Available online at http://scik.org

Adv. Fixed Point Theory, 2024, 14:6

https://doi.org/10.28919/afpt/8315

ISSN: 1927-6303

FIXED POINTS OF KANNAN AND REICH INTERPOLATIVE

CONTRACTIONS IN CONTROLLED METRIC SPACES

DEEPAK SINGH^{1,*}, MANOJ UGHADE², ALOK KUMAR¹, MANOJ KUMAR SHUKLA²

¹Department of Mathematics, Swami Vivekanand University, Sagar-470001, Madhya Pradesh, India

²Department of Mathematics, Institute for Excellence in Higher Education (IEHE), Bhopal-462016, Madhya

Pradesh, India

Abstract: In this paper, we introduce (λ, α) -interpolative Kannan contraction, (λ, α, β) -interpolative Kannan

contraction and $(\lambda, \alpha, \beta, \gamma)$ -interpolative Reich contraction. Also, we establish some fixed-point theorems in complete

controlled metric spaces. Additionally, these theorems expand and apply a number of intriguing findings from metric

fixed-point theory to the controlled metric setting.

Keywords: fixed-point; iterative method; interpolative; contraction; controlled metric space.

2010 Mathematics Subject Classification: 46T99, 46N40, 47H10.

1. Introduction and Preliminaries

The first fixed point theorem for rational contraction conditions in metric space was established

by Dass and Gupta [26].

Theorem 1.1 (see [26]). Let (X, d) be a complete metric space, and let $\mathcal{T}: X \to X$ be a self-

mapping. If there exist $\alpha, \beta \in [0, 1)$ with $\alpha + \beta < 1$ such that

$$d(\mathcal{T}x,\mathcal{T}y) \le \alpha d(x,y) + \beta \frac{[1 + d(x,\mathcal{T}x)]d(y,\mathcal{T}y)}{1 + d(x,y)}$$
(1.1)

for all $x, y \in X$, then \mathcal{T} has a unique fixed point $x^* \in X$.

*Corresponding author

E-mail addresses: deepaksinghresearch2023@gmail.com

Received November 02, 2023

1

A genuine generalization of the Dass-Gupta fixed point theorem within the framework of dualistic partial metric spaces was demonstrated by Nazam et al. [27]. As generalizations of metric spaces, Czerwik [1] presented a new class of generalized metric spaces known as b-metric spaces.

Definition 1 (see [1]) Let X be a nonempty set and $s \ge 1$. A function $d_b: X \times X \longrightarrow [0, \infty)$ is said to be a b-metric if for all $x, y, z \in X$,

(b1).
$$d_h(x, y) = 0$$
 iff $x = y$

(b2).
$$d_b(x, y) = d_b(y, x)$$
 for all $x, y \in X$

(b3).
$$d_b(x, z) \le s[d_b(x, y) + d_b(y, z)]$$

Then, we refer to the pair (X, d_b) as a b-metric space. Many fixed-point findings on such spaces were subsequently obtained (see to [2–7]).

Extended b-metric spaces are a concept first introduced by Kamran et al. [8].

Definition 2 (see [8]) Let X be a nonempty set and $p: X \times X \longrightarrow [1, \infty)$ be a function. A function $d_e: X \times X \longrightarrow [0, \infty)$ is called an extended b -metric if for all $x, y, z \in X$,

(e1).
$$d_{e}(x, y) = 0$$
 iff $x = y$

(e2).
$$d_e(x, y) = d_e(y, x)$$
 for all $x, y \in X$

(e3).
$$d_e(x, z) \le p(x, z)[d_e(x, y) + d_e(y, z)]$$

The pair (X, d_e) is called an extended b-metric space.

Mlaiki et al. have presented a novel type of generalized b-metric space [9].

