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Abstract. In this article, we prove a fixed point result for (τ −ψ)− contraction in rectangular M-metric space.

Moreover, we discuss some examples that realized the results. Finally, we investigate the existence and uniqueness

of a solution of non-linear matrix equations and integral equations of Fredholm type as well.
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1. INTRODUCTION

Fixed point theory is an important and one of the most useful results in a variety of areas such

as non linear analysis, operator theory,differential equation, etc.

In 1922 [1], Stefan Banach first proved formula and proved a theorem regarding a con-

traction mapping. Because of its application in mathematics, several authors have ob-

tained many interesting extensions and generalization of the Banach contraction principle (see

[3, 9, 6, 2, 14, 13, 10, 11, 4, 5]).
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A partial metric space is one of the most influential generalizations, of ordinary metric space.

It has a wide range of uses in mathematical research and scientific applications. It was first

established by Shukla in [15]. In 2014, Asadi et al [7] generalized the partial metric space to

M-metric space and obtained certain theorems related to M-metric space.

Branciari [8] gave a generalization of the notion of metric spaces, which is called Branciari

distance spaces, by replacing triangle inequality with trapezoidal inequality, and he gave an

extension of Banach contraction principle to Branciari distance spaces.

In 2018, Ozgur et al [12] introduced rectangular M-metric space and obtained certain theo-

rems related to M-metric space.

In this article, we establish the fixed point theorem for (τ−ψ)-contraction in rectangular M-

metric space. Also, examples are given to illustrate the obtained results we derive some useful

corollaries of these results.

2. PRELIMINARIES

In what follows, we recall basic notions, definitions, examples and results on the topics for

the sake of completeness.

Notation We need the following symbols and class of functions to prove certain results of this

section:

R is the set of all real numbers;

N is the set of all natural numbers;

Ψ = {ψ : R+→ R+, such that, ψ is non-decreasing, continuous, ∑
∞
k=1 ψk(t)< ∞, ψ(t)< t for

t > 0 and ψ(0) = 0 if and only if t = 0, where ψk is the kth iterate of ψ }.

Definition 2.1. Let X be a non-empty set and d : X ×X → R+ be a mapping such that for all

z, t ∈ X and for all distinct points m,n ∈ X , each of them different from z and t, on has

(i) d(z, t) = 0⇔ z = t;

(ii) d(z, t) = d(t,z);

(iii) d(z, t)≤ d(z,m)+d(m,n)+d(n, t).

Then (X ,d) is called a generalized metric space.
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After that, Shukla [15] introduced partial rectangular metric space. The definition is as fol-

lows:

Definition 2.2. Let X be a non-empty set and p : X ×X → R+ be a mapping such that for all

a,b ∈ X and for all distinct points c,d ∈ X , each of them different from a and b, on has

(i) a = b if and only if p(a,b) = p(a,a) = p(b,b) ;

(ii) p(a,b) = d(b,a);

(iii) p(a,b)≤ p(a,c)+ p(c,d)+ p(d,b)− p(c,c)− p(d,d).

Then (X , p) is called a partial rectangular metric space.

In 2014, Asadi et al [7] generalized the partial metric space to M-metric space and obtained

certain theorems related to M-metric space.

Notation: The following notations are useful in the sequel:

Let m : X×X → R+ be a mapping.

Denote

(i) mab = m(a,a)∨m(b,b) = min{m(a,a),m(b,b)} and

(ii) Mab = m(a,a)∧m(b,b) = max{m(a,a),m(b,b)}

Definition 2.3. Let X be a non-empty set and m : X ×X → R+ be a mapping such that for all

a,b,c ∈ X ,

(i) a = b if and only if m(a,b) = m(a,a) = m(b,b);

(ii) m(a,b) = m(b,a);

(ii) mab ≤ m(a,b);

(iv) (m(a,b)−mab)≤ (m(a,c)−mac)+(m(c,b)−mcb).

Then (X ,m) is called a M-metric space.

Example 2.4. Let X = [0,∞).

Then N : X2→ [0,∞) defined by N (x,y) =
x+ y

2
is a M-metric on X .

In 2018, Ozgur et al. [12] introduced rectangular M-metric space and definition are as follows:

Notation: The following notations are useful in the sequel:
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Let mr : X×X → R+ be a mapping.

