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Abstract: In this paper, we prove certain coupled fixed point theorems for generalised mappings of the kind (ψ,φ)-

contraction in complete Gb-metric spaces with partial order. Our findings are supported by a concrete illustration.

We also provide a practical application of these findings to the resolution of integral equations, matrix equations,

and homotopy theory.
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1. INTRODUCTION

Today, mathematics and the practical sciences both heavily rely on the fixed point theory.

The fixed point theory’s most basic assumption is the Banach contraction principle [1]. As a

result, it has been expanded by other mathematicians, who are also interested in fixed point

theory in diverse metric spaces. Recently, it was discussed in ([2]-[9]) and references therein

whether fixed points for contraction type mappings in partially ordered metric spaces existed.
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Applications to matrix equations, ordinary differential equations, and integral equations were

also discussed.

In [4], Bhaskar and Lakshmikantham introduced the concepts of coupled fixed points and

mixed monotone mappings, demonstrated various fixed point theorems for coupled fixed points

for mixed monotone mappings, and talked about the existence and uniqueness of solutions for

periodic boundary value issues. In [8], Lakshmikantham and Cirić developed coupled coin-

cidence and common fixed point theorems, which extend the theorems from [4]. They also

proposed the idea of a mixed g-monotone mapping. Following that, certain coupled fixed point

and coupled coincident point theorems in partially ordered metric spaces were provided, along

with examples of how they applied to integral equations in ([10]-[14]).

As a generalisation of metric spaces, S. Czerwik presented the idea of b-metric spaces [15].

A generalised metric space, often known as a G-metric space, was defined by Mustafa and Sims

[16]. On the other hand, Aghajani et al. [17] introduced the idea of Gb-metrics, which is known

as a generalised b-metric space. There have also been important studies on Gb-metric spaces,

as can be seen in ([18]-[29]).

In this paper,, For mixed g-monotone mappings obeying generalised (ψ,φ)-contractions in

partially ordered Gb-metric spaces, we demonstrate coupled coincidence and common fixed

point theorems. Our findings combine, generalise, and enhance a number of previously re-

ported findings in the literature. Additionally, an application to homotopy, matrix equations,

and integral equations is provided.

First, let’s review the important concepts of Gb-metric spaces.

2. PRELIMINARIES

Definition 2.1: ([17]) Let Q be a non-empty set and κ ≥ 1be a given real number. Suppose

Gb : Q×Q×Q→ [0,∞) be a function satisfying the following properties:

(g0) Gb(ρ,τ,σ) = 0 if ρ = τ = σ ;

(g1) 0 < Gb(ρ,ρ,τ) for any ρ,τ ∈Q with ρ 6= τ;

(g2) if Gb(ρ,ρ,τ)≤ Gb(ρ,τ,σ) for all ρ,τ,σ ∈Q with τ 6= σ ;

(g3) Gb(ρ,τ,σ) = Gb(P[ρ,τ,σ ]), where P is a permutation of ρ,τ,σ (symmetry);
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(g4) Gb(ρ,τ,σ)≤ κ (G(ρ,ς ,ς)+G(ς ,τ,σ)) for all ρ,τ,σ ,ς ∈Q (rectangle inequality)

then Gb is said to be a Gb-metric on Q and pair (Q,Gb) is said to be a Gb-metric space or Gb

is called a generalized b-metric .

Remark 2.2: It should be noted that the class of Gb-metric spaces is effectively larger than

that of G-metric spaces. Indeed, each G-metric space is a Gb-metric space with κ = 1. The

following example shows that a Gb-metric on Q need not be a G-metric on Q.

Example 2.3: ([17]) Let (Q,G) be a G-metric space. Consider Gb(ρ,τ,σ) = (G(ρ,τ,σ))s,

where s > 1 is a real number. Then, Gb is a Gb-metric with κ = 2s−1, it is proved that (Q,Gb)

is not necessarily a G-metric space.

Definition 2.4: ([17]) A Gb- metric space (Q,Gb) is said to be symmetric if

Gb (ρ,τ,τ) = Gb (τ,ρ,ρ) ∀ ρ,τ ∈Q.

Definition 2.5: ([17]) Let (Q,Gb) be a Gb-metric space, then for ρ0 ∈Q, δ > 0, the Gb-ball

with center ρ0 and radius δ is

BGb(ρ0,δ ) = {τ ∈Q : Gb (ρ0,τ,τ)< δ}

Definition 2.6: ([17]) Let Q be a Gb-metric space. A sequence {ρn} in Q is called:

(a) Gb-Cauchy sequence if for every ε > 0, there is an integer n0 ∈ Z+ such that for all

i, j,k ≥ n0, Gb
(
ρi,ρ j,ρk

)
< ε.

(b) Gb-convergent to a point ρ ∈Q if for each ε > 0, there is an integer n0 ∈ Z+ such that

for all i, j ≥ n0, Gb
(
ρi,ρ j,ρ

)
< ε.

A Gb-metric space on Q is said to be Gb-complete if every Gb-Cauchy sequence in Q is Gb-

convergent in Q.

Lemma 2.7: ([28]) If (Q,Gb) be a Gb-metric space with κ ≥ 1 and suppose that {αn} is a

Gb-convergent to α , then we have

1
κ

Gb(α,β ,β )≤ lim
n→∞

inf Gb(αn,β ,β )≤ lim
n→∞

supGb(αn,β ,β )≤ κGb(α,β ,β ).

In particular, if α = β , then we have lim
n→∞

Gb(αn,β ,β ) = 0.

For more properties of a Gb-metric we refer the reader to ([17], [28]).
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Definition 2.8: ([4]) Let Q be a nonempty set and let F : Q2→Q be a mapping. An element

(ρ,τ) is called a coupled fixed point of F if for ρ,τ ∈Q F (ρ,τ)

F (τ,ρ)

=

 ρ

τ


Definition 2.9: ([8]) Let F : Q2→Q and f : Q→Q be two mappings. An element (ρ,τ) is

said to be a coupled coincident point of F and f if F (ρ,τ)

F (τ,ρ)

=

 f ρ

f τ


Definition 2.10: ([8]) Let F : Q2→Q and f : Q→Q be two mappings. An element (ρ,τ) is

said to be a coupled common point of F and f if F (ρ,τ)

F (τ,ρ)

=

 f ρ

f τ

=

 ρ

τ


Definition 2.11: ([8]) Let Q be a non-empty set. Then we say that the mappings

F : Q2→Q and f : Q→Q are commutative if for all ρ,τ ∈Q such that f F (ρ,τ)=F ( f ρ, f τ)

and f F (τ,ρ,) = F ( f τ, f ρ) .

