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Abstract. Fixed-point theory is being adopted in pure and applied mathematics to a great extent. In scenarios

where the fixed point equation lacks a solution, the best approximation theorems and the best proximity pair the-

orems are used as alternatives. The existence of approximate solutions is guaranteed by the best approximation

theorem, but these solutions are not optimal. The best proximity point theorems provide sufficient conditions that

guarantee the existence of optimal approximate solutions. In addition, the most effective proximity point theorems

serve as generalizations of the fixed point theorems. So we have introduced generalized rational type contraction

conditions involving control functions on complex valued metric spaces to prove common best proximity point re-

sults for commute proximally non-self mappings under certain assumptions. Many existing results in the literature

are extended, generalized, and improvised in the theorems presented in this paper. We have supported our findings

with some examples.
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1. INTRODUCTION

One of the most popular fixed point theorems in analysis is Banach’s contraction principle

[6], which is known for its simplicity. This is because the contractive condition on the mapping

is easy to understand and test because all that it needs is only a complete metric space and it

has a constructive algorithm. It is used in almost all differential and integral equation theories.

Several articles have been published on the improvisation of this principle and that resulted in

the generalization. Majority of them were concerned with the metric space generalizations of

the contractive condition.

Fixed point equations have no solution, if f is not a self-mapping. In such cases we need

to identify an element x that is closer to f x by using the best approximation theorems and

best proximity theorems. The best approximation theorem offers adequate criteria to prove

that a point x ∈P , also known as a best approximate, exists and that dC(x, f x) = dit( f x,P).

For more details refer [13, 19, 21, 24, 26]. This theorem is helpful in finding an approximate

solution to f x = x , but not a solution that is optimal. But finding an approximate and optimal

solution can be achieved through best proximity point theorems which were recently developed

by Sadiq Basha and Veeramani [7, 8]. When the mapping f : P → Q is non-self, the best

proximity theorem offers adequate conditions that ensure the existence of an element x in P

such that dC(x, f x) = dit(P,Q). It also addresses the issue of reducing it to the real-valued

function x→ dC(x, f x) and finding a solution. Also as it turns out to be a fixed point, if the

mapping under consideration is a self-mapping, it naturally generalizes fixed point theorems.

Azam et al.[5] have introduced complex valued metric spaces to prove the existence of a

common fixed point using rational type contraction condition. This novel concept has helped

researchers to overcome the handicap of not being able to define rational expressions in cone

metric spaces. See [5, 23, 25, 15]. The equations f x = x and gx = x are likely to have no

common solution if f ,g : P →Q, are two non-self mappings. That is why, for a pair of non-

self mappings, the common best proximity point problem has been introduced. The objective

is to identify an element x ∈P such that dC(x, f x) = dit(P,Q) = dC(x,gx). This element is

known as the common best proximity point of a pair of non-self mappings ( f ,g). There exists an

extensive literature on common best proximity point. Refer [2, 4, 3, 12, 11, 1, 8, 9, 18, 7]. In this
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work, we have proved some new common best proximity point theorems for two non-self maps

on a complex metric space by introducing the generalized rational type contraction conditions

involving control functions. We have also obtained the best proximity point for non-self-maps

between two subsets of a complex valued metric space using commute proximally mapping

under some assumption. Our theorems on common best proximity points extend certain well-

known findings from classical metric spaces to the complex-valued metric spaces.

2. PRELIMINARIES

Let C be the set of all complex numbers and let κ1,κ2 ∈ C. There exists a partial order

relation between κ1 and κ2 iff Rea(κ1) ≤ Rea(κ2) and Ima(κ1) ≤ Ima(κ2) and we write

κ1 � κ2.

Definition 2.1. [5] Let X be a nonempty set. The mapping dC : X ×X → C is said to be a

complex valued metric if the following conditions hold.

(a1) 0� dC(κ1,κ2),∀κ1,κ2 ∈X and dC(κ1,κ2) = 0⇔ κ1 = κ2

(a2) dC(κ1,κ2) = dC(κ2,κ1),∀κ1,κ2 ∈X

(a3) dC(κ1, κ2)� dC(κ1,κ3)+dC(κ3,κ2),∀κ1,κ2,κ3 ∈X .

Then (X ,dC) is called a complex valued metric space.