Denote

(i) mrab = mr(a,a)∨mr(b,b) = min{mr(a,a),mr(b,b)} and

(ii) Mrab = mr(a,a)∧mr(b,b) = max{mr(a,a),mr(b,b)}

Definition 2.5. Let X be a non-empty set and mr : X ×X → R+ be a mapping such that for all

a,b ∈ X and for all distinct points c,d ∈ X , each of them different from a and b, on has

(i) a = b if and only if mr(a,b) = mr(a,a) = mr(b,b) ;

(ii) mr(a,b) = mr(b,a);

(ii) mrab ≤ mr(a,b);

(iv) (mr(a,b)−mrab)≤ (mr(a,c)−mrac)+(mr(c,d)−mrcd)+(mr(d,a)−mrdb) (M-rectangular

inequality).

Then (X ,mr) is called a rectangular M-metric space.

Example 2.6. Let X be a mr-metric. Put

(i) mω
r (a,b) = mr(a,b)−2mrab +Mrab

(ii) ms
r(a,b) = mr(a,b)−mrab .

Then, mω
r and ms

r are ordinary metrics.

Definition 2.7. Let (X ,mr) be a rectangular M-metric space.

Then

(i) A sequence {an}n∈N in X converges to a point a, if and only if

lim
n→+∞

(mr(an,a)−mran,a
) = 0.(2.1)

(ii) A sequence {an}n∈N in X is said to be mr-Cauchy sequence, if and only if

lim
n,m→+∞

(mr(an,am)−mran,am
) and lim

n,m→+∞
(Mran,am

−mran,am
)(2.2)

exist and finite.

(iii) A rectangular M-metric space is said to be mr-complete, if every mr Cauchy sequence

{an} converges to a point a such that

lim
n→+∞

(mr(an,a)−mran,a
) = 0 and lim

n→+∞
(Mran,a

−mran,a
) = 0(2.3)
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Lemma 2.8. Let (X ,mr) be a rectangular M-metric space.

Then

(1) {an} is a mr-Cauchy sequence in (X ,mr) if and only if it is a Cauchy sequence in the

metric space (X ,mω
r ).

(2) (X ,mr) is mr-complete if and only if the metric space (X ,mω
r ) is complete. Furthermore,

lim
n→+∞

mω
r (an,a) = 0⇔ lim

n→+∞
(mr(an,a)−mran,a

) = 0 , lim
n→+∞

(Mran,a
−mran,a

) = 0

Likewise the above definition holds also for ms
r.

Lemma 2.9. Assume that an→ a as n→ ∞ in a rectangular M- metric space (X ,mr).

Then

lim
n→+∞

mr(an,y)−mran,y
= mr(a,y)−mra,y∀ y ∈ X .

Lemma 2.10. Assume that an→ a as n→ ∞ and bn→ b as n→ ∞ in a rectangular M- metric

space (X ,mr).

Then

lim
n→+∞

mr(an,bn)−mran,bn
= mr(a,b)−mra,b.

Lemma 2.11. Let {an} be a sequence in a rectangular M-metric space (X ,mr), such that there

exists k ∈ ]0,1[ such that

mr(an+1,an)≤ kmr(an,an−1) f or all n ∈ N.

Then,

(A) lim
n→∞

mr(an,an−1) = 0,

(B) lim
n→∞

mr(an,an) = 0,

(C) lim
n,m→∞

mran,am = 0

and

(D) {an} is a mr-Cauchy sequence.

Definition 2.12. Let (X ,d) be a generalized metric space. mr is said to be complete if every

Cauchy sequence {an}n in X converges to an a ∈ X .
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3. MAIN RESULTS

The following definition is new version of the (τ−ψ)-contraction for a rectangular M-metric

space.

Definition 3.1. Let (X ,mr) be a rectangular M-metric space and T : X → X be a mapping.

T is said to be a (τ −ψ)-contraction on X , if there exist ψ ∈ Ψ and τ > 1 such that for any

x,y ∈ X , τmr(T x,Ty)≤ ψ(M(x,y)),

where

M(x,y) = max{mr(x,y),mr(x,T x),mr(y,Ty)}

Theorem 3.2. Let (X ,mr) be a complete rectangular M-metric space and let T : X → X be a

continuous (τ−ψ)-contraction. Then, T has a unique fixed point x ∈ X and for every x0 ∈ X a

sequence {T n(x0)}n∈N is convergent to x.

Proof. Suppose that there exists n0 ∈N such that xn0 = T xn0 . Then xn0 is a fixed point of T and

the prove is finished. Hence, we assume that xn 6= T xn, i.e. mr (xn−1,xn)−mrxn,xn+1
> 0 for all

n ∈ N.

