
Available online at http://scik.org

Adv. Fixed Point Theory, 2023, 13:19

https://doi.org/10.28919/afpt/8188

ISSN: 1927-6303

FIXED POINT THEOREM IN PARTIALLY ORDERED PARTIAL METRIC
SPACES

ARTA EKAYANTI1,2, MOHAMAD MUSLIKH1, SA’ADATUL FITRI1, MARJONO1,∗

1Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Jl. Veteran,

Malang, 65145, Indonesia

2Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah

Ponorogo, Jl. Budi Utomo No 10, Ponorogo, 63471, Indonesia

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we introduce the existence fixed point theorem in the context of partial metric space

endowed with partial ordering. Our results generalize and extend some recent results of Ran and Reurings (2004)

and Nieto and Rodrı́guez-López (2005) to partial metric spaces.
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1. INTRODUCTION

In 1922, the Banach contraction principle was introduced by S. Banach as follows:

Theorem 1.1. [1] Let (X ,d) be a complete metric space and a self-mapping f : X → X. If f is

contraction mapping i.e. there exist κ ∈ [0,1) such that for all x,y∈ X, d( f (x), f (y))≤ κd(x,y)

then f has a unique fixed point in X.

Banach’s contraction principle is one of the fundamental and useful tools in mathematics. A

number of authors have defined contractive type mapping [2] on a complete metric space X
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which is a generalization of the Banach contraction principle [3]. Recently, Ran and Reurings

[4] initiated the trend of weaken the contraction condition by considering single-valued mapping

on partially ordered metric space. O’Regan and Petruşel [5] called the contraction’s condition

on Ran and Reurings by the Banach-Caccioppoli type principle. The main result in [4] is the

following theorem.

Theorem 1.2. Let (X ,4) be a partially ordered set such that every pair x,y ∈ X has an upper

and lower bound. Let d be a metric on X such that (X ,d) is a complete metric space. Let

f : X → X be a continuous monotone (i.e. either non-decreasing or non-increasing) mapping.

Suppose that the following conditions hold:

(1) there exist κ ∈ (0,1) with

d( f (x), f (y))≤ κd(x,y),

for all x < y,

(2) there exist x0 ∈ X with x0 4 f (x0) or x0 < f (x0), then f has a unique fixed point x∗ ∈ X

and for each x ∈ X ,

lim
n→∞

f n(x) = x∗.

After the result of Ran and Reurings, the study on fixed point theory developments in par-

tially ordered sets has been constantly growing. Several authors considered the problem of the

existence (and uniqueness) of a fixed point for contraction mapping on a partially ordered set.

In 2005, J.J Nieto and R Rodrı́guez-López [6] present a new extension of the Banach contrac-

tive mapping theorem to partially ordered sets by removing the upper bound and lower bound

hypothesis. This results in the following theorem.

Theorem 1.3. Let (X ,4) be a partially ordered set and suppose that there exists a metric d in X

such that (X ,d) is a complete metric space. Let f : X → X be a continuous and non-decreasing

mapping such that there exists κ ∈ [0,1) with

d( f (x), f (y))≤ κd(x,y),

for all x < y. If there exists x0 ∈ X with x0 4 f (x0), then f has a fixed point.

Nieto and Rodrı́guez-López [6] also present a new extension of the Banach contractive map-

ping theorem to partially ordered sets that allow to consider of discontinuous functions.
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Theorem 1.4. Let (X ,4) be a partially ordered set and suppose that there exists a metric d in

X such that (X ,d) is a complete metric space. Assume that X satisfies: ”If a non-decreasing

sequence xn → x in X, then xn 4 x for n ∈ N”. Let f : X → X be monotone non-decreasing

mapping such that there exists κ ∈ [0,1) with

d( f (x), f (y))≤ κd(x,y),

for all x < y. If there exists x0 ∈ X with x0 4 f (x0), then f has a fixed point.

Consider the hypothesis ”every x,y in X has a lower bound and an upper bound” on Theorem

1.2. Without this condition as in Theorem 1.3 and Theorem 1.4, the existence of a fixed point is

still guaranteed but not for the uniqueness. Nieto and Rodrı́guez-López [6], prove that a weaker

condition, namely the existence of a lower bound or upper bound, guarantees the uniqueness of

a fixed point of f . This result is presented in the following theorem.

Theorem 1.5. Assume that X satisfies:

Every x,y ∈ X has a lower bound or an upper bound. (1.1)

Adding condition (1.1) to the hypothesis of Theorem 1.3 (resp. Theorem 1.4), we obtain the

uniqueness of the fixed point of f.

