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1. INTRODUCTION

In 1981, the concept of quasimetric spaces (b-metric spaces) was introduced by Vulpe et all
[27]. A brief overview of the early developments in fixed point theory on b-metric spaces is
provided in [27], along with some significant related issues that Berinde and Pacurar are in-
vestigating [9]. Czerwik [11],[10] developed the idea of b-metric space, which expanded on
conventional metric spaces. Huang and Zhang [16] generalized the concept of metric spaces
and introduced cone metric space. They replaced the set of real numbers to real Banach space.
Recently, many articles have discussed the results on cone metric spaces being identical to re-
sults on ordinary metric spaces. Finally, Liu and Xu [22] introduced the concept of cone metric
spaces over Banach algebras and proved Banach contraction principle in the setting of cone
metric spaces over Banach algebras. The authors presented some fixed point theorems of gen-
eralized Lipschitz mappings in the new setting without the assumption of normality, which are
not equivalent to metric spaces in terms of the existence of the fixed points of the mappings.
Khan et al. [19] used a new technique to prove fixed point theorems on metric space by altering
distances between the points employing suitably equipped continuous control functions. Ansari
[4] introduced the notion of C-class function as a major generalization of Banach contraction
principle and obtained some fixed point results. Dhamodharan and Krishnakumar [12] gener-
alized the results of common fixed point of four mappings with contractive modulus on cone
Banach space and also presented cone c-class function with common fixed point theorems for
cone b-metric space in 2017 [13]. In this direction several authors further established fixed point
results in cone metric spaces (see [17, 2, 14]). In 2023, Maheshwaran and Jahir Hussain [23]
developed fixed point theorem for (¢, §)-multi-valued mappings in cone b-metric spaces over
Banach algebra and also worked on fixed point theorem for (¢,-§)-expansive mappings in cone
b-metric spaces over Banach algebra in 2023 [23], [24]. The purpose of this paper, we using
the class functions and, we provide a common fixed point theorem for contraction mappings.
A generalisation of the common fixed point theorem for (¢,)- contraction mappings on cone
b-metric spaces over Banach algebra is presented in the main theorem. Our results generalized

and improve the results in [15].
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Let 2 be a real Banach algebra, i.e. 2l is a real Banach space in which an operation of

multiplication is defined, subject to the following properties:

Foralln,{,v e, 0 € R

i) n(ce) = (Mb)e;

(i) n(§+€)=n&+neand (n+§)e =ne+ (e,

(iii) o(n&) = (on)¢ =1 (26);

@) [n¢li<linl &l
We shall assume that the Banach algebra 2 has a unit, i.e., a multiplicative identity e such that
en =mne=mn forall 1 € A. An element ) € 2 is said to be invertible if there is an inverse
element { € 2 such that n¢ = {n = e. The inverse of 7 is denoted by .
Let 2 be a real Banach algebra with a unit e and 1 € 2. If the spectral radius p(n) of 1 is

less than 1, that is

. 1 . 1
p(n) = lim [|n"|= =inf| 7"~ <1
n=1

n—y—+oo

then e — 7 is invertible. Actually,

e-m =Y
i=0
A subset 3 of 2l is called a cone of 2 if
i. {6,e} CP,

ii. P2 =PP P, PN (—F) = {6},

iii. BB+ PP C P, forall h, B € A.
For a given cone B3 C 2, we define a partial ordering < with respect to 8 by n < ¢ if and only
if £ —n €B. We shall write n < { to indicate that < § but 1 # {, while n < { will indicate
that £ — 1 € int’B, where int’R denotes the interior of B. If inr # &, then P is called a solid

cone. Write || . || as the norm of . A cone ‘B is called normal if there is a number M > 0 such

that for all 1, { € 2(, we have

0 <xn<Cimplies||n|[<M| .

The least positive number satisfying above is called the normal constant of ‘3.
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In the following we suppose that 2 is a real Banach algebra with a unit e,*]3 is a solid cone in

2, and < is a partial ordering with respect to ‘.