Definition 3 (see [9]) Let X be a nonempty set and $p: X \times X \longrightarrow [1, \infty)$ be a function. A function $d_c: X \times X \longrightarrow [0, \infty)$ is called a controlled metric if for all $x, y, z \in X$,

(c1).
$$d_c(x, y) = 0$$
 iff $x = y$

(c2).
$$d_c(x, y) = d_c(y, x)$$
 for all $x, y \in X$

(c3).
$$d_c(x, z) \le p(x, y)d_c(x, y) + p(y, z)d_c(y, z)$$

The pair (X, d_c) is called a controlled metric space (see also [10]).

Definition 4 (see [9]) Let (X, d_c) be a controlled metric space and $\{x_n\}_{n\geq 0}$ be a sequence in X. Then,

- 1. The sequence $\{x_n\}$ converges to some x in X if for every $\varepsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$ such that $d_c(x_n, x) < \varepsilon$ for all $n \ge N$. In this case, we write $\lim_{n \to \infty} x_n = x$.
- 2. The sequence $\{x_n\}$ is Cauchy if for every $\varepsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$ such that $d_{\varepsilon}(x_n, x_m) < \varepsilon$ for all $n, m \ge N$.
- 3. The controlled metric space (X, d_c) is called complete if every Cauchy sequence is convergent.

Definition 5 (see [9]) Let (X, d_c) be a controlled metric space. Let $x \in X$ and $\varepsilon > 0$.

1. The open ball $B(x, \varepsilon)$ is

$$B(x,\varepsilon) = \{ y \in X : d_{\varepsilon}(y,x) < \varepsilon \}.$$

2. The mapping $F: X \to X$ is said to be continuous at $x \in X$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $F(B(x, \varepsilon)) \subseteq B(Fx, \varepsilon)$.

This study aims to introduce a fixed-point theorem for (λ, α) -interpolative Kannan contraction, (λ, α, β) -interpolative Kannan contraction and $(\lambda, \alpha, \beta, \gamma)$ -interpolative Reich contraction in the context of complete controlled metric spaces. These theorems also extend and apply to the controlled metric environment several interesting results from metric fixed-point theory. Our result generalizes and extends some well-known results in the literature.

2. MAIN RESULT

We begin by defining the terms below.

Definition 2.1 Let (X, d_c) be a controlled metric space. Let $F: X \to X$ be a self-map. We shall call F a (λ, α) -interpolative Kannan contraction, if there exist $\lambda \in [0,1), \alpha \in (0,1)$ such that

$$d_c(Fx, Fy) \le \lambda \left(d_c(x, Fx)\right)^{\alpha} \left(d_c(y, Fy)\right)^{1-\alpha} \tag{2.1}$$

for all $x, y \in X$, with $x \neq y$.

Definition 2.2 Let (X, d_c) be a controlled metric space. Let $F: X \to X$ be a self-map. We shall call F a (λ, α, β) -interpolative Kannan contraction, if there exist $\lambda \in [0,1)$, $\alpha, \beta \in (0,1)$, $\alpha + \beta < 1$ such that

$$d_c(Fx, Fy) \le \lambda (d_c(x, Fx))^{\alpha} (d_c(y, Fy))^{\beta}$$
(2.2)

for all $x, y \in X$, with $x \neq y$.

Definition 2.3 Let (X, d_c) be a controlled metric space. Let $F: X \to X$ be a self-map. We shall call F a $(\lambda, \alpha, \beta, \gamma)$ -interpolative Reich contraction, if there exist $\lambda \in [0,1)$, $\alpha, \beta, \gamma \in (0,1)$, $\alpha + \beta + \gamma < 1$ such that

$$d_c(Fx, Fy) \le \lambda (d_c(x, y))^{\alpha} (d_c(x, Fx))^{\beta} (d_c(y, Fy))^{\gamma}$$
(2.3)

for all $x, y \in X$, with $x \neq y$.

Our first main result as follows.

Theorem 2.4 Let (X, d_c) be a complete controlled metric space. Let $F: X \to X$ be a (λ, α) interpolative Kannan contraction. For $x_0 \in X$, take $x_n = F^n x_0$. Assume that

$$\sup_{m>1} \lim_{i \to \infty} \frac{p(x_{i+1}, x_{i+2})p(x_{i+1}, x_m)}{p(x_i, x_{i+1})} < \frac{1}{\lambda}$$
 (2.4)

Then *F* has a unique fixed point.