Definition 2.12: ([4]) Let (Q,≤) be a partially ordered set and a mapping F : Q2 → Q is

said to have the mixed monotone property if F(α,β ) is monotone non-decreasing in α and is

monotone non-increasing in β , that is for any α,β ∈Q,

α1 ≤ α2⇒ F(α1,β )≤ F(α2,β ) for α1,α2 ∈Q,

β1 ≤ β2⇒ F(α,β2)≤ F(α,β1) for β1,β2 ∈Q.

Definition 2.13: ([8]) Let (Q,≤) be a partially ordered set and F : Q2→Q, g : Q→Q be

mappings. The mapping F is said to have the mixed g-monotone property if F is monotone g-

non-decreasing in its first argument and is monotone g-non-increasing in the second argument,

that is, for any α,β ∈Q,

gα1 ≤ gα2⇒ F(α1,β )≤ F(α2,β ) for α1,α2 ∈Q,

gβ1 ≤ gβ2⇒ F(α,β2)≤ F(α,β1) for β1,β2 ∈Q.
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Now we prove our main result.

3. MAIN RESULTS

Let (Q,≤) be a partially ordered set and Gb be a Gb-metric on Q such that (Q,Gb) is a

complete Gb-metric space. Also the product space Q×Q endowed with the following partial

order:

(u,v)≤ (x,y) ⇐⇒ x≥ u, y≤ v for (u,v),(x,y) ∈Q×Q.

Theorem 3.1: Let (Q,≤) be a partially ordered set and suppose there is a Gb-metric Gb on

Q such that (Q,Gb) is a complete Gb-metric space. Suppose F : Q2 → Q, g : Q → Q are

such that F is continuous and has the mixed g-monotone property. Assume also that there exist

ψ : [0,∞)→ [0,∞) is continuous, monotonically non-decreasing and φ : [0,∞)→ [0,∞) is lower

semi-continuous with ψ(t) = 0 = φ(t) if and only if t = 0, such that

ψ
(
2κ

4Gb (F(a,b),F(x,y),F(x,y))
)
≤ ψ (M(a,b,x,y))−φ (M(a,b,x,y))(1)

where

M(a,b,x,y) =
λ

2
(Gb(ga,gx,gx)+Gb(gb,gy,gy))

+
µ

2

 Gb(ga,F(a,b),F(a,b))Gb(gx,F(x,y),F(x,y))
1+Gb(ga,gx,gx)

+Gb(gb,F(b,a),F(b,a))Gb(gy,F(y,x),F(y,x))
1+Gb(gb,gy,gy)


for all x,y,a,b ∈Q for which ga≤ gx and gy≤ gb and λ ,µ are nonnegative real numbers with

λ + µ < 1. Suppose F(Q2) ⊆ g(Q), g is continuous and commutes with F . If there exist

a0,b0 ∈Q such that ga0 ≤ F(a0,b0) and gb0 ≥ F(b0,a0) then there exist a,b ∈Q such that

F(a,b) = ga and F(b,a) = gb that is, F and g have a coupled coincidence point.

Proof Let a0,b0 ∈Q such that ga0 ≤ F(a0,b0) and gb0 ≥ F(b0,a0).

Since F(Q2)⊆ g(Q), then we can choose a1,b1 ∈Q such that

ga1 = F(a0,b0) and gb1 = F(b0,a0).(2)

Taking into account F(Q2) ⊆ g(Q), by continuing this process, we can construct sequences

{an}, {bn} in Q such that

gap+1 = F(ap,bp) and gbp+1 = F(bp,ap).(3)
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We shall show that

gap ≤ gap+1 and gbp+1 ≤ gbp for p = 0,1,2, · · ·(4)

For this purpose, we use the mathematical induction. Since, ga0 ≤ F(a0,b0) and

gb0 ≥ F(b0,a0) then by (2), we get ga0 ≤ ga1 and gb0 ≥ gb1 that is, (4) holds for p = 0.

We presume that (4) holds for some p > 0. As F has the mixed g-monotone property and

gap ≤ gap+1 and gbp+1 ≤ gbp

gap+1 = F(ap,bp)≤ F(ap+1,bp)≤ F(ap+1,bp+1) = gap+2

gbp+2 = F(bp+1,ap+1)≤ F(bp+1,ap)≤ F(bp,ap) = gbp+1.

Thus, (4) holds for any p ∈ N. Assume for some p ∈ N, gap = gap+1 and gbp = gbp+1 then,

by (4), (ap,bp) is a coupled coincidence point of F and g. From now on, assume for any p ∈ N

that at least gap 6= gap+1 or gbp 6= gbp+1.

Due to (1)

ψ
(
2κ

4Gb(gap,gap+1,gap+1)
)

= ψ
(
2κ

4Gb
(
F(ap−1,bp−1),F(ap,bp),F(ap,bp)

))
≤ ψ

(
M(ap−1,bp−1,ap,bp)

)
−φ

(
M(ap−1,bp−1,ap,bp)

)
where

M(ap−1,bp−1,ap,bp) =
λ

2
(
Gb(gap−1,gap,gap)+Gb(gbp−1,gbp,gbp)

)

+
µ

2


Gb(gap−1,F(ap−1,bp−1),F(ap−1,bp−1))Gb(gap,F(ap,bp),F(ap,bp))

1+Gb(gap−1,gap,gap)

+
Gb(gbp−1,F(bp−1,ap−1),F(bp−1,ap−1))Gb(gbp,F(bp,ap),F(bp,ap))

1+Gb(gbp−1,gbp,gbp)


≤ λ

2
(
Gb(gap−1,gap,gap)+Gb(gbp−1,gbp,gbp)

)
+

µ

2

(
Gb(gap,gap+1,gap+1)+Gb(gbp,gbp+1,gbp+1)

)
.
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Therefore,

ψ
(
2κ

4Gb(gap,gap+1,gap+1)
)

≤ ψ

 λ

2

(
Gb(gap−1,gap,gap)+Gb(gbp−1,gbp,gbp)

)
+µ

2

(
Gb(gap,gap+1,gap+1)+Gb(gbp,gbp+1,gbp+1)

)


−φ

 λ

2

(
Gb(gap−1,gap,gap)+Gb(gbp−1,gbp,gbp)

)
+µ

2

(
Gb(gap,gap+1,gap+1)+Gb(gbp,gbp+1,gbp+1)

)


≤ ψ

 λ

2

(
Gb(gap−1,gap,gap)+Gb(gbp−1,gbp,gbp)

)
+µ

2

(
Gb(gap,gap+1,gap+1)+Gb(gbp,gbp+1,gbp+1)

)
 .