Denote D(xn,xn+1) = mr (xn,xn+1)−mrxn,xn+1
. Then, (3.1) implies that

D(xn,xn+1)≤ mr (xn,xn+1) = τmr (T xn−1,T xn)≤ ψ(M(xn−1,xn)) f or all n≤ 1,

where

M(xn−1,xn) = max{mr(xn−1,xn),mr(xn−1,T xn−1),mr(xn,T xn+1)}

= max{mr(xn−1,xn),mr(xn−1,xn),mr(xn,xn+1)}

= max{mr(xn−1,xn),mr(xn,xn+1)}

If M(xn−1,xn) = mr(xn,xn+1), we get

mr(xn,xn+1)≤ ψ(mr(xn,xn+1))< mr(xn,xn+1)

which is a contradiction.
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Hence, M(xn−1,xn) = mr(xn−1,xn)

mr(xn,xn+1) = mr(T xn−1,T xn)

≤ ψ(mr(xn−1,xn))

= ψ(mr(T xn−2,T xn−1))

≤ ψ
2(mr(xn−3,xn−2))

≤ ..

..≤ ψ
n(mr(x0,x1))−→ 0 as n−→ ∞,

Then

D(xn,xn+1)−→ 0 as n−→ ∞,

Now, we show limn→∞ D(xn,xn+2) = 0

D(xn,xn+2)≤ mr(T xn−1,T xn+1)≤ τmr(T xn−1,T xn+1)≤ ψ(M(xn−1,xn+1)), f orall n≤ 1

where

M(xn−1,xn+1) = max{mr(xn−1,xn+1),mr(xn−1,T xn−1),mr(xn+1,T xn+1)}

= max{mr(xn−1,xn+1),mr(xn−1,xn),mr(xn+1,xn+2)}

= max{mr(xn−1,xn+1),mr(xn−1,xn),mr(xn+1,xn+2)}.

We consider three different cases:

Case (i) if M(xn−1,xn+1) = mr(xn−1,xn+1), we get

D(xn,xn+2)≤ ψ(mr(xn−1,xn+1))≤ ψ
n−1(mr(x0,x2))−→ 0 as n−→ ∞,

Case (ii) if M(xn−1,xn+1) = mr(xn−1,xn), we get

D(xn,xn+2)≤ ψmr(xn−1,xn)≤ ψ
n−1mr(x0,x1)−→ 0 as n−→ ∞,

Case (iii) if M(xn−1,xn+1) = mr(xn+1,xn+2), we get

D(xn,xn+2)≤ ψ
n+1(mr(x0,x1))−→ 0 as n−→ ∞,

From Case (i)-Case (iii), we get
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D(xn,xn+2)−→ 0 as n−→ ∞,

We shall prove that {xn} is a rectangular mr-Cauchy sequence, that is,

lim
n→∞

D(xn,xn+q) = 0 f orall q ∈ N

Suppose that for some n, p ∈ N with p > n, we have xn = xp,

mr(xn,T xn) = mr(xp,T xp)

= mr(xp,xp+1)

≤ ψ
p−n(mr(xn,xn+1))

≤ ψ(mr(xn,xn+1))< mr(xn,xn+1),

which is a contradiction.

Therefore, xn 6= xp, for p 6= n,

The case q = 1 and q = 2 is proved. Now we take q≥ 3; arbitrary, we distinguish two different

cases:

Case (i) Let q = 2p , where p≥ 2. By the rectangular inequality, we get

D(xn,xn+2p)

≤ mr(xn,xn+2p)

≤
[
mr(xn,xn+2)+mr(xn+2,xn+3)+mr(xn+3,xn+2p)

]
≤ mr(xn,xn+2)+mr(xn+2,xn+3)+

[
mr(xn+3,xn+4)+mr(xn+4,xn+5)+mr(xn+5,xn+2p)

]
≤ mr(xn,xn+2)+mr(xn+2,xn+3)+mr(xn+3,xn+4)+mr(xn+4,xn+5)+ ....+mr(xn+2p−1,xn+2p)

= mr(xn,xn+2)+
n+2p−1

∑
k=n+2

mr(xk,xk+1)

≤ mr(xn,xn+2)+
n+2m−1

∑
k=n+2

ψ
k(mr(x0,x1))

≤ mr(xn,xn+2)+
∞

∑
k=n+2

ψ
k(mr(x0,x1)).
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lim
n→∞

mr(xn,xn+2) = 0

and
∞

∑
k=n+2

ψ
k(mr(x0,x1))→ 0 as n→ ∞.