Lemma 2.1. [5] let {xm} be a sequence in X . Then {xm} converges to x⇔ |dC(xm,x)| → 0 as

m→ ∞.

Lemma 2.2. [5] let {xm} be a sequence in X . Then {xm}is a Cauchy sequence ⇔

|dC(xm,xn+m)| → 0 as m→ ∞.

According to Choudhury et al. [11], two nonempty subsets P and Q of a complex valued

metric space (X ,dC), {dC(x,y) : x ∈P,y ∈Q} ⊆ C is always bounded below by z0 = 0+ i0

and inf {dC(x,y) : x ∈P,y ∈Q} exists. Let

dit(P,Q) = in f{dC(x,y) : x ∈P,y ∈Q}

P0 = {x ∈P : dC(x,y) = dit(P,Q) for some y ∈Q}

Q0 = {y ∈Q : dC(x,y) = dit(P,Q) for some x ∈P}
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From the definitions above, it can be observed that for every x ∈ P0 ∃y ∈ Q0 such that

dC(x,y)= dit(P,Q) and conversely, for every y∈Q0 ∃x∈P0 such that dC(x,y)= dit(P,Q).

Definition 2.2. [11] If an element x1 ∈P satisfies the condition that

dC(x1, f x1) = dC(x1,gx1) = dit(P,Q),

then it is said to be a common best proximity point of the mappings f ,g : P →Q.

Definition 2.3. [11]Let ( f ,g) : P →Q be non-self mappings.

(a1) The mappings ( f ,g) are said to commute proximally if it satisfies the condition

[dC(z2, f z1) = dC(z3,gz1) = dC(P,Q)] =⇒ f z3 = gz2,∀z1,z2 and z3 ∈P .

(a2) The mappings ( f ,g) can be swapped proximally if dC(z1,z2) = dC(z1,z3) = dC(P,Q)

and f (z2) = g(z3) =⇒ f (z3) = g(z2) ∀z2,z3 ∈P and z1 ∈Q.

Definition 2.4. [11] Let (P,Q) represent a pair of nonempty subsets of a complex valued

metric space (X ,dC) where P0 6= /0. Then the pair (P,Q) is said to have weak p-property

if and only if for any z1,z2 ∈P0 and w1,w2 ∈Q0, dC(z1,w1) = dit(P,Q) and dC(z2,w2) =

dit(P,Q), implies that dC(z1,z2)� dC(w1,w2).

3. MAIN RESULTS

In this section, we first define the concept of generalized rational type contraction condition

involving control functions in complex valued metric spaces for a pair of non-self mappings.

Definition 3.1. Let (X ,dC) be a complex valued metric space. The mappings f ,g : P →Q

are said to be generalized rational type contraction condition involving control functions, if

there exists α(gx1),β (gx1),γ(gx1) for a suitable mapping α,β ,γ : P → [0,1), which satisfies

∀x1,x2 ∈P , α( f x1) ≤ α(gx1),β ( f x1) ≤ β (gx1), γ( f x1) ≤ γ(gx1) with α(gx1) + β (gx1) +

γ(gx1)< 1, α( f x1)+β ( f x1)+ γ( f x1)< 1 and

dC( f x1, f x2)� α(gx1)dC(gx1,gx2)+
β (gx1)dC(gx1, f x1)dC(gx2, f x2)

1+dC(gx1,gx2)
(1)

+
γ(gx1)dC(gx2, f x1)dC(gx1, f x2)

1+dC(gx1,gx2)
.
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Theorem 3.1. Assume that P and Q are non-empty closed subsets of a complete complex

valued metric space, where P0 and Q0 are non-empty sets, and the pair (P,Q) satisfies the

weak p-property. Let f ,g : P →Q be two non-self-continuous mappings which satisfies the

following conditions.

(a1) f (P0)⊆Q0 and f (P0)⊆ g(P0),

(a2) The mappings ( f ,g) commute proximally,

(a3) f and g satisfy generalized rational type contraction condition involving control func-

tions.

Then ∃ an element x ∈P such that dC(x, f x) = dit(P,Q) = dC(x,gx).

Proof. Let x0 be in P0. By our assumption (a1), there exists x1 ∈P0 such that f x0 = gx1.