By the property of ψ , we have that

Gb(gap,gap+1,gap+1) ≤
λ

4κ4(1− µ

4κ4 )

(
Gb(gap−1,gap,gap)+Gb(gbp−1,gbp,gbp)

)
+

µ

4κ4(1− µ

4κ4 )
Gb(gbp,gbp+1,gbp+1).(5)

Similarly, we have

Gb(gbp,gbp+1,gbp+1) ≤
λ

4κ4(1− µ

4κ4 )

(
Gb(gap−1,gap,gap)+Gb(gbp−1,gbp,gbp)

)
+

µ

4κ4(1− µ

4κ4 )
Gb(gap,gap+1,gap+1).(6)

Using (5), (6) and letting ζ = λ

2κ4−µ
< 1 to obtain

Gb(gap,gap+1,gap+1)+Gb(gbp,gbp+1,gbp+1)

≤ ζ
(
Gb(gap−1,gap,gap)+Gb(gbp−1,gbp,gbp)

)
≤ ζ

2 (Gb(gap−2,gap−1,gap−1)+Gb(gbp−2,gbp−1,gbp−1)
)

...

≤ ζ
p (Gb(ga0,ga1,ga1)+Gb(gb0,gb1,gb1))→ 0 as p→ ∞.

Therefore

Gb(gap,gap+1,gap+1) ≤ ζ
p (Gb(ga0,ga1,ga1)+Gb(gb0,gb1,gb1))→ 0 as p→ ∞
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and

Gb(gbp,gbp+1,gbp+1) ≤ ζ
p (Gb(ga0,ga1,ga1)+Gb(gb0,gb1,gb1))→ 0 as p→ ∞.

By use of the rectangle inequality, for q > p, we get

Gb
(
gap,gaq,gaq

)
≤ κ

(
Gb
(
gap,gap+1,gap+1

)
+Gb

(
gap+1,gaq,gaq

))
,

≤ κGb
(
gap,gap+1,gap+1

)
+κ

2 (Gb
(
gap+1,gap+2,gap+1

)
+Gb

(
gap+2,gaq,gaq

))
,

≤ κGb
(
gap,gap+1,gap+1

)
+κ

2Gb
(
gap+2,gap+2,gap+1

)
+ · · ·+κ

q−1Gb
(
gaq−1,gaq,gaq

)
,

≤ (κζ
p +κ

2
ζ

p+1 + · · ·+κ
q−1

ζ
q−1)

 Gb(ga0,ga1,ga1)

+Gb(gb0,gb1,gb1)


≤ (κζ

p +κ
2
ζ

p+1 +κ
3
ζ

p+2 + · · ·)

 Gb(ga0,ga1,ga1)

+Gb(gb0,gb1,gb1)


≤ ζ p

1
κ
−ζ

 Gb(ga0,ga1,ga1)

+Gb(gb0,gb1,gb1)

→ 0 as p→ ∞.

By similar arguments, we obtain Gb
(
gbp,gbq,gbq

)
→ 0 as p,q → ∞. This shows that{

gap
}
,
{

gbp
}

are Cauchy sequences in the Gb-metric space (Q,Gb). Since (Q,Gb) is com-

plete, there exist a,b ∈Q such that

lim
p→∞

gap = a lim
p→∞

gbp = b.(7)

From (7) and the continuity of g, we have

lim
p→∞

g(gap) = ga lim
p→∞

g(gbp) = gb.(8)

From (3) and the commutativity of F and g, we have

(9)

g(gap+1) = g(F(ap,bp)) = F(gap,gbp) and g(gbp+1) = g(F(bp,ap)) = F(gbp,gap).
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Now we shall show that ga = F(a,b) and gb = F(b,a). By letting p→ ∞ in (10), by (7), (8)

and the continuity of F , we obtain

ga = lim
p→∞

g(gap+1) = lim
p→∞

g(F(ap,bp)) = lim
p→∞

F(gap,gbp) = F(a,b)

and gb = lim
p→∞

g(gbp+1) = lim
p→∞

g(F(bp,ap)) = lim
p→∞

F(gbp,gap) = F(b,a).

We have proved that F and g have a coupled coincidence point. This completes the proof of

Theorem 3.1.

In the following theorem, we omit the continuity hypothesis of F . We need the following

definition.

Definition 3.2: Let (Q,≤) be a partially ordered Gb-metric set and Gb be a Gb-metric on Q.

We say that (Q,Gb,≤) is regular if the following conditions hold:

(a) if non-decreasing sequence ap→ a, then ap ≤ a for all p,

(b) if non-increasing sequence bp→ b, then b≤ bp for all p.

Theorem 3.3: Let (Q,≤) be a partially ordered set and Gb be a Gb-metric on Q such that

(Q,Gb,≤) is regular. Suppose F : Q2 → Q, g : Q → Q are such that F has the mixed g-

monotone property. Assume also that there exist ψ : [0,∞)→ [0,∞) is continuous, monotoni-

cally non-decreasing and φ : [0,∞)→ [0,∞) is lower semi-continuous with ψ(t) = 0 = φ(t) if

and only if t = 0, such that

ψ
(
2κ

4Gb (F(a,b),F(x,y),F(x,y))
)
≤ ψ (M(a,b,x,y))−φ (M(a,b,x,y))

where

M(a,b,x,y) =
λ

2
(Gb(ga,gx,gx)+Gb(gb,gy,gy))

+
µ

2

 Gb(ga,F(a,b),F(a,b))Gb(gx,F(x,y),F(x,y))
1+Gb(ga,gx,gx)

+Gb(gb,F(b,a),F(b,a))Gb(gy,F(y,x),F(y,x))
1+Gb(gb,gy,gy)


for all x,y,a,b ∈Q for which ga≤ gx and gy≤ gb and λ ,µ are nonnegative real numbers with

λ + µ < 1. Suppose F(Q2) ⊆ g(Q) and (g(Q),Gb) is a complete Gb-metric space. If there

exist a0,b0 ∈Q such that ga0 ≤ F(a0,b0) and gb0 ≥ F(b0,a0) then there exist a,b ∈Q such

that F(a,b) = ga and F(b,a) = gb that is, F and g have a coupled coincidence point.
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Proof: Proceeding exactly as in Theorem 3.1, we have that {gan}, {gbn} in Q are Cauchy

sequences in the complete Gb-metric space (g(Q),Gb). Then, there exist a,b ∈Q such that

gap→ ga and gbp→ gb(10)

since {gan} is non-decreasing and {gbn} is non-increasing, then since (Q,Gb,≤) is regular we

have gap ≤ ga and gbp ≥ gb for all p. If gap = ga and gbp = gb for some p≥ 0 then,

ga = gap ≤ gap+1 ≤ ga = gap and gb≤ gbp+1 ≤ gbp = gb, which implies that

gap = gap+1 = F(ap,bp) and gbp = gbp+1 = F(bp,ap)

that is (ap,bp) is coupled coincidence point of F and g. Then, we suppose that

(gap,gbp) 6= (ga,gb) for all p≥ 0. By Lemma (2.7), we have

1
κ

Gb(ga,F(a,b),F(a,b)) ≤ lim
p→∞

inf Gb(gap+1,F(a,b),F(a,b))

≤ lim
p→∞

inf Gb(F(ap,bp),F(a,b),F(a,b)).

