f ∈ S(Lp[0,1]) and λ ∈ T, where |λ |=

1.And V0 satisfies V0(a+ x)−V0(a) =V0(b+ x)−V0(b) for a,b,a+ x,b+ x ∈ S(Lp[0,1]) with

a∧x = 0 and b∧x = 0. Suppose there exist positive real numbers α and β such that α p+β p =

1. Take a fixed element g on the unit sphere of S(Lp[0,1]). Then, for any element f on the unit

sphere that is orthogonal to g, we define the mapping:

Φg( f ) : f 7→ H f (α f ,βg).

Then, (i) the mapping Φg( f ) is a linear isometry. (ii) For all elements f1 and f2 in S(Lp[0,1])

satisfying g∧ f1 = 0 and g∧ f2 = 0, we have Hg(α f1,βg) = Hg(α f2,βg).

Proof: The proof of Theorem 3.8 is similar to that of Theorem 3.7 and is omitted. �

To establish an important result in this section, we first introduce an important lemma that

has been mentioned and proven in references [21, 22].

Lemma 3.9. (Lamperti’s Theorem): Let U be a linear isometry from Lp (Ω1,Σ1,µ1) to

Lp (Ω2,Σ2,µ2), where (1 < p < ∞, and p 6= 2). Then, there exists a regular set isomorphism T

from Σ1 to Σ2 and a function h defined on Ω2 such that:

(3.9) U f (t) = h(t)T1( f ),
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where f ∈ Lp (Ω1,Σ1,µ1), T1 is the linear transformation induced by T , and h satisfies:

∫
TA
|h|pdµ2 =

∫
TA

d
(
µ1 ◦T−1)

dµ2
dµ2 = µ1(A) ∀A ∈ Σ1.

Conversely, for any h and T satisfying Equation (3.9), the corresponding U is an isometry.

Theorem 3.10. Let E be a complex Banach space, and let V0 be a surjective isometry from

S(Lp[0,1]) to S(E), satisfying V0(λ f ) = λV0( f ) for all f ∈ S(Lp[0,1]) and λ ∈ T, where |λ |=

1.And V0 satisfies V0(a+ x)−V0(a) =V0(b+ x)−V0(b) for a,b,a+ x,b+ x ∈ S(Lp[0,1]) with

a∧x = 0 and b∧x = 0. Suppose there exist positive real numbers α and β such that α p+β p =

1. For any measurable set A ⊂ [0,1] with 0 < µ(A) < 1, define the mapping Φ f (g) : g 7→

Hg(α f ,βg) for all f ∈ S(Lp[0,1]) such that µ(supp f ∩A) = 0. Then, the following equations

hold:

H
λ

χA
µ(A)1/p

(
αλ

χA

µ(A)1/p
,β f

)
= λ

χA

µ(A)1/p
, H

λ
χA

µ(A)1/p

(
α f ,βλ

χA

µ(A)1/p

)
= λ

χA

µ(A)1/p
.

Proof:

According to Lemma 3.4(iii), we have H
λ

χA
µ(A)1/p

(
αλ

χA
µ(A)1/p ,β f

)
= λH χA

µ(A)1/p

(
α

χA
µ(A)1/p ,β f

)
= λ

χA
µ(A)1/p . Therefore, it suffices to prove that H χA

µ(A)1/p

(
α

χA
µ(A)1/p ,β f

)
= χA

µ(A)1/p , and similarly,

it suffices to prove that H χA
µ(A)1/p

(
α f ,βλ

χA
µ(A)1/p

)
= χA

µ(A)1/p .

Step 1: Let us first prove that for ∀ f ,g ∈ S(Lp[0,1]) such that f ∧g = 0, the following state-

ments hold:

µ(supp f ∩ suppH f (α f ,βg))> 0,µ(suppg∩ suppHg(α f ,βg))> 0.

Indeed, without loss of generality, let’s assume α ≥ 2−1/p. Since V0 is an isometry, we can

examine the following:

(3.10)∥∥H f (α f ,βg)− f
∥∥

=

∥∥∥∥V−1
0

(
V0(α f +βg)+V0(α f −βg)

2α

)
− f
∥∥∥∥= ∥∥∥∥V0(α f +βg)+V0(α f −βg)

2α
−V0( f )

∥∥∥∥ ,
=

∥∥∥∥V0(α f +βg)+V0(α f −βg)
2α

− αV0( f )+αV0( f )
2α

∥∥∥∥ ,
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=
1

2α
‖(1−α)V0(α f +βg)+(1−α)V0(α f −βg)+α (V0(α f +βg)−V0( f ))+

α (V0(α f −βg)−V0( f ))‖

≤ 1
2α

[
2(1−α)+2α ((1−α)p +β

p)1/p
]
,

≤21/p−1+
((

1−2−1/p
)p

+
1
2

)1/p

≤ 21/p.