Therefore,

lim
n,p→∞

D(xn,xn+2p) = 0

Case (ii) Let q = 2p+1 , where p≥ 1. By the rectangular inequality, we get

D(xn,xn+2p+1)

≤ mr(xn,xn+2p+1)

≤
[
mr(xn,xn+1)+mr(xn+1,xn+2)+mr(xn+2,xn+2p+1)

]
≤ mr(xn,xn+1)+mr(xn+1,xn+2)+

[
mr(xn+2,xn+3)+mr(xn+3,xn+4)+mr(xn+4,xn+2p+1)

]
= mr(xn,xn+1)+mr(xn+1,xn+2)+mr(xn+2,xn+3)+mr(xn+3,xn+4)+mr(xn+4,xn+2p+1)

≤ ...

≤ mr(xn,xn+1)+mr(xn+1,xn+2)+mr(xn+2,xn+3)+mr(xn+3,xn+4)+ ...

....+mr(xn+2p,xn+2p+1)

=
n+2p

∑
k=n

mr(xk,xk+1)

≤
n+2p

∑
k=n

ψ
k(mr(x0,x1))

≤
∞

∑
k=n

ψ
k(mr(x0,x1))→ 0 as n→ ∞.

Thus, we obtain

lim
n,p→∞

mr(xn,xn+2p+1) = 0.

Finally, from Case (i) and case (ii), we get

lim
n,m→∞

D(xn,xn+q) = 0 f or all q≥ 3

Thus, {xn} is rectangular mr-Cauchy sequence in (X ,mr).

Since (X ,mr) is a complete rectangular M-metric space, there exists u ∈ X such that



10 A. BAIZ, J. MOULINE, Y. EL BEKRI, A. FAIZ, K. BOUZKOURA

lim
n→∞

xn = u, lim
n→∞

D(xn,u) = 0.

Now, we shaw that u is a fixed point of T . Since T is continuous, we have

u = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T ( lim
n→∞

xn) = Tu, which gives u = Tu

Thus, u is a fixed point of T . Now, we show that the uniqueness of a fixed point of T . Assume

that T has two distinct fixed points z,u ∈ X , such that z = T z and u = Tu.

From the Condition (3.2), we have

mr (z,u) = mr (T z,Tu)≤ τmr (T z,Tu)≤ ψ(M (z,u))

where

M(z,u) = max{mr(z,u),mr(u,Tu),mr(z,T z)}= mr(z,u).

Then

mr (z,u)< mr (z,u)

which is contradiction.

Hence, T has a unique fixed point. �

Definition 3.3. Let (X ,mr) be a rectangular M-metric space and T : X → X be a mapping.

T is said to be a (τ −ψ)-contraction on X , if there exist ψ ∈ Ψ and τ > 1 such that for any

x,y ∈ X , τmr(T x,Ty)≤ ψ(M(x,y)) for all x,y ∈ X ,

where

M(x,y) = max{mr(x,y),mr(x,T x),
mr(x,T x)mr(x,Ty)

1+mr(x,Ty)+mr(y,T x)
}

Theorem 3.4. Let (X ,mr) be a complete rectangular M-metric space and let T : X → X be a

continuous (τ−ψ)-contraction. Then, T has a unique fixed point x ∈ X and for every x0 ∈ X a

sequence {T n(x0)}n∈N is convergent to x.

Proof. Suppose that there exists n0 ∈N such that xn0 = T xn0 . Then xn0 is a fixed point of T and

the prove is finished. Hence, we assume that xn 6= T xn, i.e. mr (xn−1,xn)−mrxn,xn+1
> 0 for all

n ∈ N. Denote D(xn,xn+1) = mr (xn,xn+1)−mrxn,xn+1
.

Then, (3.1) implies that
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D(xn,xn+1)≤ mr (xn,xn+1) = τmr (T xn−1,T xn)≤ ψ(M(xn−1,xn)) for all n≤ 1,

where

M(xn−1,xn) = max{mr(xn−1,xn),mr(xn−1,T xn−1)
d(xn−1,T xn−1)mr(xn−1,T xn)

1+mr(xn−1,T xn)+mr(xn,T xn−1)
}

= max{mr(xn−1,xn),mr(xn−1,xn),
mr(xn−1,xn)mr(xn−1,xn−1)

1+mr(xn−1,xn−1)+mr(xn,xn−1)
}

= mr(xn−1,xn)

M(xn−1,xn) = mr(xn−1,xn)

mr(xn,xn+1) = mr(T xn−1,T xn)

≤ ψ(mr(xn−1,xn))

= ψ(mr(T xn−2,T xn−1))

≤ ψ
2(mr(xn−3,xn−2))

≤ ..