Using an inductive approach ∃ {xm} ∈P0 such that f xm−1 = gxm for every non negative integer

m. Since f (P0) ⊆Q0, we can conclude that there exists km in P0 such that dC( f xm,km) =

dit(P,Q) for every m ∈ N. It follows that, the selection of km and xm are such that

dC( f xm,km) = dit(P,Q), dC( f xm+1,km+1) = dit(P,Q)

for every positive integer m. Due to weak p-property of (P,Q) and condition (a3), we have

α( f xm−1)≤ α(gxm−1)

= α( f xm−2)

≤ α(gxm−2)

= α( f xm−3)....= α(gx0)≤ α( f x0).

Similarly, we can find β ( f xm−1)≤ β ( f x0) and γ( f xm−1)≤ γ( f x0).

dC(km,km+1)� dC( f xm, f xm+1)

� α(gxm)dC(gxm,gxm+1)+
β (gxm)dC(gxm, f xm)dC(gxm+1, f xm+1)

1+dC(gxm,gxm+1)

+
γ(gxm)dC(gxm+1, f xm)dC(gxm, f xm+1)

1+dC(gxm,gxm+1)



6 A. MURALI, K. MUTHUNAGAI

= α( f xm−1)dC( f xm−1, f xm)+
β ( f xm−1)dC( f xm−1, f xm)dC( f xm, f xm+1)

1+dC( f xm−1, f xm)

+
γ( f xm−1)dC( f xm, f xm)dC( f xm−1, f xm+1)

1+dC( f xm−1, f xm)

dC(km,km+1)� α( f xm−1)dC( f xm−1, f xm)+β ( f xm−1)dC( f xm, f xm+1)

...

� α( f x0)

1−β ( f x0)
dC( f xm−1, f xm)� c dC( f xm−1, f xm).

It follows that {km} is Cauchy and it converges to k in P , because X is complete and P

is closed. Also, using f (P0) ⊆ Q0, we can conclude that there exists km in P such that

dC( f xm,km) = dit(P,Q) for every m ∈ N. As a result of the selection of xm, we find

dC(gxm,km−1) = dC( f xm−1,km−1) = dit(P,Q)

for every positive integer m. Since ( f ,g) commute proximally, we can say that gkm = f km−1.

By the continuity of mappings, it implies that gk = f k. By choosing f (k) ∈ f (P0) ⊆Q0, we

find that there exists x ∈P0 such that

dC(x,gk) = dit(P,Q) = dC(x, f k).

By (a2), we have f x = gx. For f (x) ∈ f (P0)⊆Q0, there exists ` ∈P0 such that

dC(`,gx) = dit(P,Q) = dC(`, f x).

From (1), we have

dC( f k, f x)� α(gk)dC(gk,gx)+
β (gk)dC(gk, f k)dC(gx, f x)

1+dC(gk,T x)
+

γ(gk)dC(gx, f k)dC(gk, f x)
1+dC(gk,T x)

� α( f k)dC( f k, f x)+
β ( f k)dC( f k, f k)dC( f x, f x)

1+dC( f k, f x)
+

γ( f k)dC( f x, f k)dC( f k, f x)
1+dC( f k, f x)

= (α( f k)+ γ( f k))dC( f k, f x).

=⇒ f k = f x and also gk = gx. Therefore, we have, dC(x, f k) = dit(P,Q) = dC(`, f x). Using

the weak p-property of (P,Q) we have,

dC(x, `)� dC( f x, f k) = 0
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which means that x = `. Thus dC(x, f x) = dit(P,Q) = dC(x,gx). Let x1 be another common

best proximity point of f and g such that dC(x1, f x1) = dit(P,Q) = dC(x1,gx1). By (a2), we

have f x = gx and f x1 = gx1. Using (1),

dC( f x, f x1)� α(gx)dC(gx,gx1)+
β (gx)dC(gx, f x)dC(gx1, f x1)

1+dC(gx,gx1)

+
γ(gx)dC(gx1, f x)dC(gx, f x1)

1+dC(gx,gx1)
= α( f x)dC( f x, f x1)

+
β ( f x)dC( f x, f x)dC( f x1, f x1)

1+dC( f x, f x1)
+

γ( f x)dC( f x1, f x)dC( f x, f x1)