Furthermore, from Theorem 1.3 and Theorem 1.4 the following theorem is obtained.

Theorem 1.6. Let (X ,4) be a partially ordered set and suppose that there exists a metric d

in X such that (X ,d) is a complete metric space. Let f : X → X be monotone non-decreasing

mapping such that there exists κ ∈ [0,1) with

d( f (x), f (y))≤ κd(x,y),

for all x< y. Assume that either f is continuous or X is such that: ”If a non-increasing sequence

xn→ x in X, then x 4 xn, for n ∈ N”. If there exists x0 ∈ X with x0 < f (x0), then f has a fixed

point.

Motivated by these works, we are going to combine the techniques employed by Ran and

Reurings [4], Nieto and Rodrı́guez-López [6], and Matthews [7] in generalizing and extending

Theorem 1.2-1.6.
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2. PRELIMINARIES

Firstly, we recall some definitions and some properties of partial metric space and partially

ordered sets. The notation R+,N denotes the set of all positive real numbers, the set of all

positive integer numbers, respectively.

In the development of metric space study, Matthews [7] introduced the notion of partial metric

space as a generalization of metric space. The most remarkable property in a partial metric space

is that the self-distance need not be zero.

Definition 2.1. [7] Let X be a nonempty set, and let p : X×X→ [0,∞) be a function satisfying

the following:

(P1). p(x,x) = p(y,y) = p(x,y) if and only if x = y

(P2). p(x,x)≤ p(x,y)

(P3). p(x,y) = p(y,x)

(P4). p(x,y)≤ p(x,z)+ p(z,y)− p(z,z),

for all x,y,z ∈ X and the pair (X , p) is called a partial metric space.

Remark 2.1. [8] In partial metric space (X , p),

(1) If p(x,y) = 0 then x = y, but if x = y then p(x,y) may not be zero.

(2) p(x,y)> 0 for all x,y ∈ X ,x 6= y.

Example 2.1. [7, 8] X = R+, and define p(x,y) = max{x,y}, for all x,y ∈ X, pair (X , p) is

partial metric space.

Definition 2.2. [8, 9, 10] In partial metric space (X , p),

(1) A sequence (xn) is said to converge to a point x ∈ X if and only if limn→∞ p(xn,x) =

p(x,x).

(2) A sequence (xn) is called Cauchy sequence if and only if limn→∞ p(xn,xm) is finite.

(3) If every Cauchy sequence (xn) converges to a point x ∈ X such that limn→∞ p(xn,xm) =

p(x,x) then (X , p) is known as complete partial metric space.

(4) A mapping f : X → X is said to be continuous at x0 ∈ X , if for every ε > 0, there exists

δ > 0 such that

f (B(x0,δ ))⊂ B( f (x0),ε).
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Romaguera [11] defined the notion of 0-Cauchy sequence (xn) in partial metric spaces and

also introduced the concept of 0-completeness in the same class of spaces.

Definition 2.3. [11, 12] A sequence (xn) in partial metric space (X , p) is called 0-Cauchy if

limn→∞ p(xn,xm) = 0. A partial metric space (X , p) is said to be 0-complete if every 0-Cauchy

sequence in X converges, with respect to topology τp to a point x ∈ X such that p(x,x) = 0. In

this case, p is said to be a 0-complete partial metric on X .

Observe that each 0-Cauchy sequence is also a Cauchy sequence in a partial metric space. In

particular, we note that each complete partial metric space is a 0-complete partial metric on X .

However, the converse is not true.

Matthews [7] gave a modified version of the Banach contraction principle in partial metric

spaces.

Theorem 2.1. Let (X , p) be a complete partial metric space and f : X → X be a mapping such

that there exists κ ∈ [0,1) with

p( f (x), f (y))≤ κ p(x,y),

for all x,y∈X then there exists a unique x∗ ∈X such that x∗= f (x∗), furthermore p(x∗,x∗) = 0.

Definition 2.4. [13, 14] A partial order is a binary relation 4 over a set X which satisfies the

following conditions:

(1) x 4 x (reflexity)

(2) If x 4 y and y 4 x then x = y (antisymmetry)

(3) If x 4 y and y 4 z then x 4 z (transitivity),

for all x,y,z ∈ X . A set with partial order 4 is called a partially ordered set.

Definition 2.5. [13, 14, 15] Let (X ,4) be a partially ordered set and x,y ∈ X . Element x and y

are said to be comparable elements of X if either x 4 y or y 4 x.

Definition 2.6. [14] Let (X ,4) be a partially ordered set. If S⊂ X and y ∈ X .

(1) Element y is called lower bound of S, if y 4 x for each x ∈ S.

