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Abstract: In this paper, we introduce (4, @) -interpolative Kannan contraction, (4, a, ) -interpolative Kannan
contraction and (4, a, 8, y)-interpolative Reich contraction. Also, we establish some fixed-point theorems in complete
controlled metric spaces. Additionally, these theorems expand and apply a number of intriguing findings from metric
fixed-point theory to the controlled metric setting.
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1. INTRODUCTION AND PRELIMINARIES

The first fixed point theorem for rational contraction conditions in metric space was established
by Dass and Gupta [26].

Theorem 1.1 (see [26]). Let (X,d) be a complete metric space, and let 7: X — X be a self-

mapping. If there exist a, f € [0,1) with ¢ + f < 1 such that

1+dxTx)]dy,Ty)

d(Tx,Ty) < ad(x,y) + ,B[ 1+d(x,y)

(1.1)

for all x, y € X, then T has a unique fixed point x* € X.
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A genuine generalization of the Dass-Gupta fixed point theorem within the framework of dualistic
partial metric spaces was demonstrated by Nazam et al. [27]. As generalizations of metric spaces,
Czerwik [1] presented a new class of generalized metric spaces known as b-metric spaces.
Definition 1 (see [1]) Let X be a nonempty set and s > 1. A function d,: X X X — [0, o) is said
to be a b -metric if forall x,y,z € X,

(b1).dp(x,y) =0iffx =y

(02).d,(x,y) =dp(y,x) forall x,y € X

(b3).dp (x,2) < s[dp(x,¥) +dp(y,2)]
Then, we refer to the pair (X, dj) as a b-metric space. Many fixed-point findings on such spaces
were subsequently obtained (see to [2-7]).
Extended b-metric spaces are a concept first introduced by Kamran et al. [8].
Definition 2 (see [8]) Let X be a nonempty set and p: X X X — [1, o0) be a function. A function
d,: X Xx X — [0,0) is called an extended b -metric if for all x,y,z € X,

el).d.(x,y) =0iffx =y

€2).d,(x,y) =d.(y,x) forall x,y € X

(€3).d.(x,2) < p(x,2)[d.(x,y) + d.(y,2)]
The pair (X, d,) is called an extended b-metric space.
Mlaiki et al. have presented a novel type of generalized b-metric space [9].
Definition 3 (see [9]) Let X be a nonempty set and p: X X X — [1, o) be a function. A function
d.:X X X — [0, o) is called a controlled metric if for all x,y,z € X,

(cl).d.(x,y) =0iffx =y

(c2).d.(x,y) =d,(y,x) forall x,y € X

(€3). d.(x,2) < p(x,y)d.(x,y) + p(y,2)d (¥, 2)
The pair (X, d,) is called a controlled metric space (see also [10]).
Definition 4 (see [9]) Let (X, d,) be a controlled metric space and {x,},;so be a sequence in X.

Then,
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1. The sequence {x,} converges to some x in X if for every € > 0, there exists N = N(¢) €

N such that d.(x,,, x) < e forall n > N. In this case, we write lim x,, = x.

n—co
2. The sequence {x,} is Cauchy if for every € > 0, there exists N = N(¢) € N such that
d,(x,, xy,) < eforalln,m > N.
3. The controlled metric space (X,d.) is called complete if every Cauchy sequence is
convergent.
Definition 5 (see [9]) Let (X, d.) be a controlled metric space. Let x € X and € > 0.
1. Theopen ball B(x, €) is
B(x,e) ={y € X:d,(y,x) < &}.
2. The mapping F: X — X is said to be continuous at x € X if for all ¢ > 0, there exists § >
0 such that F(B(x,€)) < B(Fx, €).
This study aims to introduce a fixed-point theorem for (4, @)-interpolative Kannan contraction,
(4, a, B)-interpolative Kannan contraction and (4, , B, y)-interpolative Reich contraction in the
context of complete controlled metric spaces. These theorems also extend and apply to the
controlled metric environment several interesting results from metric fixed-point theory. Our result

generalizes and extends some well-known results in the literature.