2. PRELIMINARIES

Firstly, we recall several basic ideas in one b-metric spaces and Banach algebra that are

necessary for the following sections.

Lemma 2.1. [22] If € is a real Banach space with a cone B and if 0 < B0 with 0 € P and
0<B <1, thend=86.

Lemma 2.2. [22] If € is a real Banach space with a solid cone B3 and if 0 < u < ¢ for each

0 <¢ thenu=20.

Lemma 2.3. [22] Let B be a cone in a Banach algebra A and K € °B be a given vector. Let
{un} be a sequence in B. If for all ¢; > 0, there exist(s) N such that u, < c; for all n > Ny,

then for all ¢y > 0, there exist(s) Ny such that K u, <K ¢ for all n > N,.

Lemma 2.4. [22] If € is a real Banach space with a solid cone 3 and {n,} C ‘B is a sequence
with || Ny || = 0(n — H-o0), then for all 8 < «, there exist(s) N € N such that n > N we have,

Mo K cie., {N,} is a c-sequence.

Lemma 2.5. [25] Let 2 be a Banach algebra with a unit e,i,j € . If i commutes with j, then

p(i+i) <pi)+p() p (i) <p(i)p()
Remark 2.1. [25] If p(n) < 1, then || N, || = 0 as n — oo

Definition 2.1. [18] Let X be a non-empty set, Q > 1 be a constant and 21 be a Banach algebra.
A function Dy, : X x X — U is said to be a cone b-metric provide that, for alln, §, € € X,

(d1) Dp(n, §) = Oifandonlyifn = C;

(d2) Dp(n, §) = Dp(E, m);

(d3) Dp(n, €) < Q[Dy(N, &) + Dy(E, €)].

A pair (X, Dy) is called a cone b-metric space over Banach algebra 2.
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Example 2.1. [22] Let A = C[0, b] be the set of continuous functions on the interval [0, b] with
the supermum norm. Define multiplication in the usual way. Then 2l is a Banach algebra with a
unit 1. Set P={neA:n) >0, tc[0,b]} and X = R. Defined a mapping D, : X x X — A
by Dy(n,8) (t) = |n — {[Pe' forall n,{ € X, where p > 1 is a constant. This makes (X,Dy)
into a cone b-metric space over Banach algebra A with the coefficient b = 2P~ but it is not a

cone metric space over Banach algebra since the triangle inequality is not satisfied.

Definition 2.2. [24] Let (X,D;,) be a cone b-metric space over Banach algebra 2, € X, let
{Nn} be a sequence in X. Then

i. {NMn} converges to N whenever for every ¢ € 2 with 6 < ¢ there is natural number n
such that Dy, (M, M) < ¢, for all n > ng. We denote this by limy_ 1 Ny = 1.

ii. {Mn} isa Cauchy sequence whenever for every ¢ € A with 0 < ¢ there is natural number
ng such that Dy (M, Mm) << ¢, for all n,m > ny.

iii. {n,Dp} is complete cone b-metric if every Cauchy sequence in X is convergent.

Lemma 2.6. [18] Let € be a real Banach space with a solid cone i3

1) If01,07,03 € Eand 01 <X 0y K 03, then 01 K 03.
2) If o1 €°P and 01 K 03 for each 93 > 0, then 0; = 0.

Lemma 2.7. [18] Let R be a solid cone in a Banach algebra 2A. Suppose that b € 3 and

{Mn} C P is a c-sequence. Then {bn,} is a c-sequence.

Lemma 2.8. [18] Let 2 be a Banach algebra with a unit e,& € 2, then limy_, o || E" ||% exists
and the spectral radius p (&) satisfies

p(E)= Tim |[&" [ =inf[| & ||7.

n—y—+oo

If, then (Be — &) is invertible in 2, moreover,
L b=
(Be_é) :ZBZ'_H)

i=0

where B is a complex constant.

Definition 2.3. [1] Let J,£ : X — X be a mappings on set X.
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1) If o =71 = £n for some N € X, then M is called a coincidence point of J and £, and
1 is called a point of coincidence of J and L.
2) The pair (3, L) is called weakly compatible if J and £ commute at all of their coinci-
dence points, that is, J&N = £In, forallm € €(7,£)={n € X :In=£n}.