(Where the function h(α) = (1−α)p +1−α p is strictly decreasing on the interval [0,1])

From this, it follows that µ(supp f ∩ suppH f (α f ,βg)) > 0. Furthermore, when α < 2−1/p

and β ≥ 2−1/p, by Lemma 3.4 (i) which states H f (α f ,βg) = H f (β f ,αg), we can still

conclude that µ(supp f ∩ suppH f (α f ,βg)) > 0. Similarly, we can prove that µ(suppg ∩

suppHg(α f ,βg))> 0.

Step 2: We will prove that for any measurable set A⊂ [0,1] and any function f ∈ S(Lp[0,1])

satisfying 0≤ µ(A)≤ 1 and µ(supp f ∩A) = 0, the following statements hold:

suppH χA
µ(A)1/p

(α
χA

µ(A)1/p
β f ) = A, suppH χA

µ(A)1/p
(α f ,β

χA

µ(A)1/p
) = A.

To prove suppH χA
µ(A)1/p

(α χA
µ(A)1/p ,β f ) = A, let’s first prove:

µ(suppH χA
µ(A)1/p

(α
χA

µ(A)1/p
,β f )∩AC) = 0.

Proof by contradiction: Let’s assume that µ(suppH χA
µ(A)1/p

(α χA
µ(A)1/p ,β f )∩AC)> 0. Then there

exists a measurable set B, with 0 < µ(B)< 1, such that

B⊆ suppH χA
µ(A)1/p

(α
χA

µ(A)1/p
,β f )∩AC.

With the chosen element χA
µ(A)1/p , we know that A∩B = /0. Thus, we have χA

µ(A)1/p ∧
χB

µ(B)1/p = 0

and
(

χA
µ(A)1/p ∧ f = 0

)
. Therefore, by applying Theorem 3.7(ii), we obtain

H χA
µ(A)1/p

(α
χA

µ(A)1/p
,β

χB

µ(B)1/p
) = H χA

µ(A)1/p
(α

χA

µ(A)1/p
,β f ).

Therefore, B ⊆ suppH χA
µ(A)1/p

(α χA
µ(A)1/p ,β f ) ∩ AC = suppH χA

µ(A)1/p
(α χA

µ(A)1/p ,β
χB

µ(B)1/p ) ∩ AC.

Thus, we have B⊆ suppH χA
µ(A)1/p (α

χA
µ(A)1/p ,β

χB
µ(B)1/p ).

On the other hand, from Step 1, we know that

µ(supp
χB

µ(B)1/p
∩ suppH χB

µ(B)1/p
(α

χA

µ(A)1/p
,β

χB

µ(B)1/p
))> 0.
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That is, µ

(
B∩ suppH χB

µ(B)1/p
(α χA

µ(A)1/p ,β
χB

µ(B)1/p )

)
> 0.

Furthermore, since B⊆ suppH χA
µ(A)1/p

(α χA
µ(A)1/p ,β

χB
µ(B)1/p ), we have

(3.11) µ

(
suppH χA

µ(A)1/p
(α

χA

µ(A)1/p
,β

χB

µ(B)1/p
)∩ suppH χB

µ(B)1/p
(α

χA

µ(A)1/p
,β

χB

µ(B)1/p
)

)
> 0.

However, according to Lemma 3.4 (ii), we know that χA
µ(A)1/p ,

χB
µ(B)1/p ∈ S(Lp[0,1]) and χA

µ(A)1/p ∧
χB

µ(B)1/p = 0. Hence, we have:

H χA
µ(A)1/p

(α
χA

µ(A)1/p
β

χB

µ(B)1/p
)⊥ H χB

µ(B)1/p
(α

χA

µ(A)1/p
β

χB

µ(B)1/p
).

This contradicts equation (3.11), and thus our assumption is not valid. Therefore, we conclude

that

µ(suppH χA
µ(A)1/p

(α
χA

µ(A)1/p
,β f )∩AC) = 0.

Similarly, we can prove that µ(suppH χA
µ(A)1/p

(α f ,β χA
µ(A)1/p )∩AC) = 0. Next, we will prove that

the following situation cannot occur:

µ(suppH χA
µ(A)1/p

(α
χA

µ(A)1/p
,β f ))< µ(A).