(2) Element y is called upper bound of S, if x 4 y for each x ∈ S.
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Remark 2.2. [6] Let (X ,4) be a partially ordered set. Every pair of elements X has a lower

bound or an upper bound if and only if for every x,y ∈ X, there exist z ∈ X which is comparable

to x and y.

Indeed, if every pair of elements X has a lower bound or an upper bound, given x,y ∈ X , the

upper or lower bound of x and y is comparable both to x and y. Conversely, if x,y ∈ X and z ∈ X

is comparable with them, we have the following possibilities:

(1) If x 4 z,y 4 z or z 4 x,z 4 y, then every pair of elements X has a lower bound or an

upper bound.

(2) If x 4 z 4 y or y 4 z 4 x, then x and y are comparable and every pair of elements X has

a lower bound or an upper bound.

Definition 2.7. [6, 15] Let (X ,4) be a partially ordered set and f : X → X . We say that f is

monotone non-decreasing on X if for every x,y ∈ X with x 4 y, then f (x)4 f (y). And we say

that f is monotone non-increasing on X if for every x,y ∈ X with x 4 y, then f (y)4 f (x).

3. MAIN RESULTS

We begin with the following theorem that gives the existence of a fixed point in partially

ordered partial metric space.

Theorem 3.1. Let (X ,4) be a partially ordered set and suppose that there exists a metric d

in X such that (X , p) is a complete partial metric space. Let f : X → X be a continuous and

non-decreasing mapping such that there exists κ ∈ [0,1) with

p( f (x), f (y))≤ κ p(x,y), (3.1)

for all x < y. If there exists x0 ∈ X with x0 4 f (x0), then f has a fixed point, that is x∗. Further-

more, p(x∗,x∗) = 0.

Proof. Let x0 ∈ X be such that x0 4 f (x0) or x0 < f (x0). Since f non-decreasing then we have

either

x0 4 f (x0)4 f ( f (x0)) = f 2(x0)4 f ( f 2(x0)) = f 3(x0)4 . . .4 f n(x0)4 f n+1(x0)4 . . .

Therefore from (3.1) it follows that
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p( f n+1(x0), f n(x0))≤ κ p( f n(x0), f n−1(x0))

≤ κκ p( f n−1(x0), f n−2(x0)) = κ
2 p( f n−1(x0), f n−2(x0))

≤ κκ
2 p( f n−2(x0), f n−3(x0)) = κ

3 p( f n−2(x0), f n−3(x0))

...

≤ κ
n p( f (x0),x0).

where n ∈ N. Furthermore, by P4 we have

p( f n+k+1(x0), f n(x0))

≤ p( f n+k+1(x0), f n+k(x0))+ p( f n+k(x0), f n(x0))− p( f n+k(x0), f n+k(x0))

≤ κ
n+k p( f (x0),x0)+ p( f n+k(x0), f n(x0)).

Similarly,

p( f n+k+1(x0), f n+k(x0))≤ p( f n+k+1(x0), f n(x0))+ p( f n(x0), f n+k(x0))− p( f n(x0), f n(x0))

≤ κ
n+k p( f (x0),x0)+ p( f n(x0), f n(x0)).

where n,k ∈ N. Thus, for every n,k ∈ N we have

p( f n+k+1(x0), f n(x0))≤ (κn+k +κ
n+k−1 + . . .+κ

n)p( f (x0),x0)+ p( f n(x0), f n(x0))

≤ κn(1−κn+1)

1−κ
p( f (x0),x0)+κ

n p(x0,x0)

= κ
n
(

1−κn+1

1−κ
p( f (x0),x0)+ p(x0,x0)

)
≤ κ

n
(

1
1−κ

p( f (x0),x0)+ p(x0,x0)

)
which means f n(x0) is Cauchy Sequence such that for m,n ∈ N we have

lim
m,n→∞

p( f n(x0), f m(x0)) = 0.

Since X is a complete metric space, so there exist x∗ ∈ X such that f n(x0) converges to x∗, we

have

lim
n→∞

p( f n(x0),x∗) = 0.



8 ARTA EKAYANTI, MOHAMAD MUSLIKH, SA’ADATUL FITRI, MARJONO

Furthermore, we will prove that f (x∗) = x∗. For any n ∈ N we have

p( f (x∗),x∗)≤ p( f (x∗), f n+1(x0))+ p( f n+1(x0), f (x∗))− p( f n+1(x0), f n+1(x0))

≤ p( f (x∗), f ( f n(x0))+ p( f ( f n(x0)), f (x∗)).
(3.2)

Taking n→ ∞ in the above inequality and by the continuity of f we have

p( f (x∗),x∗)≤ p( f (x∗), f (x∗)).

