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1. INTRODUCTION 

 Metric fixed-point theory is gaining prominence in mathematics as a result of its 

extensive applications in the areas of applied mathematics and the sciences. The use of fixed-

point theory to the study of non-linear processes has many advantages. There are numerous 

generalizations of the idea of a metric space in literature. Mutlu and Gurdal [3] presented one 

of the most recent generalizations, the bipolar metric space, with the idea that distances 
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frequently occur between elements of two distinct sets rather than between points of a single 

set in real-world applications. Bipolar metrics were created to define these different distances 

as a result. Examples of fundamental distances include those between lines and points in a 

Euclidean space, those between points and sets in metric spaces, those between a class of 

students and a group of activities, lifetime mean distances between individuals and locations, 

and many more. On fixed-point in bipolar metric spaces, numerous researchers have written 

numerous publications that can be found, to mention a few, in [2, 3, 4, 6, 7, 8, 9, 16] and the 

references therein. The existence and advancement of fixed-point theorems are a result of this 

novel idea of generalization and improvement of metric spaces. In light of this, bipolar metric 

fixed-point theory is a current study subject that is receiving a lot of interest and appears to 

have a bright future. 

 In 1968, Kannan introduced an interesting type of contraction mapping which is not 

continuous and it poses a fixed-point [11]. Kannan's theorem asserts that if (𝔄, Δ)  be a 

complete metric space and let Γ: 𝔄 → 𝔄 be a mapping such that there exists 𝑘 <
1

2
 satisfying   

                                   Δ(Γ𝑝, Γ𝑞) ≤ 𝑘[Δ(𝑝, Γ𝑝) + Δ(𝑞, Γ𝑞)]                                           (1.1)                                    

for all 𝑝, 𝑞 ∈ 𝔄. Then, Γ has a unique fixed-point  𝑟 ∈ 𝔄.  

 Kannan's theorem has been generalized in different ways by many authors (see [10, 

13-15]); one of the latest generalizations was given by Karapinar in [5]. Karapinar introduced 

a Kannan type contraction mapping called interpolative Kannan type contraction and proved a 

fixed-point result on it. 

 Definition 1.1 (see [5]) Let (𝔄, Δ) be a metric space. A self-mapping Γ: (𝔄, Δ) →

(𝔄, Δ) is said to be an interpolative Kannan type contraction if there exist a constant 𝜆 ∈

[0,1), 𝛼 ∈ (0,1) such that  

                                      ∆(Γ𝑞, Γ𝑝) ≤ 𝜆(∆(𝑝, Γ𝑝))
𝛼

(∆(Γ𝑞, 𝑞))
1−𝛼

                                 (1.2) 

 Theorem 1.2 (see [5]) Let (𝔄, Δ) be a complete metric space and Γ: (𝔄, Δ) → (𝔄, Δ) be 

an interpolative Kannan type contraction mapping. Then, Γ has a unique fixed-point. 
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 In this article, we introduce the so-called (𝜆, 𝛼) -interpolative and (𝜆, 𝛼, 𝛽) -

interpolative Kannan contractions and establish the reality of fixed-point s for contravariant 

mappings on bipolar metric spaces. We demonstrate how some well-known classical 

conclusions can be readily recovered under the choice of convenient constants.  

 

 2. PRELIMINARIES 

 Throughout this essay, the terms ℕ and ℝ refer to the sets of all positive integers and 

the sets of all real numbers, respectively. To specifically denote the set of all positive real 

numbers, we write ℝ+ = [0, +∞) . We go through some basic ideas and definitions in 

mathematics to make this paper self-sufficient. 

 Definition 2.1 (see [3]) Let 𝔄 and 𝔅 be non-empty sets. A function Δ: 𝔄 × 𝔅 → ℝ+  is 

a bipolar metric on the pair (𝔄, 𝔅), if it satisfies the following conditions: 

  (b1) Δ(𝑝, 𝑞) = 0 ⟺ 𝑝 = 𝑞, whenever (𝑝, 𝑞) ∈ (𝔄, 𝔅). 

   (b2) Δ(𝑝, 𝑞) = Δ(𝑞, 𝑝), whenever 𝑝, 𝑞 ∈ 𝔄 ∩ 𝔅. 

   (b3) Δ(𝑝1, 𝑞2) ≤ Δ(𝑝1, 𝑞1) + Δ(𝑝2, 𝑞1) + Δ(𝑝2, 𝑞2), ∀ 𝑝1, 𝑝2 ∈ 𝔄 and ∀ 𝑞1, 𝑞2 ∈ 𝔅. 