Proof by contradiction: Assume that µ(suppH χA
µ(A)1/p

(α χA
µ(A)1/p ,β f ))< µ(A).

Let A1 = suppH χA
µ(A)1/p

(α χA
µ(A)1/p ,β f )∩A and A2 = A \A1. (Clearly, A1 ∩A2 = /0.) Then, we

have χA
µ(A)1/p =

χA1+χA2
µ(A)1/p = µ(A1)

1/p

µ(A)1/p

χA1
µ(A1)1/p +

µ(A2)
1/p

µ(A)1/p

χA2
µ(A2)1/p .

According to Theorem 3.7 (i), the operator Hg(α f ,βg) is a linear isometry. Therefore, we have:

(3.12)

H χA
µ(A)1/p

(α
χA

µ(A)1/p ,β f ) =
µ(A1)

1/p

µ(A)1/p H χA1
µ(A1)

1/p
(α

χA1

µ(A1)1/p ,β f )+
µ(A2)

1/p

µ(A)1/p H χA2
µ(A2)

1/p
(α

χA2

µ(A2)1/p ,β f ).

Moreover, from the conclusion in Step 1, we have µ(suppH
χA2

µ(A2)1/p (α
χA2

µ(A2)1/p ,β f )∩A2) > 0

holds. Thus, we can deduce from equation (3.12):

µ(suppH χA
µ(A)1/p

(α
χA

µ(A)1/p
,β f )∩A2)> 0.

This contradicts the definition of A2 as A\A1. Hence, our assumption is not valid.

Step 3: Finally, we prove that

H χA
µ(A)1/p

(α
χA

µ(A)1/p
,β f ) =

χA

µ(A)1/p
and H χA

µ(A)1/p
(α f ,β

χA

µ(A)1/p
) =

χA

µ(A)1/p
.
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By using Lemma 3.9 (Lamperti’s theorem), for all linear isometries U on the space Lp[0,1]→

Lp[0,1], there exists a unified representation:

U f (t) = h(t)T1( f ),

where f ∈ Lp[0,1] and T1 is a linear transformation induced by T .

According to Theorem 3.7 (i), we know that H χA
µ(A)1/p

(α χA
µ(A)1/p β f ) = Φ f (

χA
µ(A)1/p ) is a linear

isometry. By Lemma 3.9, let T be a regular set isomorphism associated with Φ f , and T1 be the

linear transformation induced by T . Note that for any A ⊂ [0,1] with 0 ≤ µ(A) ≤ 1, we have

T1(χA) = χT (A) and T (A) = A due to the properties of the linear transformation T1. Then, we

have

(3.13) Φ f (
χA

µ(A)1/p
) = hT1(

χA

µ(A)1/p
) = h

χA

µ(A)1/p
.

Here, h satisfies the following equation:∫
A
|h|pdµ =

∫
TA
|h|pdµ =

∫
A

d(µ ◦T−1)

dµ
dµ = µ(A).

Hence, we have |h|= 1 a.e.

Furthermore, since in Step 1 we have ‖H f (α f ,βg)− f‖ ≤ 21/p, we can conclude that

‖Φ f (
χA

µ(A)1/p
)− χA

µ(A)1/p
‖= ‖h χA

µ(A)1/p
− χA

µ(A)1/p
‖ ≤ 21/p.

Therefore, we have h = 1. Combining this with equation (3.13), we obtain Φ f (
χA

µ(A)1/p ) =

H χA
µ(A)1/p

(α χA
µ(A)1/p ,β f ) = χA

µ(A)1/p .

Similarly, we can show that H χA
µ(A)1/p

(α f ,β χA
µ(A)1/p ) =

χA
µ(A)1/p .

Therefore, we have proven the conclusion. �

Theorem 3.11. Let E be a complex Banach space, V0 : S (Lp[0,1])→ S(E) be a surjective

isometry, where 2< p<∞.Satisfying V0(λ f ) = λV0( f ) for all f ∈ S(Lp[0,1]) and λ ∈T, where

|λ |= 1.And V0 satisfies V0(a+x)−V0(a) =V0(b+x)−V0(b) for a,b,a+x,b+x ∈ S(Lp[0,1])

with a∧ x = 0 and b∧ x = 0.Then V0 can be linearly and isometrically extended to the entire

space Lp[0,1].
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Proof: The proof is divided into two steps.