..≤ ψ
n(mr(x0,x1))−→ 0 as n−→ ∞,

Then

D(xn,xn+1)−→ 0 as n−→ ∞,

similarly we show that

lim
n→∞

mr (xn,xn+2) = 0.

Similar to the proof of Theorem 3.2, we get

lim
n→∞

D(xn,xn+q) = 0 f or all q ∈ N

lim
n,m→∞

D(xn,xn+q) = 0 f or all q≥ 3

Thus, {xn} is rectangular mr-Cauchy sequence in (X ,mr).

Since (X ,mr) is a complete rectangular M-metric space, there exists u ∈ X such that

lim
n→∞

xn = u, lim
n→∞

D(xn,u) = 0.
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Now, we shaw that u is a fixed point of T . Since T is continuous, we have

u = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T ( lim
n→∞

xn) = Tu, whichgives u = Tu

Thus, u is a fixed point of T . Now, we show that the uniqueness of a fixed point of T . Assume

that T has two distinct fixed points z,u ∈ X , such that z = T z and u = Tu.

From the Condition (3.4), we have

mr (z,u) = mr (T z,Tu))≤ τmr (T z,Tu)≤ ψ(M (z,u))

where

M(z,u) = max{mr(z,u),mr(u,Tu),
mr(z,T z)mr(z, tu)

1+mr(z,Tu)+mr(u,T z)
}= mr(z,u).

Then

mr (z,u)< mr (z,u)

which is contradiction. Hence, T has a unique fixed point. �

Example 3.5. Let X =

[
1,

4
3

]
. Define mr : X×X → [0,∞) by

mr (a,b) =
|a−b|

2

and

ψ(t) =
3t
4
,τ =

3
2
.

Then (X ,mr) is complete rectangular M-metric space, τ > 1 and ψ ∈Ψ.

Define T : X → X by

T (t) =
1+ t

2
,

1≤ b≤ a.

mr(Ta,T b) =

1+a
2
− 1+b

2
2

=
a−b

4
.

Since a,b ∈
[

1,
4
3

]
, then

3(a−b)
8

≤ ψ(mr(a,b))
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Thus

τmr(Ta,T b)≤ ψ(mr(a,b)).

Hence, the condition (3.2) and (3.4) is satisfied. Therefore, T has a unique fixed point z = 1.

4. APPLICATION TO NONLINEAR INTEGRAL EQUATIONS

In this section, we apply Theorems 3.2 and 3.4 to prove the existence and uniqueness of the

integral equation of Fredholm type:

(4.1) u(t) = ν

∫ n

m
H(t,r,u(t))dr,

where m,n ∈ R, u ∈C([m,n] ,R) and H : [m,n]2×R→ R is continuous function and ν ∈]0,1[.

Theorem 4.1. Suppose the function h such that |H(t,r,u(t)) − H(t,r,v(t))| ≤
1

n−m
(|u(t)− v(t)|) ∀ t,r ∈ [m,n] and u,v ∈ R. Then the equation (4.1) has a unique

solution u ∈C([m,n] ,R).

Proof. Let X =C([m,n] ,R) and T : X → X defined by

T (u)(t) = ν

∫ n

m
H(t,r,u(t))dr,

∀ u ∈ X . Clearly, T is a complete M-rectangular metric space.

Let mr : X×X → [0,+∞[ given by

mr(u,v) =

(
sup

t∈[m,n]

|u(t)− v(t)|
2

)
.

Then (X ,mr) is a complete generalized metric space. Assume that, u,v ∈ X and t,r ∈ [m,n].

Then we get

|Tu(t)−T v(t)|=
|ν |(|

∫ n
m H(t,r,u(t))dr−

∫ n
m H(t,r,v(t))dr|)

2

= |ν |
|
∫ n

m(H(t,r,u(t))−H(t,r,v(t)))dr|
2

≤ |ν |
∫ n

m

|H(t,r,u(r))−H(t,r,v(r))|
2

dr
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≤ |ν |
∫ n

m

((|u(t)− v(t)|))
2(n−m)

dr

≤ |ν | |u(t)− v(t)|
2

Thus

sup
t∈[m,n]

|Tu(t)−T v(t)|
2

≤ sup
t∈[m,n]

|ν | |u(t)− v(t)|
2

Hence

τ (mr(Tu,T v))≤ [ψ (M(u,v))] ,(4.2)

for all u,v ∈ X with ψ(t) =
3t
4

and ν = |1
τ
|.

Then T satisfies the condition (3.2) and (3.4) is hold. �
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