 The triple (𝔄, 𝔅, Δ) is called a bipolar metric space. In specifically, a space is said to 

be disjointed if 𝔄 ∩ 𝔅 = ∅, and joint otherwise. The left pole and the right pole of (𝔄, 𝔅, Δ) 

are the sets 𝔄 and 𝔅, respectively. 

 Example 2.2 (see [3]) Consider the case when (𝔄, Δ) is a metric space. Consequently, 

(𝔄, 𝔄, Δ) is a bipolar metric space. But if (𝔄, 𝔅, Δ) is a bipolar metric space with 𝔄 = 𝔅, then 

(𝔄, Δ) is a metric space. 

 Definition 2.3 (see [3]) Let (𝔄, 𝔅, Δ) be a bipolar metric space. Then,  

1) 𝔄  = set of left points; 𝔅  = set of right points; 𝔄 ∩ 𝔅  = set of central points. In 

particular, if 𝔄 ∩ 𝔅 = ∅, the space is called disjoint, and otherwise it is called joint. 

Unless otherwise stated, we shall work with joint spaces. 

2) A sequence (𝑝𝑛) on the set 𝔄 is called a left sequence, and a sequence (𝑞𝑛) on 𝔅 is 

called a right sequence. In a bipolar metric space, a left or a right sequence is called 

simply a sequence. 



4 

SHEETAL YADAV, MANOJ UGHADE, MANOJ KUMAR SHUKLA 

 

3) A sequence (𝑝𝑛) is said to be convergent to a point 𝑝 if and only if (𝑝𝑛) is a left 

sequence, lim
𝑛→∞

Δ(𝑝𝑛𝑝) = 0 and 𝑝 ∈ 𝔅, or (𝑝𝑛) is a right sequence, lim
𝑛→∞

Δ(𝑝, 𝑝𝑛) = 0 

and 𝑝 ∈ 𝔄. 

4) A bisequence (𝑝, 𝑞𝑛) on (𝔄, 𝔅, Δ) is a sequence on the set 𝔄 × 𝔅. Furthermore, if the 

sequences (𝑝𝑛) and (𝑞𝑛) are convergent, then the bisequence (𝑝𝑛, 𝑞𝑛) is said to be 

convergent. In addition, if (𝑝) and (𝑞𝑛) converge to a common point 𝑟 ∈ 𝔄 ∩ 𝔅, then 

(𝑝𝑛, 𝑞𝑛) is called biconvergent. 

5) A bisequence  (𝑝𝑛, 𝑞𝑛) is a Cauchy bisequence if lim
𝑛→∞

Δ(𝑝𝑛, 𝑞𝑛) = 0. 

6) A bipolar metric space is called complete if every Cauchy bisequence is convergent, 

hence biconvergent. 

 Example 2.4 (see [3]) Assume that 𝔅 is the class of all nonempty compact subsets of 

ℝ and that 𝔄 is the class of all singleton subsets of ℝ. We define Δ: 𝔄 × 𝔅 → ℝ+as Δ(𝑝, 𝐴) =

|𝑝 − inf(𝐴)| + |𝑝 − sup(𝐴)|. The triple (𝔄, 𝔅, Δ) is a complete bipolar metric space. 

 Definition 2.5 (see [3]) Let (𝔄1, 𝔅1) and (𝔄2, 𝔅2) be two pair of sets. A map Γ: 𝔄1 ∪

𝔅1 → 𝔄2 ∪ 𝔅2 is called  

1) covariant if Γ(𝔄1) ⊆ 𝔄2 and Γ(𝔅1) ⊆ 𝔅2, and it is denoted as Γ: (𝔄1, 𝔅1) ⇉ (𝔄2, 𝔅2). 

2) contravariant if Γ(𝔄1) ⊆ 𝔅2  and Γ(𝔅1) ⊆ 𝔄2 , and it is denoted as Γ: (𝔄1, 𝔅1) ⇄

(𝔄2, 𝔅2). 

 Definition 2.6 (see [3]) A covariant or a contravariant map Γ from the bipolar metric 

space (𝔄1, 𝔅1, ∆1) to the bipolar metric space (𝔄2, 𝔅2, ∆2) is continuous, if and only if 𝑝𝑛 →

𝑞 on (𝔄1, 𝔅1, ∆1) implies Γ(𝑝𝑛) → Γ(𝑞) on (𝔄2, 𝔅2, ∆2). 

 

3. MAIN RESULTS 

 We start with the following definitions. 