Lemma 2.9. [1] Let J and £ be weakly compatible self-maps of a set X. If J and £ have a

unique point of coincidence vo = JnN = £1, then 1o is the unique common fixed point of J and

L.

Lemma 2.10. Let A be a Banach algebra with a unit e and & be a vector in 2. If B is a complex
—1 _
((Be=&)") <(1BI-p (&))"

Proof. Since p (&) < |B], it follows by (2.8) that (e — &) is invertible and

constant and p (§)

too gi
-1
(Be—=8) = Z W
i=0
Set Q = Z;;"S% and Qn =Y Oﬁil, then Q, — Q(n — +o) and Q, commutes with

Q for all n. From lemma (2.5), it consequently follows that
P(Q) =p(Q—Q+Q)
<p(Q- ) P(Q)
= p(Xio ﬁ,+1 -X% %)
= p(Xg 5ir) — PG 557)

= p(Z,_._oa ﬁil - z 0 ﬁz+1)
= p(EE5 5r) — P(E g 577)
<p(Q—Qy)

may suggest

P (Qn) —p(Q)] <p(Q—Q)
S“ Q_Qn H

= p (Zio o ) = P(ELS i) (n = +o0).



COMMON FIXED POINT THEOREMS FOR (¢,§)-CONTRACTION MAPPINGS 7

Consequently, by (2.5),

p((Be=8)") =p (L5 5r) =limuimp(Qn)
= limp— 4o P (Z?:O l%)

< limas e Yo [%(i?)l]l
=ty 255 58 = g
=(IBl-p (&))"

O

Lemma 2.11. [15] Let 2 be a Banach algebra with a unit e and *B be a solid cone in 2. Let
yeAand Ny =y If p(y) < 1, then {nn} is a c-sequence.

Proof. Since p(y) =limy_ 4w || 7" ||% < 1, then there exist(s) T > 0 such that

. 1
Jim 7 Fee<

. Letting n be big enough, we obtain || y* ||% < 1, which implies that || y* ||% <t —=0n—

+0). So || " || — 0, i.e., || N || = O(n — +o0). Note that for all ¢ > 6, there is f > 0 such that

U(,B)={n€E :[n—cl<B}CP

In view of || N, || = 0(n — o), there exist(s) Dt such that || N, ||< B for all n > MN. Conse-
quently, || (c—n,) —c¢||=| N ||< B, this loads to ¢ — 1, € U (¢, B) C B, that is, ¢ — ), € int’P,
thus 1, < ¢ for all n > 1. OJ

Definition 2.4. [19] Let 2 be a Banach algebra and P = 9%3 be a cone in . A mapping
S B — B such that

1) § is non-decreasing and continuous;

2) §(t) < tforeacht>0;

3) §(6)=6;

4) F(a+b) <F(a)+F(b) forall, a,b € [0,+o).

Definition 2.5. [19] Let 2 be a Banach algebra and *3 = ?ﬁg be a cone in 2. A mapping
¢ : B — B such that:
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1) ¢ is monotone non-decreasing and continuous;
2) {¢" (1)} (t>0) is a c-sequence in B,
3) If {u,} is a c-sequence in B, then {¢(u,)} is also a c-sequence in P;
4) ¢ (t) = Rt, for some (R€*B), R>0.;

3. MAIN RESULTS
We prove a unique common fixed point for generalized (9,F)- contraction mappings via the

class functions ® and Y. Furthermore, we give examples to support our main results.