Proof. Let $x_0 \in X$ be initial point. Define a sequence $\{x_n\}$ as $x_{n+1} = Fx_n$, $\forall n \in \mathbb{N}$. Obviously, if $\exists n_0 \in \mathbb{N}$ for which $x_{n_0+1} = x_{n_0}$, then $Fx_{n_0} = x_{n_0}$, and the proof is finished. Thus, we suppose that $x_{n+1} \neq x_n$ for each $n \in \mathbb{N}$. Thus, by (2.1), we have

$$\begin{split} d_{c}(x_{n}, x_{n+1}) &= d_{c}(Fx_{n-1}, Fx_{n}) \\ &\leq \lambda \Big(d_{c}(x_{n-1}, Fx_{n-1}) \Big)^{\alpha} \Big(d_{c}(x_{n}, Fx_{n}) \Big)^{1-\alpha} \\ &= \lambda \Big(d_{c}(x_{n-1}, x_{n}) \Big)^{\alpha} \Big(d_{c}(x_{n}, x_{n+1}) \Big)^{1-\alpha} \end{split}$$

The last inequality gives

$$d_c(x_n, x_{n+1})^{\alpha} \le \lambda d_c(x_{n-1}, x_n)^{\alpha} \tag{2.5}$$

Since α < 1, we have

$$d_{\mathcal{C}}(x_n, x_{n+1}) \le \lambda^{\frac{1}{\alpha}} d_{\mathcal{C}}(x_{n-1}, x_n) \le \lambda d_{\mathcal{C}}(x_{n-1}, x_n)$$

and then

$$d_c(x_n, x_{n+1}) \le \lambda d_c(x_{n-1}, x_n) \le \lambda^2 d_c(x_{n-2}, x_{n-1}) \le \dots \le \lambda^n d_c(x_0, x_1)$$
 (2.6)

For all $n, m \in \mathbb{N}$ and n < m, we have

$$d_{c}(x_{n}, x_{m}) \leq p(x_{n}, x_{n+1}) d_{c}(x_{n}, x_{n+1}) + p(x_{n+1}, x_{m}) d_{c}(x_{n+1}, x_{m})$$

$$\leq p(x_{n}, x_{n+1}) d_{c}(x_{n}, x_{n+1}) + p(x_{n+1}, x_{m}) p(x_{n+1}, x_{n+2}) d_{c}(x_{n+1}, x_{n+2})$$

$$+ p(x_{n+1}, x_{m}) p(x_{n+2}, x_{m}) d_{c}(x_{n+2}, x_{m})$$

$$\leq p(x_{n}, x_{n+1}) d_{c}(x_{n}, x_{n+1}) + p(x_{n+1}, x_{m}) p(x_{n+1}, x_{n+2}) d_{c}(x_{n+1}, x_{n+2})$$

$$+ p(x_{n+1}, x_{m}) p(x_{n+2}, x_{m}) p(x_{n+2}, x_{n+3}) d_{c}(x_{n+2}, x_{n+3})$$

$$+ p(x_{n+1}, x_{m}) p(x_{n+2}, x_{m}) p(x_{n+3}, x_{m}) d_{c}(x_{n+3}, x_{m})$$

$$\leq p(x_{n}, x_{n+1}) d_{c}(x_{n}, x_{n+1})$$

$$+ \sum_{i=n+1}^{m-2} \left(\prod_{j=n+1}^{i} p(x_{j}, x_{m}) \right) p(x_{i}, x_{i+1}) d_{c}(x_{i}, x_{i+1})$$