 Definition 3.1 Let (𝔄, 𝔅, Δ) be a bipolar metric space and Γ: (𝔄, 𝔅, Δ) ⇄ (𝔄, 𝔅, Δ) a 

contravariant self-map. We shall call Γ a (𝜆, 𝛼)-interpolative Kannan contraction, if there 

exist 𝜆 ∈ [0,1), 𝛼 ∈ (0,1) such that  
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                                      ∆(Γ𝑞, Γ𝑝) ≤ 𝜆(∆(𝑝, Γ𝑝))
𝛼

(∆(Γ𝑞, 𝑞))
1−𝛼

                                 (3.1) 

for all (𝑝, 𝑞) ∈ 𝔄 × 𝔅, with 𝑝 ≠ 𝑞.  

 Definition 3.2 Let (𝔄, 𝔅, Δ) be a bipolar metric space and Γ: (𝔄, 𝔅, Δ) ⇄ (𝔄, 𝔅, Δ) a 

contravariant self-map. We shall call Γ a (𝜆, 𝛼, 𝛽)-interpolative Kannan contraction, if there 

exist 𝜆 ∈ [0,1), 𝛼, 𝛽 ∈ (0,1), 𝛼 + 𝛽 < 1 such that  

                                     ∆(Γ𝑞, Γ𝑝) ≤ 𝜆(∆(𝑝, Γ𝑝))
𝛼

(∆(Γ𝑞, 𝑞))
𝛽

                                  (3.2)   

for all (𝑝, 𝑞) ∈ 𝔄 × 𝔅, with 𝑝 ≠ 𝑞.  

 Theorem 3.3 Let (𝔄, 𝔅, Δ)  be a complete bipolar metric space and Γ: (𝔄, 𝔅, Δ) ⇄

(𝔄, 𝔅, Δ)  be a contravariant continuous (𝜆, 𝛼) -interpolative Kannan contraction with 𝜆 ∈

[0,1), 𝛼 ∈ (0,1). Then, Γ: 𝔄 ∪ 𝔅 → 𝔄 ∪ 𝔅 has a unique fixed-point. 

 Proof: Let 𝑝0 ∈ 𝔄 and 𝑞0 ∈ 𝔅; for each nonnegative integer 𝑛, we employ one of the 

iterative approaches described below to define sequences {𝑝𝑛} and {𝑞𝑛}: 

                                                  𝑞𝑛 =  Γ𝑝𝑛,   𝑝𝑛+1 =  Γ𝑞𝑛                                                (3.3) 

Then, we have 

                      ∆(𝑝𝑛, 𝑞𝑛) = ∆(Γ𝑞𝑛−1, Γ𝑝𝑛) 

                                      ≤ 𝜆(∆(𝑝𝑛, Γ𝑝𝑛))
𝛼

(∆(Γ𝑞𝑛−1, 𝑞𝑛−1))
1−𝛼

    

                                      = 𝜆(∆(𝑝𝑛, 𝑞𝑛))
𝛼

(∆(𝑝𝑛, 𝑞𝑛−1))
1−𝛼

    

i.e.           (∆(𝑝𝑛, 𝑞𝑛))
1−𝛼

≤ 𝜆(∆(𝑝𝑛, 𝑞𝑛−1))
1−𝛼

                                                              (3.4) 

Hence 

                        ∆(𝑝𝑛, 𝑞𝑛) ≤ 𝜆
1

1−𝛼∆(𝑝𝑛, 𝑞𝑛−1) ≤ 𝜆∆(𝑝𝑛, 𝑞𝑛−1)                                         (3.5) 

for all integer 𝑛 ≥ 1.  

We also acquire  

                    ∆(𝑝𝑛, 𝑞𝑛−1) = ∆(Γ𝑞𝑛−1, Γ𝑝𝑛−1) 

                                        ≤ 𝜆(∆(𝑝𝑛−1, Γ𝑝𝑛−1))
𝛼

(∆(Γ𝑞𝑛−1, 𝑞𝑛−1))
1−𝛼

    

                                        = 𝜆(∆(𝑝𝑛−1, 𝑞𝑛−1))
𝛼

(∆(𝑝𝑛, 𝑞𝑛−1))
1−𝛼
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Hence 

                             (∆(𝑝𝑛, 𝑞𝑛−1))
𝛼

≤ 𝜆(∆(𝑝𝑛−1, 𝑞𝑛−1))
𝛼

                                                (3.6) 

i.e.  