Now from (1) and applying ψ on both sides, we have that

ψ
(
2κ

3Gb(ga,F(a,b),F(a,b))
)
≤ lim

p→∞
infψ

(
2κ

4Gb(F(ap,bp),F(a,b),F(a,b))
)

≤ lim
p→∞

infψ (M(ap,bp,a,b))− lim
p→∞

infφ (M(ap,bp,a,b)) .

(11)

Here using Eq. (10), we obtain that

lim
p→∞

infM(ap,bp,a,b) = lim
p→∞

inf



λ

2 (Gb(gap,ga,ga)+Gb(gbp,gb,gb))

+µ

2

 Gb(gap,F(ap,bp),F(ap,bp))Gb(ga,F(a,b),F(a,b))
1+Gb(gap,ga,ga)

+
Gb(gbp,F(bp,ap),F(bp,ap))Gb(gb,F(b,a),F(b,a))

1+Gb(gbp,gb,gb)





≤ lim
p→∞

sup



λ

2 (Gb(gap,ga,ga)+Gb(gbp,gb,gb))

+µ

2

 Gb(gap,F(ap,bp),F(ap,bp))Gb(ga,F(a,b),F(a,b))
1+Gb(gap,ga,ga)

+
Gb(gbp,F(bp,ap),F(bp,ap))Gb(gb,F(b,a),F(b,a))

1+Gb(gbp,gb,gb)




= 0.
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From Eq. (11) conclude that

ψ
(
2κ

3Gb(ga,F(a,b),F(a,b))
)
≤ ψ(0)−φ(0) = 0

and hence we get that Gb(ga,F(a,b),F(a,b)) = 0 implies that ga = F(a,b). Analogously,

one find F(b,a) = gb. Thus, we proved that F and g have a coupled coincidence point. This

completes the proof of Theorem 3.3.

Now, we shall prove the existence and uniqueness of coupled common fixed point. For a

product Q of a partial ordered set (Q,≤), we define a partial ordering in the following way:

For all (a,b),(x,y) ∈Q2

(a,b)≤ (x,y)⇔ a≤ x, b≥ y

We say that (a,b) and (x,y) are comparable if

(a,b)≤ (x,y) or (x,y)≤ (a,b).

Also, we say that (a,b) is equal to (x,y) if and only a = x and b = y.

Theorem 3.4: In addition to hypotheses of Theorem 3.1, suppose that for all

(a,b),(x,y) ∈ Q2, there exists (u,v) ∈ Q2 such that (F(u,v),F(v,u)) is comparable to

(F(a,b),F(b,a)) and (F(x,y),F(y,x)). Then, F and g have a unique coupled common fixed

point (a,b) such that a = ga = F(a,b) and b = gb = F(b,a).

Proof: The set of coupled coincidence points of F and g is not empty due to Theorem 3.1.

Assume, now, (a,b) and (x,y) are two coupled coincidence points of F and g, that is,

F(a,b) = ga F(x,y) = gx

F(b,a) = gb F(y,x) = gy.

We shall show that (ga,gb) and (gx,gy) are equal. By assumption, there exists (u,v) ∈Q2 such

that (F(u,v),F(v,u)) is comparable to (F(a,b),F(b,a)) and (F(x,y),F(y,x)).

Define sequences {gup} and {gvp} such that u0 = u and v0 = v and for any p≥ 1

gup = F(up−1,vp−1) and gvp = F(vp−1,up−1) ∀ p.
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Further, set a0 = a, b0 = b and x0 = x, y0 = y and on the same way define the sequences {gap},

{gbp} and {gxp} and {gyp}. Then, it is easy that

F(a,b) = gap F(x,y) = gxp

F(b,a) = gbp F(y,x) = gyp ∀ p≥ 1.

Since (F(a,b),F(b,a)) = (ga1,gb1) = (ga,gb) is comparable to

(F(u,v),F(v,u)) = (gu1,gv1) then it is easy to show (ga,gb)≥ (gu1,gv1).

Recursively, we get that (gup,gvp)≤ (ga,gb) ∀ p.

From (1), we have

ψ
(
2κ

4Gb(gup+1,ga,ga)
)

= ψ
(
2κ

4Gb (F(up,vp),F(a,b),F(a,b))
)

≤ ψ (M(up,vp,a,b))−φ (M(up,vp,a,b))

where

M(up,vp,a,b) =
λ

2
(Gb(gup,ga,ga)+Gb(gvp,gb,gb))

+
µ

2


Gb(gup,F(up,vp),F(up,vp))Gb(ga,F(a,b),F(a,b))

1+Gb(gup,ga,ga)

+
Gb(gvp,F(vp,up),F(vp,up))Gb(gb,F(b,a),F(b,a))

1+Gb(gvp,gb,gb)


=

λ

2
(Gb(gup,ga,ga)+Gb(gvp,gb,gb)) .

Therefore,

ψ
(
2κ

4Gb(gup+1,ga,ga)
)
≤ ψ

(
λ

2
(Gb(gup,ga,ga)+Gb(gvp,gb,gb))

)
−φ

(
λ

2
(Gb(gup,ga,ga)+Gb(gvp,gb,gb))

)
≤ ψ

(
λ

2
(Gb(gup,ga,ga)+Gb(gvp,gb,gb))

)
.

By the property of ψ , we have that

Gb(gup+1,ga,ga)≤ λ

4κ4 (Gb(gup,ga,ga)+Gb(gvp,gb,gb)) .
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Similarly, we can prove that

Gb(gvp+1,gb,gb)≤ λ

4κ4 (Gb(gup,ga,ga)+Gb(gvp,gb,gb))

and hence

Gb(gup+1,ga,ga)+Gb(gvp+1,gb,gb) ≤ λ

2κ4 (Gb(gup,ga,ga)+Gb(gvp,gb,gb))

≤ (
λ

2κ4 )
2 (Gb(gup−1,ga,ga)+Gb(gvp−1,gb,gb)

)
...

≤ (
λ

2κ4 )
p (Gb(gu0,ga,ga)+Gb(gv0,gb,gb))

→ 0 as p→ ∞.

This yields that

lim
p→∞

Gb(gup+1,ga,ga) = 0 and lim
p→∞

Gb(gvp+1,gb,gb) = 0.(12)

Analogously, we may show that

lim
p→∞

Gb(gup+1,gx,gx) = 0 and lim
p→∞

Gb(gvp+1,gy,gy) = 0.(13)

Combining (12) and (13) yields that (ga,gb) and (gx,gy) are equal. Since ga = F(a,b) and

gb = F(b,a), by commutativity of F and g we have

ga′ = g(ga) = gF(a,b) = F(ga,gb) = F(a′,b′)

gb′ = g(gb) = gF(b,a) = F(gb,ga) = F(b′,a′)

where, a′ = ga and b′ = gb. Thus, (a′,b′) is a coupled coincidence point of F and g. Conse-

quently, (ga,gb) and (ga′,gb′) are equal.