$$+ \prod_{i=n+1}^{m-1} p(x_{j}, x_{m}) d_{c}(x_{m-1}, x_{m})$$

$$(2.7)$$

This implies that

$$d_{c}(x_{n}, x_{m}) \leq p(x_{n}, x_{n+1}) d_{c}(x_{n}, x_{n+1})$$

$$+ \sum_{i=n+1}^{m-2} \left(\prod_{j=n+1}^{i} p(x_{j}, x_{m}) \right) p(x_{i}, x_{i+1}) d_{c}(x_{i}, x_{i+1})$$

$$+ \prod_{i=n+1}^{m-1} p(x_{j}, x_{m}) d_{c}(x_{m-1}, x_{m})$$

$$\leq p(x_{n}, x_{n+1}) \lambda^{n} d_{c}(x_{0}, x_{1})$$

$$+ \sum_{i=n+1}^{m-2} \left(\prod_{j=n+1}^{i} p(x_{j}, x_{m}) \right) p(x_{i}, x_{i+1}) \lambda^{i} d_{c}(x_{0}, x_{1})$$

$$+ \prod_{i=n+1}^{m-1} p(x_{j}, x_{m}) \lambda^{m-1} d_{c}(x_{0}, x_{1})$$

$$\leq p(x_{n}, x_{n+1}) \lambda^{n} d_{c}(x_{0}, x_{1})$$

$$+ \sum_{i=n+1}^{m-1} \left(\prod_{j=n+1}^{i} p(x_{j}, x_{m}) \right) p(x_{i}, x_{i+1}) \lambda^{i} d_{c}(x_{0}, x_{1})$$

$$+ \sum_{i=n+1}^{m-1} \left(\prod_{j=n+1}^{i} p(x_{j}, x_{m}) \right) p(x_{i}, x_{i+1}) \lambda^{i} d_{c}(x_{0}, x_{1})$$

$$(2.8)$$

Let

$$\eta_r = \sum_{i=0}^r \left(\prod_{j=0}^i p(x_i, x_m) \right) p(x_i, x_{i+1}) \lambda^i d_c(x_0, x_1)$$
 (2.9)

Consider

$$\mu_i = \sum_{i=0}^r \left(\prod_{i=0}^i p(x_i, x_m) \right) p(x_i, x_{i+1}) \lambda^i d_c(x_0, x_1)$$
 (2.10)

In view of condition (2.4) and the ratio test, we ensure that the series $\sum_i \mu_i$ converges. Thus, $\lim_{n\to\infty} \eta_n$ exists. Hence, the real sequence $\{\eta_n\}$ is Cauchy. Now, using (2.6), we get

$$d_c(x_n, x_m) \le d_c(x_0, x_1) [\lambda^n p(x_n, x_{n+1}) + (\eta_{m-1} - \eta_n)]$$
(2.11)

Above, we used $p(x, y) \ge 1$. Letting $n, m \to \infty$ in (2.11), we obtain

$$\lim_{n \to \infty} d_c(x_n, x_m) = 0 \tag{2.12}$$

Thus, the sequence $\{x_n\}$ is Cauchy in the complete controlled metric space (X, d_c) . So, there is some $x^* \in X$. So that

$$\lim_{n \to \infty} d_c(x_n, x^*) = 0; (2.13)$$

that is, $x_n \to x^*$ as $n \to \infty$. Now, we will prove that x^* is a fixed point of F. By (2.1) and condition (c3), we get

$$d_{c}(x^{*}, Fx^{*}) \leq p(x^{*}, x_{n+1}) d_{c}(x^{*}, x_{n+1}) + p(x_{n+1}, Fx^{*}) d_{c}(x_{n+1}, Fx^{*})$$

$$= p(x^{*}, x_{n+1}) d_{c}(x^{*}, x_{n+1}) + p(x_{n+1}, Fx^{*}) d_{c}(Fx_{n}, Fx^{*})$$

$$\leq p(x^{*}, x_{n+1}) d_{c}(x^{*}, x_{n+1})$$

$$+ p(x_{n+1}, Fx^{*}) \left[\lambda \left(d_{c}(x_{n}, Fx_{n}) \right)^{\alpha} \left(d_{c}(x^{*}, Fx^{*}) \right)^{1-\alpha} \right]$$