∆(𝑝𝑛, 𝑞𝑛−1) ≤ 𝜆
1

𝛼∆(𝑝𝑛−1, 𝑞𝑛−1) ≤ 𝜆∆(𝑝𝑛−1, 𝑞𝑛−1) 

for all integer 𝑛 ≥ 1. Moreover, it is easy to see that 

                                               ∆(𝑝𝑛, 𝑞𝑛) ≤ 𝜆2𝑛∆(𝑝0, 𝑞0), 

                                            ∆(𝑝𝑛, 𝑞𝑛−1) ≤ 𝜆2𝑛−1∆(𝑝0, 𝑞0).                                             (3.7) 

Hence, for all positive integers 𝑚 and 𝑛, we have 

(1) If 𝑚 > 𝑛, we have 

       ∆(𝑝𝑛, 𝑞𝑚) ≤ ∆(𝑝𝑛, 𝑞𝑛) + ∆(𝑝𝑛+1, 𝑞𝑛) + ∆(𝑝𝑛+1, 𝑞𝑚) 

                        ≤ 𝜆2𝑛∆(𝑝0, 𝑞0) + 𝜆2𝑛+1∆(𝑝0, 𝑞0) + ∆(𝑝𝑛+1, 𝑞𝑚) 

                        ≤ (𝜆2𝑛 + 𝜆2𝑛+1)∆(𝑝0, 𝑞0) 

                         +∆(𝑝𝑛+1, 𝑞𝑛+1) + ∆(𝑝𝑛+2, 𝑞𝑛+1) + ∆(𝑝𝑛+2, 𝑞𝑚) 

                        ≤ (𝜆2𝑛 + 𝜆2𝑛+1)∆(𝑝0, 𝑞0) + (𝜆2𝑛+2 + 𝜆2𝑛+3)∆(𝑝0, 𝑞0) 

                         +∆(𝑝𝑛+2, 𝑞𝑚) 

                        ≤ (𝜆2𝑛 + 𝜆2𝑛+1 + 𝜆2𝑛+2 + 𝜆2𝑛+3 + ⋯ + 𝜆2(𝑚−𝑛))∆(𝑝0, 𝑞0) 

                        = 𝜆2𝑛 (
1−𝜆2(𝑚−𝑛)+1

1−𝜆
) ∆(𝑝0, 𝑞0) → 0 as 𝑚, 𝑛 → ∞, since 𝜆 < 1. 

(2) If 𝑚 < 𝑛, we have 

       ∆(𝑝𝑛, 𝑞𝑚) ≤ ∆(𝑝𝑚+1, 𝑞𝑚) + ∆(𝑝𝑚+1, 𝑞𝑚+1) + ∆(𝑝𝑛, 𝑞𝑚+1) 

                        ≤ 𝜆2𝑚+1∆(𝑝0, 𝑞0) + 𝜆2𝑚+2∆(𝑝0, 𝑞0) + ∆(𝑝𝑛, 𝑞𝑚+1) 

                        ≤ (𝜆2𝑚+1 + 𝜆2𝑚+2)∆(𝑝0, 𝑞0) + ∆(𝑝𝑛, 𝑞𝑚+1) 

                        ≤ (𝜆2𝑚+1 + 𝜆2𝑚+2 + ⋯ + 𝜆2(𝑚−𝑛−1))∆(𝑝0, 𝑞0) 

                        = 𝜆2𝑚+1 (
1−𝜆2(𝑚−𝑛)+1

1−𝜆
) ∆(𝑝0, 𝑞0) → 0 as 𝑚, 𝑛 → ∞, since 𝜆 < 1. 

 This indicates that ∆(𝑝𝑛, 𝑞𝑚) can be made arbitrarily small by large 𝑚  and 𝑛 , and 

hence (𝑝𝑛, 𝑞𝑚) is a Cauchy bisequence in (𝔄, 𝔅). The bisequence (𝑝𝑛, 𝑞𝑚) biconverges to 
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some 𝑝∗ ∈ 𝔄 ∩ 𝔅 such that lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑞𝑛 = 𝑝∗ due to the completeness of (𝔄, 𝔅, Δ). Also 

lim
𝑛→∞

Γ𝑝𝑛 = lim
𝑛→∞

𝑞𝑛 = 𝜎∗ ∈ 𝔇 ∩ 𝔈 implies that Γ𝑝𝑛 has a unique limit 𝑝∗, and 𝑝𝑛 → 𝑝∗. Now, 

Γ𝑝𝑛 → Γ𝑝∗ is implied by the continuity of Γ. Consequently, Γ𝑝∗ = 𝑝∗.  