1+dC( f x, f x1)

� (α( f x)+ γ( f x))dC( f x, f x1),

=⇒ f x = f x1. Therefore, we have dC(x, f x) = dit(P,Q) = dC(x1, f x1). The weak p-property

of (P,Q) , leads us to the conclusion that dC(x,x1) � dC( f x, f x1) = 0 which in turn implies

that x = x1. Hence, ∃ an element x ∈P such that dC(x, f x) = dit(P,Q) and dC(x,gx) =

dit(P,Q). �

Example 1. Let X =C and d : X ×X →C be defined as dC(x1+ iy1,x2+ iy2) = |x1−x2|+

i|y1− y2|. Consider

P = {z ∈ C : Rea(z) = 1,Ima(z) = y, ∀y ∈ [0,1]} and

Q = {z ∈ C : Rea(z) = 0,Ima(z) = y ,∀y ∈ [0,1]}.

Let ( f ,g) : P→Q be defined as f (z) = (1−x)+ i2y
5 and g(z) = 5(1−x)

2 + iy and α,β ,γ : P→

[0,1) are defined as α(z) = 2Rea(z)+2
5 , β (z) = 0 and γ(z) = 0. Clearly, we observe the following.

(a1) α( f z)≤ α(gz),β ( f z)≤ β (gz) and γ( f z)≤ γ(gz) with α(gz)+β (gz)+ γ(gz)< 1 and

α( f z)+β ( f z)+ γ( f z)< 1.

(a2) If dC(z1, f (z3)) = dC(z2,g(z3)) = dit(P,Q) = 1 for some z1,z2 and z3 ∈ P , then

we obtain that Rea(z1) = Rea(z2) = Rea(z3) = 1,Ima(z1) =
2
5Ima(z3),Ima(z2) =

Ima(z3) and f (z2) = g(z1). Therefore the pair (f, g) commute proximally.

(a3) Clearly the pair (P,Q) has weak p-property.

(a4) Since dit(P,Q) = 1+0i, P0 = {z ∈ C : Rea(z) = 1,Ima(z) = y} and Q0 = {z ∈ C :

Rea(z) = 0,Ima(z) = y}, using (1) , we have the following.
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dC( f z1, f z2) = |x1− x2|+ i
2
5
|y1− y2|

=
2
5

(5
2
|x1− x2|+ i|y1− y2|

)
� 7−5Rea(z)

5

(
dC(gz1,gz2)

)
,∀z1,z2.

Therefore, it is easy to check all the other conditions of Theorem 3.1. Hence z = 1+i0 is a

common best proximity point of (f, g).

Theorem 3.2. Assume that P and Q are non-empty closed subsets of a complete complex

valued metric space, where P0 and Q0 are non-empty sets, and the pair (P,Q) satisfies the

weak p-property. Let f ,g : P→Q be two nonself-continuous mappings that satisfy following.

(a1) There is a non negative real numbers α,β ,γ with α +β + γ < 1 such that

dC( f x1, f x2)� αdC(gx1,gx2)+
βdC(gx1, f x1)dC(gx2, f x2)

1+dC(gx1,gx2)
(2)

+
γdC(gx2, f x1)dC(gx1, f x2)

1+dC(gx1,gx2)
, ∀x1,x2 ∈P.

(a2) The mappings (f, g) commute proximally.

(a3) f (P0)⊆Q0 and f (P0)⊆ g(P0).

Then ∃ x ∈P such that dC(x, f x) = dit(P,Q) and dC(x,gx) = dit(P,Q).

Example 2. Let X = C and let d : X ×X → C be given by

dC(x1 + iy1,x2 + iy2) = |x1− x2|+ i|y1− y2|.

Let P = {z ∈ C : Rea(z) ≥ 1,Ima(z) = y} and Q = {z ∈ C : Rea(z) ≤ 0,Ima(z) = y}. Let

( f ,g) : P→Q be defined by f (z) = 1−x
7 +2iy and g(z) = 1−x

2 +7iy. Usual computation reveals

the following.

(a1) If dC(z1, f (z3)) = dC(z2,g(z3)) = dit(P,Q) = 1 for some z1,z2,z3 ∈ P , then we

can deduce that Rea(z1) = Rea(z2) = Rea(z3) = 1,Ima(z1) = 2Ima(z3),Ima(z2) =

7Ima(z3) and f (z2) = g(z1). Thus (f, g) commute proximally.