We deduce a′ = ga = ga′ and b′ = gb = gb′. Therefore, (a′,b′) is a coupled common fixed of F

and g. Its uniqueness follows easily from (1).

Corollary 3.5: Let F : Q2→Q has mixed monotone property on Q satisfying :

ψ
(
2κ

4Gb (F(a,b),F(x,y),F(x,y))
)
≤ ψ (M(a,b,x,y))−φ (M(a,b,x,y))
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where

M(a,b,x,y) =
λ

2
(Gb(a,x,x)+Gb(b,y,y))

+
µ

2

 Gb(a,F(a,b),F(a,b))Gb(x,F(x,y),F(x,y))
1+Gb(a,x,x)

+Gb(b,F(b,a),F(b,a))Gb(y,F(y,x),F(y,x))
1+Gb(b,y,y)


for all (x,y) ≤ (a,b) where λ ,µ are nonnegative real numbers with λ + µ < 1. Also suppose

either

(a) F is continuous, or

(b) Q has the following properties:

(i) if non-decreasing sequence ap→ a, then ap ≤ a for all p,

(ii) if non-increasing sequence bp→ b, then b≤ bp for all p.

If there exist a0,b0 ∈Q such that a0 ≤ F(a0,b0) and b0 ≥ F(b0,a0) then F has a coupled fixed

point (a,b) ∈Q×Q.

Corollary 3.6: Let F : Q2→Q has mixed monotone property on Q satisfying :

ψ
(
2κ

4Gb (F(a,b),F(x,y),F(x,y))
)
≤ ψ

(
Gb(a,x,x)+Gb(b,y,y)

2

)
for all (x,y)≤ (a,b). Also suppose either

(a) F is continuous, or

(b) Q has the following properties:

(i) if non-decreasing sequence ap→ a, then ap ≤ a for all p,

(ii) if non-increasing sequence bp→ b, then b≤ bp for all p.

If there exist a0,b0 ∈Q such that a0 ≤ F(a0,b0) and b0 ≥ F(b0,a0) then F has a coupled fixed

point (a,b) ∈Q×Q.

Example 3.7: Let Q = [0,1] be endowed with the usual ordering and define

Gb : Q3 → R+ by Gb(α,β ,γ) = (|α−β |+ |α− γ|+ |β − γ|)2 for all α,β ,γ ∈ Q. Then

(Q,Gb) is a complete Gb-metric space with κ = 2, according to Example 2.3. Let F : Q2→Q

and g : Q→Q be given by F(α,β ) = α+β

16
√

2
,and g(α) = α

2 for all α,β ∈Q,

also ψ,φ : [0,∞)→ [0,∞) as ψ(t) = t and φ(t) = t
2 for all t ∈ [0,∞). We will check that the

contraction (1) is satisfied for all α,β ,ρ,τ ∈Q satisfying gα ≤ gρ and gτ ≤ gβ .
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In this case, we have

ψ
(
2κ

4Gb (F(α,β ),F(ρ,τ),F(ρ,τ))
)

= 2κ
4 (2|F(α,β )−F(ρ,τ)|)2

= 2κ
4
(

2|α +β

16
√

2
− ρ + τ

16
√

2
|
)2

≤ 2κ4

8κ4

(
2|α

2
− ρ

2
|+ |β

2
− τ

2
|
)2

≤ 4κ4

8κ4

((
2|α

2
− ρ

2
|
)2

+

(
2|β

2
− τ

2
|
))2

≤ 1
2
(Gb(gα,gρ,gρ)+Gb(gβ ,gτ,gτ))

= ψ (M(α,β ,ρ,τ))−φ (M(α,β ,ρ,τ)) .

Thus, inequality (1) satisfies with constant λ = 1
2 and µ = 0. Other conditions in Theorem 3.1

are satisfied. It follows that (0,0) is coupled fixed point of F and g in Q×Q.

3.1. Application to Integral Equations.

In this section, we study the existence of a unique solution to a nonlinear integral equation, as

an application to Corollary 3.6.

Consider the following integral equation:

(14) χ(t) =
b∫

a

(Γ1(t,s)+Γ2(t,s))(Λ(s,χ(s))+ϒ(s,χ(s)))ds+ z(t), t ∈ I = [a,b]

We will analyze Eq. (14) under the following assumptions:

(a) Γ1,Γ2 ∈C(I× I,R) and Γ1(t,s)≤ 0, Γ2(t,s)≥ 0;

(b) z ∈C(I,R);

(c) Λ,ϒ ∈C(I×R,R)

(d) There exist constants θ ,τ > 0 such that for all χ,ζ ∈ R and χ ≥ ζ

0≤ Λ(t,χ)−Λ(t,ζ )≤ θ√
2κ
|χ−ζ |

and

− τ√
2κ
|χ−ζ | ≤ ϒ(t,χ)−ϒ(t,ζ )≤ 0;

(e) 2κ2 max{θ ,τ}||Γ1−Γ2||2∞ ≤ 1,

where ||Γ1−Γ2||∞ = sup{(Γ1(t,s)−Γ2(t,s)) : t,s ∈ I};
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( f ) There exist (x,y) ∈C(I,R)×C(I,R) a coupled lower and upper solution of the integral

equation (14) if x(t)≤ y(t) and

x(t)≤
b∫

a

Γ1(t,s)(Λ(s,x(s))+ϒ(s,y(s)))ds+
b∫

a

Γ2(t,s)(Λ(s,y(s))+ϒ(s,x(s)))ds+ z(t)

and

y(t)≥
b∫

a

Γ1(t,s)(Λ(s,y(s))+ϒ(s,x(s)))ds+
b∫

a

Γ2(t,s)(Λ(s,x(s))+ϒ(s,y(s)))ds+ z(t)

for all t ∈ I.

Theorem 3.1.1: Under assumptions (a)− ( f ), Eq. (14) has a unique solution in C(I,R).

Proof: Let Q :=C(I,R). Q is a partially ordered set if we define the following order relation

in Q :

χ,ζ ∈C(I,R),χ ≤ ζ ⇐⇒ χ(t)≤ ζ (t) ∀ t ∈ I.

And (Q,Gb) is a complete Gb-metric space with κ = 2 which Gb-metric

Gb(χ,ζ ,τ) = supt∈I (|χ(t)−ζ (t)|+ |χ(t)− τ(t)|+ |ζ (t)− τ(t)|)2 ∀ χ,ζ ,τ ∈Q.

Now define on Q×Q the following partial order: for (χ,ζ ),(ρ,τ) ∈Q2,

(χ,ζ )≤ (ρ,τ) ⇐⇒ χ(t)≤ ρ(t) and ζ (t)≥ τ(t), ∀ t ∈ I.