Step 1: Examining V0( f ) =V0

(
a1

χA1

µ(A1)
1/p +g

)

= |a1|
V0

(
|a1| a1

|a1| ·
χA1

µ(A1)
1/p +‖g‖

g
‖g‖

)
+V0

(
−‖g‖ g

‖g‖ + |a1| a1
|a1| ·

χA1

µ(A1)
1/p

)
2 |a1|

+

‖g‖
V0

(
|a1| a1

|a1| ·
χA1

µ(A1)
1/p +‖g‖

g
‖g‖|

)
+V0

(
−|a1| a1

|a1| ·
χA1

µ(A1)
1/p +‖g‖ g

‖g‖)

2‖g‖
,

=a1V0(
χA1

µ(A1)1/p
)+‖g‖V0(

g
‖g‖

)

Step 2: Let X denote the space of all simple functions in Lp[0,1]. Consider any simple function

in the complex Lp[0,1] space:

g =
n

∑
i=1

λi
χAi

µ (Ai)
1/p
∈ Lp[0,1]

where {λi}n
i=1 ⊂ C and {Ai}n

i=1 is a sequence of measurable sets satisfying 0 ≤ µ (Ai) < 1 for

1≤ i≤ n, and µ
(
Ai∩A j

)
= 0 for i 6= j. We construct an operator V on the space X as follows:

V : Lp[0,1]→ E

V(g) = V

(
n

∑
i=1

λi
χAi

µ (Ai)
1/p

)
=

n

∑
i=1

λiV0

(
χAi

µ (Ai)
1/p

)
g ∈ Lp[0,1].

We will prove that the operator V is isometric:

‖V(g)‖=

∥∥∥∥∥V

(
n

∑
i=1

λi
χAi

µ (Ai)
1/p

)∥∥∥∥∥=
∥∥∥∥∥ n

∑
i=1
|λi|V0

(
λi

|λi|
χAi

µ (Ai)
1/p

)∥∥∥∥∥ ,
= ‖g‖

∥∥∥∥∥ n

∑
i=1

|λi|
‖g‖

V0

(
λi

|λi|
χAi

µ (Ai)
1/p

)∥∥∥∥∥ ,
= ‖g‖

∥∥∥∥∥V0

(
n

∑
i=1

λi

‖g‖
χAi

µ (Ai)
1/p

)∥∥∥∥∥= ‖g‖.
Hence, V is a linear isometry on the space X . Since X is dense in Lp[0,1] and both Lp[0,1]

and E are complete, V0 can be linearly extended to the entire space Lp[0,1]. �

Next, we will consider the case of1 < p < 2,The following Lemmas 3.12 and 3.13 are similar

to the case of 2 < p < ∞ in the first part and their proof processes are omitted.
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Lemma 3.12. Let E be a complex Banach space, V0: S(Lp[0,1])→ S(E) be a surjective isom-

etry, and let f ,g ∈ S(Lp[0,1]) such that f ∧g = 0. And suppose V0 satisfies V0(a+x)−V0(a) =

V0(b+x)−V0(b) for a,b,a+x,b+x ∈ S(Lp[0,1]) with a∧x = 0 and b∧x = 0. Moreover, let α

and β be positive real numbers satisfying α p+β p = 1. Then: (i) Hg(α f ,βg)=Hg(β f ,αg) and

H f (α f ,βg) = H f (β f ,αg). (ii) Hg(α f ,βg) ⊥ H f (α f ,βg). (iii) Hg

(
α

f
λ ′ ,βg

)
= Hg(α f ,βg),

where λ ∈ T and |λ |= 1.

Lemma 3.13. Let T0 be a 1-Lipschitz mapping from S(Lp[0,1]) to S(Lp[0,1]), satisfying

T0(λ f ) = λT0( f ) for all f ∈ S(Lp[0,1]) and λ ∈ T.If f ∧ g = 0 implies T0( f )∧ T0(g) = 0

for f ,g ∈ S(Lp[0,1]), then T0 can be extended to a linear isometry on the entire space.

Lemma 3.14. Let E be a complex Banach space, and V0: S(Lp[0,1])→ S(E) be a surjective

isometry, where 1 < p < 2. And suppose V0 satisfies V0(a+ x)−V0(a) =V0(b+ x)−V0(b) for

a,b,a+ x,b+ x ∈ S(Lp[0,1]) with a∧ x = 0 and b∧ x = 0.Let α0,β0,γ0 > 0 satisfy α
p
0 +β

p
0 +

γ
p
0 = 1. For any sequence of elements {gi}n

i=1 ⊂ S(Lp[0,1]) such that gi ⊥ g j for i 6= j and

i, j = 0,1,2, we have:

Hg1 (α0g0 + γ0g2,β0g1)⊥ Hg2 (α0g0− γ0g1,β0g2) .