$$\leq p(x^{*}, x_{n+1}) d_{c}(x^{*}, x_{n+1})$$

$$+ p(x_{n+1}, Fx^{*}) \left[\lambda \left(d_{c}(x_{n}, x_{n+1}) \right)^{\alpha} \left(d_{c}(x^{*}, Fx^{*}) \right)^{1-\alpha} \right]$$

$$(2.14)$$

Taking the limit as $n \to \infty$ and using (2.10), (2.11) we obtain that

$$d_c(x^*, Fx^*) = 0 (2.15)$$

This yields that $x^* = Fx^*$. Now, we prove the uniqueness of x^* . Let y^* be another fixed point of F in X, then $Fy^* = y^*$. Now, by (2.1), we have

$$d_{c}(x^{*}, y^{*}) = d_{c}(Fx^{*}, Fy^{*})$$

$$\leq \lambda (d_{c}(x^{*}, x^{*}))^{\alpha} (d_{c}(y^{*}, y^{*}))^{1-\alpha} = 0$$
(2.16)

This yields that $x^* = y^*$. It completes the proof.

Theorem 2.5 Let (X, d_c) be a complete controlled metric space. Let $F: X \to X$ be a (λ, α, β) interpolative Kannan contraction with (2.4) and for $x_0 \in X$, $x_n = F^n x_0$. Then F has a unique fixed point.

Proof. Following the steps of proof of Theorem 2.4, we construct the sequence $\{x_n\}$ by iterating

$$x_{n+1} = Fx_n, \forall n \in \mathbb{N},$$

where $x_0 \in X$ is arbitrary starting point. Then, by (2.2), we have

$$\begin{split} d_{c}(x_{n}, x_{n+1}) &= d_{c}(Fx_{n-1}, Fx_{n}) \\ &\leq \lambda \Big(d_{c}(x_{n-1}, Fx_{n-1}) \Big)^{\alpha} \Big(d_{c}(x_{n}, Fx_{n}) \Big)^{\beta} \\ &= \lambda \Big(d_{c}(x_{n-1}, x_{n}) \Big)^{\alpha} \Big(d_{c}(x_{n}, x_{n+1}) \Big)^{\beta} \end{split}$$

Since $\alpha < 1 - \beta$, the last inequality gives

$$d_c(x_n, x_{n+1})^{1-\beta} \le \lambda d_c(x_{n-1}, x_n)^{\alpha} \le \lambda d_c(x_{n-1}, x_n)^{1-\beta} \tag{2.17}$$

Hence

$$d_c(x_n, x_{n+1}) \le \lambda^{\frac{1}{1-\beta}} d_c(x_{n-1}, x_n) \le \lambda d_c(x_{n-1}, x_n)$$

and then

$$d_c(x_n, x_{n+1}) \le \lambda d_c(x_{n-1}, x_n) \le \lambda^2 d_c(x_{n-2}, x_{n-1}) \le \dots \le \lambda^n d_c(x_0, x_1) \tag{2.18}$$

As already elaborated in the proof of Theorem 2.4, the classical procedure leads to the existence of a fixed-point $x^* \in X$. Now, we prove the uniqueness of x^* . Let y^* be another fixed point of F in X, then $Fy^* = y^*$. Now, by (2.2), we have

$$d_{c}(x^{*}, y^{*}) = d_{c}(Fx^{*}, Fy^{*})$$

$$\leq \lambda (d_{c}(x^{*}, x^{*}))^{\alpha} (d_{c}(y^{*}, y^{*}))^{\beta} = 0$$
(2.19)

This yields that $x^* = y^*$. This completes the proof.

Theorem 2.6 Let (X, d_c) be a complete controlled metric space. Let $F: X \to X$ be a $(\lambda, \alpha, \beta, \gamma)$ interpolative Reich contraction and assume that (2.4) hold for $x_0 \in X$ and $x_n = F^n x_0$. Then F has a unique fixed point.