Obviously, for any (χ,ζ ) ∈ Q2, the functions max{χ,ζ} is upper bound and min{χ,ζ} is

lower bound of χ and ζ . Therefore, for every (χ,ζ ),(ρ,τ) ∈ Q2, there exists the element

(max{χ,ρ},min{ζ ,τ}) which is comparable to (χ,ζ ) and (ρ,τ). Define now the mappings

ψ : [0,∞)→ [0,∞) as ψ(t) = t and F : Q2→Q by

F(χ,ζ )(t) =
b∫

a

Γ1(t,s)(Λ(s,χ(s))+ϒ(s,ζ (s)))ds+
b∫

a

Γ2(t,s)(Λ(s,ζ (s))+ϒ(s,χ(s)))ds+ z(t).

Then obviously, F has the mixed monotone property. In what follows, we estimate

Gb (F(χ,ζ ),F(ρ,τ),F(ρ,τ)) for χ ≥ ρ and ζ ≤ τ . Indeed, as F has the mixed monotone
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property, F(χ,ζ )≥ F(ρ,τ) and we have

ψ
(
2κ

4Gb (F(χ,ζ ),F(ρ,τ),F(ρ,τ))
)
= 2κ

4Gb (F(χ,ζ ),F(ρ,τ),F(ρ,τ))

= 8κ
4 sup

t∈I
|F(χ,ζ )(t)−F(ρ,τ)(t)|2

= 8κ
4 sup

t∈I
(F(χ,ζ )(t)−F(ρ,τ)(t))2

= 8κ
4 sup

t∈I



b∫
a

Γ1(t,s)(Λ(s,χ(s))+ϒ(s,ζ (s)))ds

+
b∫
a

Γ2(t,s)(Λ(s,ζ (s))+ϒ(s,χ(s)))ds

−
b∫
a

Γ1(t,s)(Λ(s,ρ(s))+ϒ(s,τ(s)))ds

−
b∫
a

Γ2(t,s)(Λ(s,τ(s))+ϒ(s,ρ(s)))ds



2

= 8κ
4 sup

t∈I


b∫
a

Γ1(t,s) [(Λ(s,χ(s))−Λ(s,ρ(s)))− (ϒ(s,τ(s))−ϒ(s,ζ (s)))]ds

+
b∫
a

Γ2(t,s) [(Λ(s,ζ (s))−Λ(s,τ(s)))− (ϒ(s,ρ(s))−ϒ(s,χ(s)))]ds


2

≤ 8κ
4 sup

t∈I


b∫
a

Γ1(t,s)
[

θ√
2κ
|χ(s)−ρ(s)|+ τ√

2κ
|τ(s)−ζ (s)|

]
ds

+
b∫
a
(−Γ2(t,s))

[
θ√
2κ
|ζ (s)− τ(s)|+ τ√

2κ
|χ(s)−ρ(s)|

]
ds


2

≤ 4κ
2 max{θ ,τ}sup

t∈I


b∫
a
(Γ1(t,s)−Γ2(t,s))|χ(s)−ρ(s)|ds

+
b∫
a
(Γ1(t,s)−Γ2(t,s))|ζ (s)− τ(s)|ds


2

(15)

Defining (X) =
b∫
a
(Γ1(t,s)−Γ2(t,s))|χ(s)−ρ(s)|ds

and (Y ) =
b∫
a
(Γ1(t,s)−Γ2(t,s))|ζ (s)− τ(s)|ds and using the Cauchy-Schwartz inequality in

(X) we obtain

(X) ≤

 b∫
a

(Γ1(t,s)−Γ2(t,s))2ds

 1
2
 b∫

a

|χ(s)−ρ(s)|2ds

 1
2

≤ ||Γ1(t,s)−Γ2(t,s)||∞(|χ(s)−ρ(s)|)(16)
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Similarly, we can obtain the following estimate for (Y ) :

(Y )≤ ||Γ1(t,s)−Γ2(t,s)||∞(|ζ (s)− τ(s)|).(17)

By (15)-(17) and assumption (e) , we get

ψ
(
2κ

4Gb (F(χ,ζ ),F(ρ,τ),F(ρ,τ))
)

≤ 4κ
2 max{θ ,τ}||Γ1(t,s)−Γ2(t,s)||2∞

(
|χ−ρ|+ |ζ − τ|

)2

≤ 1
2

[
(2|χ−ρ|)2 +(2|ζ − τ|)2

]
≤ 1

2
(Gb(χ,ρ,ρ)+Gb(ζ ,τ,τ))

≤ ψ

(
Gb(χ,ρ,ρ)+Gb(ζ ,τ,τ)

2

)
.

This proves that the operator F satisfies the contractive condition appearing in Corollary 3.6.

Finally, let (x,y) be a coupled lower and upper solution of the integral equation (14) then, by

assumption ( f ), we have x ≤ F(x,y) ≤ F(y,x) ≤ y. Corollary 3.6 gives us that F has a unique

coupled fixed point (χ,ζ ) ∈ Q×Q. Since x ≤ y, Corollary 3.6 says us that χ = ζ and this

implies χ = F(χ,χ) and χ is the unique solution of Eq. (14).

3.2. Applications to Matrix Equations.

In this section, we study the existence and uniqueness of solutions (A ,B) to the system of

matrix equations:

{A = Q+C?
1A C1−D?

1BD1

B = Q+C?
1BC1−D?

1A D1

(18)

where C1,D1 ∈M (n): the set of all n× n matrices, Q ∈P(n): the set of all n× n positive

definite matrices, and H (n) is the set of all n× n Hermitian matrices. We endow H (n) with

the partial order ≤ given by M,N ∈H (n), M ≤ N⇔ N−M ∈P(n). For a fixed P ∈P(n),

we consider ||H||1,P = tr
(

P
1
2 HP

1
2

)
for all H ∈H (n) where tr is the trace operator. The space

H (n) equipped with the Gb-metric induced by ||.||1,P is a complete Gb- metric space for any

positive definite matrix P (see. [30]).
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The following lemma will be useful for our application.

Lemma 3.2.1: Let M ≥ 0 and N ≥ 0 be n×n matrices. Then, we have

0≤ tr(MN) = tr(NM)≤ ||M||tr(N), where ||.|| is the spectral norm.

Theorem 3.2.2: Suppose that there exists P ∈P(n) such that

16κ4 max{||P−1
2 C?

1PC1P
−1
2 ||, ||P−1

2 D?
1PD1P

−1
2 ||}< 1. Suppose also that 0≤C?

1QC1 and

Q≤ D?
1QD1. Then, the system (18) has one and only one solution (X ,Y ) ∈H (n)×H (n).

Proof Consider the mappings F : H (n)×H (n)→H (n) defined by

F(X ,Y ) = Q+C?
1XC1−D?

1Y D1 for all X ,Y ∈H (n).

For all X j,Yj ∈H (n), j = 1,2 with X1≤Y1 and Y2≤X2 and ψ : [0,∞)→ [0,∞) as ψ(t)= ||t||1,P.