By (P2) we have p( f (x∗), f (x∗)) ≤ p( f (x∗),x∗), so, we obtain p( f (x∗),x∗) = p( f (x∗), f (x∗)).

From (3.1) we have p( f (x∗),x∗)≤ p( f (x∗), f (x∗))≤ κ p(x∗,x∗). Since κ ∈ [0,1), then

p( f (x∗),x∗)≤ p(x∗,x∗).

On the other side, by (P2) we have p(x∗,x∗) ≤ p( f (x∗),x∗), so we obtain p( f (x∗),x∗) =

p(x∗,x∗). Finally, by (P1) we have x∗ = f (x∗). On other word, x∗ is a fixed point of f . Further-

more, by (P1) and (P2) we obtain

p(x∗,x∗) = 0.

This complete the proof.

Theorem 3.1 is still valid for f not necessarily continuous, assuming an additional hypothesis

on X . This result is the following theorem.

Theorem 3.2. Let (X ,4) be a partially ordered set and suppose that there exists a partial

metric p in X such that (X , p) is a complete partial metric space. Assume that X satisfies: If

a non-decreasing sequence xn → x in X, then xn 4 x for n ∈ N. Let f : X → X be monotone

non-decreasing mapping such that there exists κ ∈ [0,1) with

p( f (x), f (y))≤ κ p(x,y),

for all x < y. If there exists x0 ∈ X with x0 4 f (x0), then f has a fixed point, namely x∗.

Furthermore,p(x∗,x∗) = 0.

Proof. The proof is following Theorem 3.1’s proof. We only have to check that f (x∗) = x∗.

Since f n(x0) converges to x∗, we have f n(x0)4 x∗. Thus, we have

p( f n(x0), f (x∗))≤ κ p( f n−1(x0),x∗)→ 0, (3.3)
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then limn→∞ p( f n(x0), f (x∗)) = 0. Furthermore,

p(x∗, f (x∗))≤ p(x∗, f n(x0))+ p( f n(x0), f (x∗))− p( f n(x0), f n(x0))

≤ p(x∗, f n(x0))+ p( f n(x0), f (x∗)).
(3.4)

Taking n→ ∞ in (3.4) and using (3.3), the right-hand side tends to 0. Consequently, we have

p(x∗, f (x∗)) = 0, hence x∗ = f (x∗). So, p(x∗,x∗) = 0. This completes the proof.

From Theorem 3.1 and Theorem 3.2 we know that the existence of fixed point is guaranteed

but not for the uniqueness. The following theorem gives not only the existence but also the

uniqueness of a fixed point in partially ordered partial metric space.

Theorem 3.3. Let (X ,4) be a partially ordered set such that every pair x,y ∈ X has an upper

and lower bound. Let p be a partial metric on X such that (X , p) is a complete partial metric

space. Let f : X → X be a continuous non-decreasing mapping. Suppose that the following

conditions hold:

(1) there exist κ ∈ (0,1) with

p( f (x), f (y))≤ κ p(x,y),

for all x < y,

(2) there exist x0 ∈ X with x0 4 f (x0) or x0 < f (x0),

then f has a unique fixed point x∗ ∈ X. Furthermore, p(x∗,x∗) = 0 and for each x ∈ X,

lim
n→∞

p( f n(x),x∗) = p(x∗,x∗).

Proof. For the existence of a fixed point is following Theorem 3.1’s proof. Now, we will show

that x∗ is the unique fixed point of f . We will do this by showing that

lim
n→∞

p( f n(x),x∗) = 0,

for every x ∈ X . Let x ∈ X be arbitrary, x1 be an upper bound of x and x0, and x2 be a lower

bound of x and x0, thus

x2 4 x 4 x1,andx2 4 x0 4 x1.
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So, for n ∈ N we have

f n(x2)4 f n(x)4 f n(x1),and f n(x2)4 f n(x0)4 f n(x1). (3.5)

For x0 4 x1 then we have f n(x0)4 f n(x1). From (3.1) we have

p( f n(x0), f n(x1))≤ κ
n p(x0,x1).

Since the right-hand side tends to 0 if n→ ∞, so we have

lim
n→∞

p( f n(x0), f n(x1)) = 0.

Consequently, limn→∞ p( f n(x1),x∗) = limn→∞ p( f n(x0),x∗) = 0. Furthermore, we obtained

lim
n→∞

p( f n(x1),x∗) = p( f n(x2),x∗) = 0. (3.6)

From (3.5) and (3.6) we have

lim
n→∞

p( f n(x),x∗) = 0,

for every x ∈ X . This complete the proof.