(a2) Clearly the pair (P,Q) has weak p-property.
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(a3) Since dit(P,Q) = 1+0i, P0 = {z ∈ C : Rea(z) = 1,Ima(z) = y} and Q0 = {z ∈ C :

Rea(z) = 0,Ima(z) = y}. By (2) ∀ z1,z2, we have

dC( f z1, f z2) =
1
7
|x1− x2|+2i|y1− y2|

=
2
7

(1
2
|x1− x2|+7i|y1− y2|

)
=

2
7

(
dC(gz1,gz2)

)
All the other conditions of Theorem 3.2 can be easily checked with α = 2

7 and β ,γ ∈ [0,1).

Hence z = 1 + i 0 is a common best proximity point of (f, g).

Following Theorem becomes an extension, generalization and complement of the findings of

Jungck [16] and others in complex valued metric space, if we replace ( f ,g) by commuting self

mappings in Theorem 3.2.

Theorem 3.3. Assume that f ,g : P→P to be two continuous mappings on complete complex

valued metric space satisfying the following conditions.

(a1) ∃α,β ,γ ∈ R+∪{0} with α +β + γ < 1 such that

dC( f x1, f x2)� αdC(gx1,gx2)+
βdC(gx1, f x1)dC(gx2, f x2)

1+dC(gx1,gx2)
(3)

+
γdC(gx2, f x1)dC(gx1, f x2)

1+dC(gx1,gx2)
, ∀x1,x2 ∈P.

(a2) The mappings (f, g) are commutes.

(a3) f (P)⊆ g(P).

Then f and g have a unique common fixed point.

We define another generalized rational type contraction condition involving control functions.

Definition 3.2. Let (X ,dC) be a complex valued metric space. The mappings f ,g : P →Q

are said to satisfy ?-generalized rational type contraction condition involving control functions,

if there exists α(gx1),β (gx1),γ(gx1), λ (gx1),µ(gx1) for suitable mappings α,β ,γ,λ ,µ : P→

[0,1), that satisfy
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α( f x1)≤ α(gx1), β ( f x1)≤ β (gx1), γ( f x1)≤ γ(gx1) and λ ( f x1)≤ λ (gx1), µ( f x1)≤ µ(gx1)

with α( f x1)+2β ( f x1)+2γ( f x1)+λ ( f x1)+µ( f x1)< 1 as

α(gx1)+2β (gx1)+2γ(gx1)+λ (gx1)+µ(gx1)< 1

and

dC( f x1, f x2)� α(gx1)dC(gx1,gx2)+β (gx1)[dC(gx1, f x1)+dC(gx2, f x2)]

+ γ(gx1)[dC(gx1, f x2)+dC(gx2, f x1)]+λ (gx1)
(1+dC(gx1, f x1))dC(gx2, f x2)

1+dC(gx1,gx2)

+µ(gx1)
(1+dC(gx1,gx2))dC(gx1, f x1)

1+dC(gx1,gx2)+dC(gx2, f x1)
, ∀x1,x2 ∈P.(4)

Theorem 3.4. Assume that P and Q are non-empty closed subsets of a complete complex

valued metric space (X ,dC), where P0 and Q0 are non-empty sets, and the pair (P,Q)

satisfies the weak p-property. Let f ,g : P →Q be two non-self-continuous mappings which

satisfy the following conditions.

(a1) f (P0)⊆Q0 and f (P0)⊆ g(P0),

(a2) The mappings ( f ,g) commute proximally,

(a3) f and g satisfy ?-generalized rational type contraction condition involving control func-

tions.

Then ∃ an element x ∈P such that dC(x, f x) = dit(P,Q) and dC(x,gx) = dit(P,Q).

Proof. Let x0 ∈P0. By (a1), ∃ x1 ∈P0 3 f x0 = gx1. Using an inductive approach ∃ {xm}∈P0

3 f xm−1 = gxm ∀m ∈Z +. As f (P0)⊆Q0, we can conclude that

∃ km ∈P0 3 dC( f xm,km) = dit(P,Q),∀m ∈ N.