2. MAIN RESULT
We begin by defining the terms below.
Definition 2.1 Let (X, d,) be a controlled metric space. Let F: X — X be a self-map. We shall call

F a (4, a)-interpolative Kannan contraction, if there exist A € [0,1), @ € (0,1) such that

d,(Fx, Fy) < A(d.Cx, Fx)) " (d.(y, Fy)) " (2.1)
forall x,y € X, withx # y.
Definition 2.2 Let (X, d,) be a controlled metric space. Let F: X — X be a self-map. We shall call
F a (4, a, B)-interpolative Kannan contraction, if there exist A € [0,1),a,8 € (0,1),a+ B8 <1

such that
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d,(Fx,Fy) < A(dc(x, Fx))a(dc(y, Fy))ﬁ (2.2)
forall x,y € X, withx # y.
Definition 2.3 Let (X, d,) be a controlled metric space. Let F: X — X be a self-map. We shall call
Fa (4, B,y)-interpolative Reich contraction, if there exist A € [0,1),a,8,y € (0,1), a + B +

y < 1 such that

d.(Fx, Fy) < A(d.(x,))" (de (6, F0) (. (v, Fy))” (2:3)
forall x,y € X, withx = y.
Our first main result as follows.
Theorem 2.4 Let (X,d,) be a complete controlled metric space. Let F: X — X be a (1, a)-

interpolative Kannan contraction. For x, € X, take x,, = F™x,. Assume that

sup lim P(Xi4+1,Xi42)P(Xi41,Xm) < 1
m=1 i—oo p(xi!xi‘l'l) A

(2.4)

Then F has a unique fixed point.

Proof. Let x, € X be initial point. Define a sequence {x,} as x,,,; = Fx,,, V n € N. Obviously, if
3 ny € N for which x,, 41 = xy,, then Fx,,, = x,_, and the proof is finished. Thus, we suppose
that x,,,, # x,, for each n € N. Thus, by (2.1), we have

dc(xn' xn+1) = dc(Fxn—lf Fxn)
1_
< A(de(onoy, Frn-)) " (do G, F))

= 2(d Otnm1, %) (e Gy X))
The last inequality gives
de(Xn, Xn41)® < Ade (X1, %0)" (2.5)
Since ¢ < 1, we have
0 Cen, Xns1) S Al Cons, %) S AdCrnog, %)
and then

dc(xnl xn+1) < Adc(xn—hxn) < Azdc(xn—z,xnﬂ) < = Andc(xo.xﬂ (2.6)
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For all n,m € N and n < m, we have
de(xn, Xm) < p(n, Xp41)de (i, Xnv1) + P X r, Xm)de (Xn1, Xom)
< p(xn Xn+1)de O, Xng1) + Pntr, Xm)P O, Xt 2) e (Xns 1) Xns2)
+0 (Xne1, Xim)P Kt 2) X ) e (K20 Xim)
< p(xn Xn+1)de On, Xng1) + PCnt1, Xm)P O, Xt 2) e (Xns 1) Xns2)
+0(Xnt1, Xm)P (Xnt2, Xm)P (Xnt2, Xny3) de (Xns2) Xny3)
+0 1, Xm)P K20 Xm)P (K3, Xm ) de (K13, X))
< p(xn, Xny1)de (O, Xny1)
Dis n+1(H 1 P(% %)) P (i, X141 d e (i, Xi41)
+1I[5, n+1 p(xj: xm) d.(Xm—1,%Xm)
This implies that
de (X, Xm) < P(n, Xn41)de (X, Xn11)
Y (Mn (5 X)) PO X4 1) de (1, X41)
Hl n+1 p(xpxm) d.(Xm—1,%Xm)
< p(xn, Xny1)A™d (X0, X41)
iz n+1(H =n+1 p(xj: xm)) p(x;, xi+1)/1idc (%0, %1)
a8 | i p(xj, xm) A"t (%0, %1)
< p(xn) Xn41)A"do (X0, X1)
iz n+1(H =n+1 P(xj: xm)) p(x;, xi+1)lidc (%0, %1)
Let
Mr = irzo(H;":o P(xj: xm)) p(xi, Xi01) AT (X0, %1)

Consider

Hi = ir=0(l_[§'=0 p(xj'xm))P(xi'xiﬂ)lidc(xo'xl)

(2.7)

(2.8)

(2.9)