Theorem 3.3 is essentially Theorem 1.2 [4] when we generalized metric d to partial metric

p. Theorem 3.3 shows the existence of a lower bound and upper bound of every pair element

has an important role in the uniqueness of a fixed point. When we remove this condition, the

hypothesis in Theorem 3.3 does not guarantee the uniqueness of the fixed point. To guarantee

the uniqueness of the fixed point, following Nieto and Rodrı́guez-López, we can give a new

hypothesis that is weaker than the previous condition. It is sufficient to consider that X is such

that:

Every pair of elements has a lower bound or an upper bound. (3.7)

From Remark 2.2, condition (3.7) is equivalent to: for every x,y ∈ X , there exists z ∈ X which

is comparable to x and y. So, by condition (3.7) the uniqueness of the fixed point in Theorem

3.1 and Theorem 3.2 is still guaranteed.

Theorem 3.4. Adding conditions: ”every pair of elements has a lower bound or an upper

bound” to the hypothesis of Theorem 3.1 (rep. Theorem 3.2), we still obtain the uniqueness of

the fixed point of f .
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Proof. Assume that x ∈ X is another fixed point of f , we prove that p(x,x∗) = 0, where

lim
n→∞

p( f n(x0),x∗) = 0.

Suppose x and x∗ are comparable. Since, both x and x∗ are fixed point of f then we have

f n(x) = x and f n(x∗) = x∗, for every n = 0,1,2, . . .. Since x is comparable to x∗ then f n(x)

comparable to f n(x∗) for every n, and we obtain

p(x,x∗) = p( f n(x), f n(x∗))≤ κ p(x,x∗).

Hence, p(x,x∗) = 0. Furthermore, if x is not comparable to x∗, there exists either an upper or

a lower bound of x and x∗. It means there exists z ∈ X comparable to x and y. Consequently,

f n(z) comparable to f n(x) = x and f n(x∗) = x∗, for all n, and we have

p(x,x∗)≤ p( f n(x), f n(z))+ p( f n(z), f n(x∗))− p( f n(z), f n(z))

≤ p( f n(x), f n(z))+ p( f n(z), f n(x∗))

≤ κ
n p(x,z)+κ

n p(z,x∗)

≤ κ
n (p(x,z)+ p(z,x∗)) .

Taking the limits as n→∞ in the above inequality yields p(x,x∗) = 0. This completes the proof.

From Theorem 3.4 it can be seen that either upper bound or lower bound are essential things

that need to be considered in showing the uniqueness of a fixed point in a partially ordered

metric space. For the next, from Theorem 3.2 and Theorem 3.3 we have the following theorem.

Theorem 3.5. Let (X ,4) be a partially ordered set and suppose that there exists a partial

metric p in X such that (X , p) is a complete partial metric space. Let f : X → X be monotone

non-decreasing mapping such that there exists κ ∈ [0,1) with

p( f (x), f (y))≤ κ p(x,y),

for all x < y. Assume that either ” f is continuous” or ”X is such that if a non-increasing

sequence xn→ x in X”, then x 4 xn, for n ∈ N. If there exists x0 ∈ X with x0 < f (x0), then f

has a fixed point, namely x∗. Furthermore, p(x∗,x∗) = 0.
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Proof. The proof is similar to the procedure followed in the proof of the previous theorems.

Since x0 < f (x0) and f non-decreasing

x0 < f (x0)< f ( f (x0)) = f 2(x0)< f ( f 2(x0)) = f 3(x0)< . . .< f n(x0)< f n+1(x0)< . . .

then, p( f n(x0), f n+1(x0)) ≤ κn p(x0, f (x0)), for all n. This is show that f n(x0) is Cauchy se-

quences, so there exists x∗ ∈ X such that

lim
n→∞

p( f n(x0),x∗) = 0.

We will show that x∗ is fixed point of f .

Consider the condition: if f is continuous mapping thus the same reasoning of Theorem 3.1

is valid. On the other side, if a non-increasing sequence xn → x in X , then x 4 xn, for n ∈

N and using condition limn→∞ p( f n(x0),x∗) = 0 then x∗ 4 f n(x0). Analogues with the proof

of Theorem 3.2 then we obtain p(x∗, f (x∗)) = 0, hence f (x∗) = x∗. So, p(x∗,x∗) = 0. This

completes the proof.

Theorem 3.6. Adding condition ”every pair of elements has a lower bound or an upper bound”

to the hypotheses of Theorem 3.5, we obtain the uniqueness of the fixed point of f .

Proof. It follows on a similar line as Theorem 3.4.
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