It follows that, the selection of km and xm are such that

dC( f xm,km) = dit(P,Q), dC( f xm+1,km+1) = dit(P,Q),∀m ∈ Z+.

Since (P,Q) satisfies weak p-property and the condition (a3), we have

α( f xm−1)≤ α(gxm−1) = α( f xm−2)

≤ α(gxm−2)

= α( f xm−3)....= α(gx0)≤ α( f x0).
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Similarly, we have,

β ( f xm−1)≤ β ( f x0),γ( f xm−1)≤ γ( f x0),λ ( f xm−1)≤ λ ( f x0) and µ( f xm−1)≤ µ( f x0).

dC(km,km+1)� dC( f xm, f xm+1)

� α( f xm)dC(gxm,gxm+1)+β ( f xm)[dC(gxm, f xm)+dC(gxm+1, f xm+1)]

+ γ( f xm)[dC(gxm, f xm+1)+dC(gxm+1, f xm)]

+λ ( f xm)
(1+dC(gxm, f xm))dC(gxm+1, f xm+1)

1+dC(gxm,gxm+1)

+µ( f xm)
(1+dC(gxm,gxm+1))dC(gxm, f xm)

1+dC(gxm,gxm+1)+dC(gxm+1, f xm)

= α( f xm−1)dC( f xm−1, f xm)+β ( f xm−1)[dC( f xm−1, f xm)+dC( f xm, f xm+1)]

+ γ( f xm−1)[dC( f xm−1, f xm+1)+dC( f xm, f xm)]

+λ ( f xm−1)
(1+dC( f xm−1, f xm))dC( f xm, f xm+1)

1+dC( f xm−1, f xm)

+µ( f xm−1)
(1+dC( f xm−1, f xm))dC( f xm−1, f xm)

1+dC( f xm−1, f xm)+dC( f xm, f xm)

...

�
(

α( f x0)+β ( f x0)+ γ( f x0)+µ( f x0)

1− (β ( f x0)+ γ( f x0)+λ ( f x0))

)
dC( f xm−1, f xm)

= c dC( f xm−1, f xm),

where c =
α( f x0)+β ( f x0)+ γ( f x0)+µ( f x0)

1− (β ( f x0)+ γ( f x0)+λ ( f x0))
. Given that X is complete and P is closed,

it follows that km is Cauchy and converges to some k in P . Also using f (P0) ⊆Q0, we can

conclude that ∃ km ∈P 3 dC( f xm,km) = dit(P,Q) ∀,m ∈ Z+. The selection of xm results in

dC(gxm,km−1) = dC( f xm−1,km−1) = dit(P,Q) ∀,m ∈ Z+.

Since (f, g) commute proximally, we can say that gkm = f km−1. By the continuity of mappings,

it implies that gk = f k. Using f (k)∈ f (P0)⊆Q0, ∃ x∈P0 such that dC(x,gk)= dit(P,Q)=

dC(x, f k). By (a2), we have f x= gx. Again, using f (x)∈ f (P0)⊆Q0, ∃ `∈P0 3 dC(`,gx) =

dit(P,Q) = dC(`, f x).
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From (4), we have

dC( f k, f x)� α(gk)dC(gk,gx)+β (gk)[dC(gk, f k)+dC(gx, f x)]

+ γ(gk)[dC(gk, f x)+dC(gx, f k)]+λ (gk)
(1+dC(gk, f k))dC(gx, f x)

1+dC(gk,gx)

+µ(gk)
(1+dC(gk,gx))dC(gk, f k)
1+dC(gk,gx)+dC(gx, f k)

� α( f k)dC( f k, f x)+β ( f k)[dC( f k, f k)+dC( f x, f x)]

+ γ( f k)[dC( f k, f x)+dC( f x, f k)]+λ ( f k)
(1+dC( f k, f k))dC( f x, f x)

1+dC( f k, f x)

+µ( f k)
(1+dC( f k, f x))dC( f k, f k)
1+dC( f k, f x)+dC( f x, f k)

� (α( f k)+2γ( f k))dC( f k, f x).

=⇒ f k = f x. Therefore, we have, dC(x, f k) = dit(P,Q) = dC(`, f x). The pair (P,Q) has

weak p-property. So

dC(x, `)� dC( f x, f k) = 0 =⇒ x = `.