Proof:

Using a similar proof method as in Lemma 3.4 (ii), we can obtain the conclusion. �

Lemma 3.15. Let E be a complex Banach space, and V0: S(Lp[0,1])→ S(E) be a surjective

isometry.And suppose V0 satisfies V0(a+ x)−V0(a) = V0(b+ x)−V0(b) for a,b,a+ x,b+ x ∈

S(Lp[0,1]) with a∧ x = 0 and b∧ x = 0. In this case, when 1 < p < 2, consider a fixed element

g0. Let g1 and g2 (where {gi}n
i=1 ⊂ S(Lp[0,1])) be elements orthogonal to g0. Then, for any

positive numbers α and β satisfying α p +β p = 1, we have:

Hg1 (αg0,βg1)⊥ Hg2 (αg0,βg2) .

Proof:

The conclusion obtained from Lemma 3.14 is Hg1 (α0g0 + γ0g2,β0g1) ⊥
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Hg2 (α0g0− γ0g1,β0g2), which can be written as:

V−1
0

(
V0 (α0g0 + γ0g2 +β0g1)+V0 (β0g1−α0g0− γ0g2)

2β0

)
=V−1

0

(
V0 (α0g0− γ0g1 +β0g2)+V0 (β0g2−α0g0 + γ0g1)

2β0

)
By letting γ0→ 0, α0→ α , and β0→ β , we can deduce:

V−1
0

(
V0 (αg0 +βg1)+V0 (βg1−αg0)

2β

)
=V−1

0

(
V0 (αg0 +βg2)+V0 (βg2−αg0)

2β

)
This implies that Hg1 (αg0,βg1)⊥ Hg2 (αg0,βg2). �

Theorem 3.16. Let E be a complex Banach space, and V0: S(Lp[0,1])→ S(E) be a surjective

isometry, where 1 < p < 2. Suppose V0(λ f ) = λV0( f ) for all f ∈ S(Lp[0,1]) and λ ∈ T.And

suppose V0 satisfies V0(a+x)−V0(a) =V0(b+x)−V0(b) for a,b,a+x,b+x∈ S(Lp[0,1]) with

a∧ x = 0 and b∧ x = 0.For positive real numbers α and β satisfying α p +β p = 1, consider a

fixed element f on the unit sphere S (Lp[0,1]). Then, for any element g orthogonal to f on the

unit sphere, we define the mapping:

Φ f (g) : g 7→ Hg(α f ,βg)

Then: (i) The mapping Φ f (g) is a linear isometry. (ii) For all g1 and g2 in S(Lp[0,1]) satisfying

f ∧g1 = 0 and f ∧g2 = 0, we have H f (α f ,βg1) = H f (α f ,βg2).

Proof:

(i) To begin with, we prove that Φ f (λg) = λΦ f (g) for any λ ∈ C and Φ f (g) is 1-Lipschitz.

The proof of these properties is similar to that of Theorem 3.7, and we omit it here.

Moreover, according to Lemma 3.15, for 1 < p < 2, if we fix an g0 in S(Lp[0,1]), then

for any g1 and g2 orthogonal to g0 in S(Lp[0,1]), when g1 ⊥ g2, we have Hg1 (αg0,βg1) ⊥

Hg2 (αg0,βg2). In other words, Φg0 (g1) ⊥ Φg0 (g2) holds. Since the conditions of Lemma

3.13 are satisfied, we can conclude that Φ f (g) can be extended to the entire space as a linear

isometry.

(ii) Similar to Theorem 3.7, we will not provide the proof here. �

Theorem 3.16 holds, and we can analogously prove that Theorem 3.8 remains valid for 1 < p <
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2. Following the same proof process as in the previous case with Theorems 3.9 and 3.10, we

can obtain the final conclusion of this section.

Theorem 3.17. Let E be a complex Banach space, and V0: S (Lp[0,1])→ S(E) be a surjective

isometry, where 1 < p < 2.Suppose V0(λ f ) = λV0( f ) for all f ∈ S(Lp[0,1]) and λ ∈ T.And

suppose V0 satisfies V0(a+x)−V0(a) =V0(b+x)−V0(b) for a,b,a+x,b+x∈ S(Lp[0,1]) with

a∧ x = 0 and b∧ x = 0. Then, V0 can be extended as a linear isometry to the entire space

Lp[0,1].
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