(2.10)
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In view of condition (2.4) and the ratio test, we ensure that the series );; u; converges. Thus,

lim n,, exists. Hence, the real sequence {n,,} is Cauchy. Now, using (2.6), we get
n—-oo

de(Xn, Xm) < de(x0, X)) [A"P Xy Xpp1) + Min—1 — 1) (2.11)
Above, we used p(x,y) = 1. Letting n,m — oo in (2.11), we obtain

lim d,(x,,xy,) =0 (2.12)
n,m— oo

Thus, the sequence {x,,} is Cauchy in the complete controlled metric space (X,d,). So, there is
some x* € X.So that
lim d, (%) = 0; (2.13)
that is, x,, — x* as n — oo. Now, we will prove that x* is a fixed point of F. By (2.1) and
condition (c3), we get
de(x", Fx*) < p(x*, Xp41)de (X7, Xn11) + P g1, FXT)d o (X1, FXT)
= p(x", X4 1)de (X7, Xn11) + D p1, FXT) o (Fxp, Fx™)
< p(x, Xpa1)de (X7, Xnta)
+p Conen, Fx*) [A(de Gon, F)) (e (o, ) ]
< p(x, Xpa1)de (X7, Xnta)
+9 (s, Fx™) [A(de Gty 2e1)) (e, Fx 7)) 7 (214)
Taking the limit as n — oo and using (2.10), (2.11) we obtain that
d.(x*,Fx*) =0 (2.15)
This yields that x* = Fx*. Now, we prove the uniqueness of x*. Let y* be another fixed point of
F in X, then Fy* = y*. Now, by (2.1), we have
d.(x",y") = d.(Fx",Fy")
< A(d, (" x)) (d.Gv'y)) T =0 (2.16)

This yields that x* = y™. It completes the proof.
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Theorem 2.5 Let (X, d,) be a complete controlled metric space. Let F: X — X be a (4, a, B)-

interpolative Kannan contraction with (2.4) and for x, € X, x,, = F™x,. Then F has a unique fixed

point.

Proof. Following the steps of proof of Theorem 2.4, we construct the sequence {x,} by iterating
Xpi1 = Fxp,,Vn €N,

where x, € X is arbitrary starting point. Then, by (2.2), we have

dc(xnr xn+1) = dc(Fxn—linn)
B
< A(dc(xn—li Fxn—l))a(dc(xn'Fxn))

a B
= A(dc (xn—li xn)) (dc(xn: xn+1))
Since a < 1 — B, the last inequality gives
dc(xnl xn+1)1_ﬁ < Adc (xn—l' xn)a = Adc(xn—l'xn)l_ﬁ (2-17)

Hence

1
dc(xn' xn+1) < Al_pdc(xn—l' xn) < Ad, (xn—l' xn)

and then

de () Xpi1) < Ado (X1, %) < A2de(Xpoz, Xpmg) < o < A (X0, %1) (2.18)
As already elaborated in the proof of Theorem 2.4, the classical procedure leads to the existence
of a fixed-point x* € X. Now, we prove the uniqueness of x*. Let y* be another fixed point of F
in X, then Fy* = y*. Now, by (2.2), we have

d.(x*,y*) =d (Fx",Fy*)

< A(d.Ge*, x) “(de (v, y))F = 0 (2.19)
This yields that x* = y™*. This completes the proof.
Theorem 2.6 Let (X, d.) be a complete controlled metric space. Let F: X — Xbea (4, a,B,v)-
interpolative Reich contraction and assume that (2.4) hold for x, € X and x,, = F"x,. Then F has
a unique fixed point.

Proof. Following the steps of proof of Theorem 2.4, we construct the sequence{x,,} by iterating
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Xps1 = Fxp,,Vn €N,
where x, € X is arbitrary starting point. Then, by (2.2), we have

dc(xnr Xnp1) = dc(Fxn—linn)
a B 14
= A(dc(xn—lixn)) (dc(xn—l' Fxn—l)) (dc(xn'Fxn))

+B
= A(dc (xn—l» xn))a (dc (xn' xn+1))y
Since @ + < 1 — y, the last inequality gives
dc(xnl xn+1)1_y < Adc(xn—l'xn)a+ﬁ < Adc (xn—l' xn)l_y (2-20)

Hence

1
de(Xp, Xny1) < Avd (Xp—q, Xp) < Ado(Xp—q, Xp)

and then

d,(xp, Xps1) < Ad(Xp_q, Xp) < 22d(Xp_2, Xp_q) < =+ < A (xg, x1) (2.21)
As already elaborated in the proof of Theorem 2.4, the classical procedure leads to the existence
of a fixed-point x* € X. Now, we prove the uniqueness of x*. Let y* be another fixed point of F
in X, then Fy* = y*. Now, by (2.3), we have

d.(x*,y") =d.(Fx",Fy")

< 2(d, (%, y) “(do e, x)) (Ao y9) = 0 (2.22)
This yields that x* = y™*. This completes the proof.
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