Thus dC(x, f x) = dit(P,Q) = dC(x,gx). Assume that x1 is another common best proximity

point of f and g 3 dC(x1, f x1) = dit(P,Q) = dC(x1,gx1). By (a2), we have f x = gx and

f x1 = gx1.

dC( f x, f x1)� α(gx)dC(gx,gx1)+β (gx)[dC(gx, f x)+dC(gx1, f x1)]

+ γ(gx)[dC(gx, f x1)+dC(gx1, f x)]+λ (gx)
(1+dC(gx, f x))dC(gx1, f x1)

1+dC(gx,gx1)

+µ(gx)
(1+dC(gx,gx1))dC(gx, f x)

1+dC(gx,gx1)+dC(gx1, f x)

� (α( f x)+2β ( f x))dC( f x, f x1),

=⇒ f x = f x1. Therefore, we have dC(x, f x) = dit(P,Q) = dC(x1, f x1). Weak p-property of

the pair (P,Q) implies dC(x,x1)� dC( f x, f x1) = 0 and so x = x1. Hence, ∃ an element x ∈P

such that dC(x, f x) = dit(P,Q) and dC(x,gx) = dit(P,Q). �

Theorem 3.5. Assume that P and Q are non-empty closed subsets of a complete complex

valued metric space (X ,dC), where P0 and Q0 are non-empty sets, and the pair (P,Q)
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satisfies the weak p-property. Let f ,g : P → Q be two non self continuous mappings that

satisfy the following.

(a1) There is α,β ,γ,λ ,µ,∈ R+∪{0} , α +2β +2γ +λ +µ < 1 3

dC( f x1, f x2)� αdC(gx1,gx2)+β [dC(gx1, f x1)+dC(gx2, f x2)]

+ γ[dC(gx1, f x2)+dC(gx2, f x1)]+λ
(1+dC(gx1, f x1))dC(gx2, f x2)

1+dC(gx1,gx2)

+µ
(1+dC(gx1,gx2))dC(gx1, f x1)

1+dC(gx1,gx2)+dC(gx2, f x1)
, ∀x1,x2 ∈P,(5)

(a2) The mappings (f, g) are commute proximally,

(a3) f (P0)⊆Q0 with f (P0)⊆ g(P0).

Then f and g have a common best proximity point.

Example 3. Let d : C×C→ C be defined as dC(x1 + iy1,x2 + iy2) = |x1− x2|+ i|y1− y2|.

Let P = {z ∈ C : Rea(z) ≥ 1,Ima(z) = y} and Q = {z ∈ C : Rea(z) ≤ 0,Ima(z) = y}. Let

( f ,g) : P→Q be two nonself maps which are defined by f (z)= 1−x
5 +2iy and g(z)= 1−x

2 +5iy.

As in Example 2, we can check for commute proximality, and condition (5) with α = 2
5 ,0 ≤

β ,γ < 1
10 ,0≤ λ ,µ < 1

5 . Thus it has a common best proximity point.

Theorem 3.5 implies the subsequent theorem, which generalizes and completes the findings of

Hardy [14], Jungck[16], Reich[20], Reich[22], Chatterjea[10], Kannan[17], Aghayan et al. [1]

and others in complex valued metric spaces if we assume that f and g to be self-maps.

Theorem 3.6. Assume f ,g : P→P are two continuous mappings on complete complex valued

metric space (X ,dC) satisfying the following conditions.

(a1) There is α,β ,γ,λ ,µ,δ ∈ R+∪{0} with α +2β +2γ +λ +µ +δ < 1 3

dC( f x1, f x2)� αdC(gx1,gx2)+β [dC(gx1, f x1)+dC(gx2, f x2)]

+ γ[dC(gx1, f x2)+dC(gx2, f x1)]+λ
(1+dC(gx1, f x1))dC(gx2, f x2)

1+dC(gx1,gx2)

+µ
(1+dC(gx1,gx2))dC(gx1, f x1)

1+dC(gx1,gx2)+dC(gx2, f x1)
, ∀x1,x2 ∈P,(6)

(a2) The mappings (f, g) are commutes,
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(a3) f (P)⊆ g(P).

Then f and g have a unique common fixed point.
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