Proof. Following the steps of proof of Theorem 2.4, we construct the sequence $\{x_n\}$ by iterating

$$x_{n+1} = Fx_n, \forall n \in \mathbb{N},$$

where $x_0 \in X$ is arbitrary starting point. Then, by (2.2), we have

$$\begin{split} d_c(x_n, x_{n+1}) &= d_c(Fx_{n-1}, Fx_n) \\ &\leq \lambda \Big(d_c(x_{n-1}, x_n) \Big)^{\alpha} \Big(d_c(x_{n-1}, Fx_{n-1}) \Big)^{\beta} \Big(d_c(x_n, Fx_n) \Big)^{\gamma} \\ &= \lambda \Big(d_c(x_{n-1}, x_n) \Big)^{\alpha+\beta} \Big(d_c(x_n, x_{n+1}) \Big)^{\gamma} \end{split}$$

Since $\alpha + \beta < 1 - \gamma$, the last inequality gives

$$d_c(x_n, x_{n+1})^{1-\gamma} \le \lambda d_c(x_{n-1}, x_n)^{\alpha+\beta} \le \lambda d_c(x_{n-1}, x_n)^{1-\gamma} \tag{2.20}$$

Hence

$$d_c(x_n, x_{n+1}) \le \lambda^{\frac{1}{1-\gamma}} d_c(x_{n-1}, x_n) \le \lambda d_c(x_{n-1}, x_n)$$

and then

$$d_c(x_n, x_{n+1}) \le \lambda d_c(x_{n-1}, x_n) \le \lambda^2 d_c(x_{n-2}, x_{n-1}) \le \dots \le \lambda^n d_c(x_0, x_1) \tag{2.21}$$

As already elaborated in the proof of Theorem 2.4, the classical procedure leads to the existence of a fixed-point $x^* \in X$. Now, we prove the uniqueness of x^* . Let y^* be another fixed point of F in X, then $Fy^* = y^*$. Now, by (2.3), we have

$$d_{c}(x^{*}, y^{*}) = d_{c}(Fx^{*}, Fy^{*})$$

$$\leq \lambda (d_{c}(x^{*}, y^{*}))^{\alpha} (d_{c}(x^{*}, x^{*}))^{\beta} (d_{c}(y^{*}, y^{*}))^{\gamma} = 0$$
(2.22)

This yields that $x^* = y^*$. This completes the proof.

AUTHORS' CONTRIBUTIONS

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

Authors are grateful to referee for their careful review and valuable comments, and remarks to improve this manuscript mathematically as well as graphically.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

- [1] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. http://dml.cz/dmlcz/120469.
- [2] H. Afshari, H. Aydi, E. Karapınar, On generalized α-ψ-Geraghty contractions on b-metric spaces, Georgian Math.
 J. 27 (2018), 9-21. https://doi.org/10.1515/gmj-2017-0063.
- [3] E. Ameer, H. Aydi, M. Arshad, et al. Hybrid Ćirić type graphic Y,Λ-contraction mappings with applications to electric circuit and fractional differential equations, Symmetry. 12 (2020), 467. https://doi.org/10.3390/sym12030467.
- [4] A. Azam, N. Mehmood, J. Ahmad, et al. Multivalued fixed point theorems in cone b-metric spaces, J. Inequal. Appl. 2013 (2013), 582. https://doi.org/10.1186/1029-242x-2013-582.
- [5] H. Huang, S. Radenović, Some fixed-point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl. 20 (2016), 566-583.
- [6] E. Karapinar, S. Czerwik, H. Aydi, (α,ψ)-Meir-Keeler contraction mappings in generalized-metric spaces, J. Funct. Spaces, 2018 (2018), 3264620. https://doi.org/10.1155/2018/3264620.
- [7] H. Qawaqneh, M. Md Noorani, W. Shatanawi, et al. Fixed point results for multi-valued contractions in b-metric spaces and an application, Mathematics. 7 (2019), 132. https://doi.org/10.3390/math7020132.
- [8] T. Kamran, M. Samreen, Q. UL Ain, A generalization of b-metric space and some fixed point theorems, Mathematics. 5 (2017), 19. https://doi.org/10.3390/math5020019.
- [9] N. Mlaiki, H. Aydi, N. Souayah, et al. Controlled metric type spaces and the related contraction principle, Mathematics. 6 (2018), 194. https://doi.org/10.3390/math6100194.
- [10] T. Abdeljawad, N. Mlaiki, H. Aydi, et al. Double controlled metric type spaces and some fixed point results, Mathematics. 6 (2018), 320. https://doi.org/10.3390/math6120320.
- [11] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94.
- [12] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl. 2015 (2015), 80. https://doi.org/10.1186/s13663-015-0333-2.
- [13] E. Ameer, H. Aydi, M. Arshad, et al. Hybrid multivalued type contraction mappings in α_K-complete partial b-metric spaces and applications, Symmetry. 11 (2019), 86. https://doi.org/10.3390/sym11010086.
- [14] L. Budhia, H. Aydi, A.H. Ansari, D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.: Model. Control. 25 (2020), 580-597. https://doi.org/10.15388/namc.2020.25.17928.