 We shall now prove the uniqueness of the fixed-point. If 𝑞∗ ∈ 𝔄 ∩ 𝔅 is another fixed-

point of Γ, that is, Γ𝑞∗ = 𝑞∗, then we get 

                       ∆(𝑞∗, 𝑝∗) = ∆(Γ𝑞∗, Γ𝑝∗) ≤ 𝜆(∆(𝑝∗, Γ𝑝∗))
𝛼

(∆(Γ𝑞∗, 𝑞∗))
1−𝛼

 

                                        ≤ 𝜆(∆(𝑝∗, 𝑝∗))
𝛼

(∆(𝑞∗, 𝑞∗))
1−𝛼

)                                              (3.8)                             

Therefore, ∆(𝑞∗, 𝑝∗) ≤ 0, and hence, 𝑝∗ = 𝑞∗. 

 Theorem 3.4 Let (𝔄, 𝔅, Δ)  be a complete bipolar metric space and Γ: (𝔄, 𝔅, Δ) ⇄

(𝔄, 𝔅, Δ) be a contravariant continuous (𝜆, 𝛼, 𝛽)-interpolative Kannan contraction with 𝜆 ∈

[0,1), 𝛼, 𝛽 ∈ (0,1). Then, Γ: 𝔄 ∪ 𝔅 → 𝔄 ∪ 𝔅 has a unique fixed-point. 

 Proof: Following the steps of proof of Theorem 3.3, we construct the sequences {𝑝𝑛} 

and {𝑞𝑛} by iterating 

𝑞𝑛 =  Γ𝑝𝑛, 𝑝𝑛+1 =  Γ𝑞𝑛, 

where 𝑝0 ∈ 𝔄 and 𝑞0 ∈ 𝔅 are arbitrary starting points. Then, we have 

                     ∆(𝑝𝑛, 𝑞𝑛) = ∆(Γ𝑞𝑛−1, Γ𝑝𝑛) 

                                      ≤ 𝜆(∆(𝑝𝑛, Γ𝑝𝑛))
𝛼

(∆(Γ𝑞𝑛−1, 𝑞𝑛−1))
𝛽

    

                                      = 𝜆(∆(𝑝𝑛, 𝑞𝑛))
𝛼

(∆(𝑝𝑛, 𝑞𝑛−1))
𝛽

                                                (3.9)               

Since 𝛽 < 1 − 𝛼, we have 

                   (∆(𝑝𝑛, 𝑞𝑛))
1−𝛼

≤ 𝜆(∆(𝑝𝑛, 𝑞𝑛−1))
𝛽

≤ 𝜆(∆(𝑝𝑛, 𝑞𝑛−1))
1−𝛼

 

i.e.  

                             ∆(𝑝𝑛, 𝑞𝑛) ≤ 𝜆
1

1−𝛼∆(𝑝𝑛, 𝑞𝑛−1) ≤ 𝜆∆(𝑝𝑛, 𝑞𝑛−1)                                  (3.10)               

for all integer 𝑛 ≥ 1.  

We also acquire  

                   ∆(𝑝𝑛, 𝑞𝑛−1) = ∆(Γ𝑞𝑛−1, Γ𝑝𝑛−1) 
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                                        ≤ 𝜆(∆(𝑝𝑛−1, Γ𝑝𝑛−1))
𝛼

(∆(Γ𝑞𝑛−1, 𝑞𝑛−1))
𝛽

    

                                        = 𝜆(∆(𝑝𝑛−1, 𝑞𝑛−1))
𝛼

(∆(𝑝𝑛, 𝑞𝑛−1))
𝛽

    

Since 𝛼 < 1 − 𝛽, we have 

(∆(𝑝𝑛, 𝑞𝑛))
1−𝛽

≤ 𝜆(∆(𝑝𝑛, 𝑞𝑛−1))
𝛼

≤ 𝜆(∆(𝑝𝑛, 𝑞𝑛−1))
1−𝛽

 

i.e.  

                           ∆(𝑝𝑛, 𝑞𝑛) ≤ 𝜆
1

1−𝛽∆(𝑝𝑛, 𝑞𝑛−1) ≤ 𝜆∆(𝑝𝑛, 𝑞𝑛−1)                                    (3.11) 

for all integer 𝑛 ≥ 1.  

 As already elaborated in the proof of Theorem 3.3, the classical procedure leads to the 

existence of a unique fixed-point  𝑞∗ ∈ 𝔄 ∩ 𝔅. 
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