By using Lemma 3.2.1, we have

ψ
(
2κ

4Gb (F(Y1,Y2),F(X1,X2),F(X1,X2))
)

= 8κ
4 (||F(Y1,Y2)−F(X1,X2)|||1,P)2

= 8κ
4 (||C?

1(Y1−X1)C1−D?
1(Y2−X2)D1||1,P)2

= 8κ
4
(

tr
[
P

1
2 (C?

1(Y1−X1)C1−D?
1(Y2−X2)D1)P

1
2

])2

= 8κ
4 (tr [C?

1PC1(Y1−X1)]+ tr [D?
1PD1(Y2−X2)])

2

= 8κ
4
(

tr
[
C?

1PC1P
−1
2 P

1
2 (Y1−X1)P

−1
2 P

1
2

]
+ tr

[
D?

1PD1P
−1
2 P

1
2 (Y2−X2)P

−1
2 P

1
2

])2

≤ 8κ
4
(
||P

−1
2 C1PC?

1P
−1
2 ||tr(P

1
2 (Y1−X1)P

1
2 )+ ||P

−1
2 D1PD?

1P
−1
2 ||tr(P

1
2 (Y2−X2)P

1
2 )
)2

≤ 8κ
4
(
||P

−1
2 C1PC?

1P
−1
2 ||||Y1−X1||1,P + ||P

−1
2 D1PD?

1P
−1
2 ||||Y2−X2||1,P

)2

≤ 1
2
(2||Y1−X1||1,P)2 +(2||Y2−X2||1,P)2

≤ ψ

(
Gb(Y1,X1,X1)+Gb(Y2,X2,X2)

2

)
.

Thus, we proved that the contractive condition given in Corollary 3.6 is satisfied. Moreover,

from 0 ≤ C?
1QC1 and Q ≤ D?

1QD1 we have letting Q ≤ F(Q,0) and 0 ≥ F(0,Q). Corollary

3.6. F has a coupled fixed point. Then there exist X ,Y ∈H (n) such that F(X ,Y ) = X and

F(Y,X) = Y .
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3.3. Applications to Homotopy.

In this section, we study the existence of an unique solution to Homotopy theory.

Theorem 3.3.1: Let (Q,Gb) be complete Gb-metric space, U and U be an open and closed

subset of Q such that U ⊆ U . Suppose Hb : U2× [0,1]→ Q be an operator with following

conditions are satisfying,

(τ0) x 6= Hb(x,y,χ), y 6= Hb(y,x,χ), for each x,y ∈ ∂U and χ ∈ [0,1] (Here ∂U is boundary

of U in Q)

(τ1) ψ
(
2κ4Gb (Hb(x,y,χ),Hb(a,b,χ),Hb(a,b,χ))

)
≤ ψ

(
Gb(x,a,a)+Gb(y,b,b)

2

)
for all x,y,a,b ∈ U and χ ∈ [0,1], where ψ : [0,∞) → [0,∞) is continuous, non-

decreasing and ψ(t) = 0 ⇐⇒ t = 0,

(τ2) ∃M ≥ 0 3 Gb(Hb(x,y,χ),Hb(x,y,ζ ),Hb(x,y,ζ ))≤M|κ−ζ | for every

x,y ∈Uand χ,ζ ∈ [0,1].

Then Hb(.,0) has a coupled fixed point ⇐⇒ Hb(.,1) has a coupled fixed point.

Proof Let the set B =
{

χ ∈ [0,1] : Hb(x,y,χ) = x,Hb(y,x,χ) = y for some x,y ∈U
}
.

Since Hb(.,0) has a coupled fixed point in U2, we have that (0,0,) ∈B2. So that B is non-

empty set. Now we show that B is both closed and open in [0,1] and hence by the connectedness

B = [0,1]. As a result, Hb(.,1) has a coupled fixed point in U2. First we show that B closed in

[0,1]. To see this, Let
{

χp
}∞

p=1 ⊆B with χp→ χ ∈ [0,1] as p→∞. We must show that χ ∈B.

Since χp ∈B for p = 0,1,2,3, · · · , there exists sequences
{

xp
}
,
{

yp
}
⊆U with

xp = Hb(xp,yp,χp), yp = Hb(yp,xp,χp). Consider

Gb(xp,xp+1,xp+1)

= Gb
(
Hb(xp,yp,χp),Hb(xp+1,yp+1,χp+1),Hb(xp+1,yp+1,χp+1)

)
≤ κ

 Gb
(
Hb(xp,yp,χp),Hb(xp+1,yp+1,χp),Hb(xp+1,yp+1,χp)

)
Gb
(
Hb(xp+1,yp+1,χp),Hb(xp+1,yp+1,χp+1),Hb(xp+1,yp+1,χp+1)

)


≤ κGb
(
Hb(xp,yp,χp),Hb(xp+1,yp+1,χp),Hb(xp+1,yp+1,χp)

)
+κM|χp−χp+1|.

Letting p→ ∞, we get

lim
p→∞

Gb(xp,xp+1,xp+1) ≤ lim
p→∞

κGb
(
Hb(xp,yp,χp),Hb(xp+1,yp+1,χp),Hb(xp+1,yp+1,χp)

)
.
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Since ψ is continuous and non-decreasing, we obtain

lim
p→∞

ψ
(
2κ

3Gb(xp,xp+1,xp+1)
)
≤ lim

p→∞
ψ

2κ
4Gb

 Hb(xp,yp,χp),Hb(xp+1,yp+1,χp),

Hb(xp+1,yp+1,χp)

 
≤ lim

p→∞
ψ

(
Gb(xp,xp+1,xp+1)+Gb(yp,yp+1,yp+1)

2

)
.

By the definition of ψ , it follows that

lim
p→∞

4κ
3Gb(xp,xp+1,xp+1)≤ lim

p→∞

(
Gb(xp,xp+1,xp+1)+Gb(yp,yp+1,yp+1)

)
.(19)

Similarly, we can prove

lim
p→∞

4κ
3Gb(yp,yp+1,yp+1)≤ lim

p→∞

(
Gb(xp,xp+1,xp+1)+Gb(yp,yp+1,yp+1)

)
.(20)

Combining (19) and (20), we have lim
p→∞

(4κ3−1)
(
Gb(xp,xp+1,xp+1)+Gb(yp,yp+1,yp+1)

)
≤ 0.

So that lim
p→∞

Gb(xp,xp+1,xp+1) = 0 and lim
p→∞

Gb(yp,yp+1,yp+1) = 0.