- [15] N. Hussain, J. Ahmad, A. Azam, On Suzuki-Wardowski type fixed point theorems, J. Nonlinear Sci. Appl. 8 (2015), 1095-1111.
- [16] N. Hussain, J. Ahmad, L. Ćirić, et al. Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory Appl. 2015 (2015), 78. https://doi.org/10.1186/s13663-015-0331-4.
- [17] Z. Ma, A. Asif, H. Aydi, et al. Analysis of F-contractions in function weighted metric spaces with an application, Open Math. 18 (2020), 582-594. https://doi.org/10.1515/math-2020-0035.
- [18] M. Olgun, T. Alyıldız, Ö. Biçer, et al. Fixed point results for F-contractions on space with two metrics, Filomat. 31 (2017), 5421-5426. https://doi.org/10.2298/fil17174210.
- [19] V. Parvaneh, M.R. Haddadi, H. Aydi, On best proximity point results for some type of mappings, J. Funct. Spaces. 2020 (2020), 6298138. https://doi.org/10.1155/2020/6298138.
- [20] P. Patle, D. Patel, H. Aydi, et al. ON H⁺type multivalued contractions and applications in symmetric and probabilistic spaces, Mathematics. 7 (2019), 144. https://doi.org/10.3390/math7020144.
- [21] H. Sahin, I. Altun, D. Turkoglu, Two fixed point results for multivalued F-contractions on M-metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM. 113 (2018), 1839-1849. https://doi.org/10.1007/s13398-018-0585-x.
- [22] W. Shatanawi, E. Karapinar, H. Aydi, et al. Wardowski type contractions with applications on Caputo type nonlinear fractional differential equations, U.P.B. Sci. Bull., Ser. A, 82 (2020), 157-170.
- [23] S. Reich, Fixed point of contractive functions, Boll. Un. Mat. Ital. 4 (1972), 26-42.
- [24] S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital. 4 (1971), 1-11.
- [25] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α–ψ-contractive type mappings, Nonlinear Anal.: Theory Methods Appl. 75 (2012), 2154-2165.
- [26] B.K. Dass, S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math. 6 (1975), 1455-1458.
- [27] M. Nazam, H. Aydi, M. Arshad, A real generalization of the Dass-Gupta fixed point theorem, TWMS J. Pure Appl. Math. 11 (2020), 109-118.
- [28] J. Ahmad, A.E. Al-Mazrooei, H. Aydi, et al. On fixed point results in controlled metric spaces, J. Funct. Spaces. 2020 (2020), 2108167. https://doi.org/10.1155/2020/2108167.
- [29] Y.U. Gaba, E. Karapınar, A new approach to the interpolative contractions, Axioms. 8 (2019), 110. https://doi.org/10.3390/axioms8040110.
- [30] E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 85-87.