Now we prove that {xp} is an Gb-Cauchy sequence in (Q,Gb). On the contrary, suppose

that {xp} is not Gb-Cauchy. There exists ε > 0 and monotone increasing sequences of natural

numbers {qk} and {pk} such that pk > qk,

Gb(xqk ,xpk ,xpk)≥ ε Gb(yqk ,ypk ,ypk)≥ ε

Gb(xqk ,xpk−1,xpk−1)< ε Gb(yqk ,ypk−1,ypk−1)< ε.(21)

From (21), we have ε ≤ Gb(xqk ,xpk ,xpk)≤ κ
(
Gb(xqk ,xqk+1,xqk+1)+Gb(xqk+1,xpk ,xpk)

)
.

Letting p→ ∞ and applying ψ on both sides, we have that

ψ(2κ
3
ε) ≤ lim

p→∞
ψ
(
2κ

4Gb(xqk+1,xpk ,xpk)
)
.(22)

But

lim
p→∞

ψ
(
2κ

4Gb(xqk+1 ,xpk ,xpk)
)

≤ lim
p→∞

ψ
(
2κ

4Gb(Hb(xqk+1,yqk+1,χqk+1),Hb(xpk ,ypk ,χpk),Hb(xpk ,ypk ,χpk)
)

≤ lim
p→∞

ψ

(
Gb(xqk+1,xpk ,xpk)+Gb(yqk+1,ypk ,ypk)

2

)
.
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It follows that

lim
p→∞

4κ
4Gb(xqk+1,xpk ,xpk)≤ lim

p→∞

(
Gb(xqk+1 ,xpk ,xpk)+Gb(yqk+1,ypk ,ypk)

)
.(23)

Similarly, we can prove

lim
p→∞

4κ
4Gb(yqk+1,ypk ,ypk)≤ lim

p→∞

(
Gb(xqk+1 ,xpk ,xpk)+Gb(yqk+1,ypk ,ypk)

)
.(24)

Combining (23) and (24), we have lim
p→∞

(4κ4−1)
(
Gb(xqk+1,xpk ,xpk)+Gb(yqk+1,ypk ,ypk)

)
≤ 0.

So that lim
p→∞

Gb(xqk+1 ,xpk ,xpk) = 0 and lim
p→∞

Gb(yqk+1,ypk ,ypk) = 0. Hence from (22 ) and the

definition of ψ , we have that ε ≤ 0, which is a contradiction. Hence {xp} is an Gb-Cauchy

sequence in (Q,Gb), by similar arguments {yp} is also an Gb-Cauchy sequence in (Q,Gb),

and by completeness of (Q,Gb), there exist a,b ∈Q with

lim
p→∞

xp = a = lim
p→∞

xp+1 lim
p→∞

yp = b = lim
p→∞

yn+1

using Lemma (2.7) and condition (τ1), we have

ψ
(
2κ

3Gb(a,Hb(a,b,χ),Hb(a,b,χ))
)
≤ lim

p→∞
inf ψ

(
2κ

4Gb(xp,Hb(a,b,χ),Hb(a,b,χ))
)

≤ lim
p→∞

inf ψ
(
2κ

4Gb(Hb(xp,yp,χp),Hb(a,b,χ),Hb(a,b,χ))
)

≤ lim
p→∞

inf ψ

(
Gb(xp,a,a)+Gb(yp,b,b)

2

)
= 0.

It follows that Hb(a,b,χ) = a. Similarly, we obtain that Hb(b,a,χ) = b. Thus χ ∈B. Hence

B is closed in [0,1]. Let χ0 ∈B, then there exist x0,y0 ∈U with x0 = Hb(x0,y0,χ0),

y0 = Hb(y0,x0,χ0), Since U is open, then there exist r > 0 such that BGb(x0,r)⊆U .

Choose χ ∈ (χ0− ε,χ0 + ε) such that |χ−χ0| ≤ 1
Mp <

ε

2 ,

then for x ∈ BGb(x0,r) =
{

x ∈Q/Gb(x,x0,x0)≤ r+2κ2Gb(x0,x0,x0)
}

, and

y ∈ BGb(y0,r) =
{

y ∈Q/Gb(y,y0,y0)≤ r+2κ2Gb(y0,y0,y0)
}

. Also

Gb (Hb(x,y,χ),x0,x0) = Gb (Hb(x,y,χ),Hb(x0,y0,χ0),Hb(x0,y0,χ0))

≤ κ (Gb (Hb(x,y,χ),Hb(x,y,χ0),Hb(x,y,χ0))+Gb (Hb(x,y,χ0),Hb(x0,y0,χ0),Hb(x0,y0,χ0)))

≤ κM|χ−χ0|+κGb (Hb(x,y,χ0),Hb(x0,y0,χ0),Hb(x0,y0,χ0))

≤ κ

Mp−1 +κGb (Hb(x,y,χ0),Hb(x0,y0,χ0),Hb(x0,y0,χ0)) .
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Letting p→∞, we obtain Gb (H(x,y,χ),x0,x0)≤ κGb (Hb(x,y,χ0),Hb(x0,y0,χ0),Hb(x0,y0,χ0)) .

Since ψ is continuous and non-decreasing, we have

ψ (Gb (H(x,y,χ),x0,x0)) ≤ ψ
(
2κ

3Gb (H(x,y,χ),x0,x0)
)

≤ ψ
(
2κ

4Gb (Hb(x,y,χ0),Hb(x0,y0,χ0),Hb(x0,y0,χ0))
)

≤ ψ

(
Gb(x,x0,x0)+Gb(y,y0,y0)

2

)
.

Since ψ is non-decreasing, we have

Gb (H(x,y,χ),x0,x0) ≤
Gb(x,x0,x0)+Gb(y,y0,y0)

2

≤ r+κ
2Gb(x0,x0,x0)+κ

2Gb(y0,y0,y0).

Similarly, we can prove Gb (H(y,x,χ),y0,y0)≤ r+κ2Gb(x0,x0,x0)+κ2Gb(y0,y0,y0).

Thus we have,

Gb (H(x,y,χ),x0,x0)+Gb (H(y,x,χ),y0,y0) ≤ r+κ
2Gb(x0,x0,x0)+κ

2Gb(y0,y0,y0).

Thus for each fixed χ ∈ (χ0− ε,χ0 + ε), Hb(.,χ) : BGb(x0,r)→ BGb(x0,r),

Hb(.,χ) : BGb(y0,r) → BGb(y0,r). Since also (τ1) holds and ψ is continuous and non-

decreasing, then all conditions of Theorem (3.3.1) are satisfied. Thus we conclude that Hb(.,χ)

has a coupled fixed point in U2. But this must be in U2 since (τ0) holds. Thus, χ ∈B for any

χ ∈ (χ0− ε,χ0 + ε). Hence (χ0− ε,χ0 + ε)⊆B. Clearly B is open in [0, 1].

For the reverse implication, we use the same strategy.

4. CONCLUSIONS

In this paper we conclude some applications to homotopy theory and integral equations as

well as matrix equations by using coupled fixed point theorems for two mappings via general-

ized (ψ,φ)- contractive condition in partially ordered Gb-metric spaces.
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