Definition 3.1. Let (X,Dy) be a cone b-metric space over Banach algebra A and *B be a solid
cone in A with the coefficient Q = 1. Let mappings J, £ be a two self-mappings on X, ¢ and §
be a self mapping on R, then ¢ € ® and § € V. The generalized (¢,F)-contraction mappings,

satisfies that

(3.D ¢ (Dp (3N, £8)) < T(¢ ((n,£)))

Dy(n,91) Dp(€,£8)
é 1+;)b (n,Jn) +6 1+Z)b £.L0)

where, a(n,8) =
+& oI + Ea eI 1 E5Dy (1, 0)

such that forall nN,§ € X, where & € B (i =1, 2, ...5, ) be a generalized Lipschitz
constant with 2Qp (&) + (Q+ Dp (&1 +E+Q E+QEy ) < 2. Moreover, if 3 and £ are

weakly compatible, then J and £ have a unique common fixed point.

Theorem 3.1. Let (X,D;,) be a cone b-metric space over Banach algebra 2 and B be a solid
cone in A with the coefficient Q > 1. &P (i =1, 2, ...5, ) be a generalized Lipschitz
constant with 2Qp (&) + (Q+ )p (&1 +E+Q E+QEy ) < 2. Suppose that Es commutes
with &1 + & + Q & + Q&4 and the mappings J,£ : X — X be generalized (9,5)-contraction
mapping, satisfies (3.1). Where, § € ¥, ¢ € ® such that for all n,{ € X. Moreover, if J and £

are weakly compatible, then J and £ have a unique common fixed point.

Proof. Fix any 1 € X. Define no = n and let 1 € 1o, M2 € £n; such that Ny, 11 = TNy,

Non+2 = £Napt1, by lemma 2.6, we may choose 1, € £1; such that



¢ (Dp (N1, M2))

COMMON FIXED POINT THEOREMS FOR (¢,§)-CONTRACTION MAPPINGS

A

(¢

A
c
<

A
<
<

S|S0

which implies that

(3.2)

Then,

(e—&—Q&)o

= ¢ (Dp (INo, £m1))

61 bty S et + 1, ;zfz;il))))
+& ﬁ +&sDp, (N0, M)

i el + lfzb”%;’zﬁ)))
+Ea TP 4 5Dy, (M0, 11)

\51Db(7‘lo,m)+§2Db(771,7‘12)+§3Db(n0,n2)>))
+8&Dy, (M1, M1) + Dy (M0, M1)

&0y (Mo, M) + &2Dp (M1, 12)
+&Q [Dy (10, M1) +Dp (M, 1m2)]
+&sDp (Mo, M)

(&1 + Q& +&s) Dy (Mo, M1)
+ (& + Q&) Dy (N1, M2)

(Dp(M1,m2)) < (E1+E+QE3)T (¢ (Dy(n0,m)))

¢ (D (M2,M1)) = ¢ ( Dy (£m1,TM0))

<S¢

A
o=
<

R
o=
<

=159

which implies that

(3.3)

(e—8—Q&)¢

2 gy DI g, lfzh”;fZ%)o))))
+E TP S &5 Dy (11, M0)

it + erthili + & lfzb";?;il>)))
+&4 %‘F&Db(no n)

ﬁlDb(Tll,nz)+5sz(Tlo,7‘ll)+§3Db(n1,’71))))
+&4Dyp, (10, M2) + EsDp, (110, M1)

1Dy (M, M2) +&2Dp (Mo, M)
+84Q [Dy (M0, M) + Dy (N1, 1m2)]
+EsDy, (Mo, M)

(&2 + &5 +Q&4) Dy (Mo, M)
+ (&1 + Q&) Dy, (n2,M1)

(Dp (M2,1M1)) < (E2+ &5 +Q84) T (¢ (Dp (10,M1)))




10 KANTHASAMY, RADENOVIC, KARUPPASAMY, KHAN, ISIK

Adding inequalities (3.2) and (3.3), we obtain ¢ (Dp, (11,12)) where,

265 +&61+&

B4 (2e-85 -5 —-Q85 Q&) o (Dy(Mm,Mm)) < (
+Q &+ Q&

) (¢ (Dp (10,m1)))

Denote & + & +Q &+ Q&4 = &, then (3.4) yields that

(3.5) (2¢—=8) ¢ (Dyp(M1,m2)) < (285 +8)T (0 (Dp(M05M1)))

Similarly, it can be shown that, there exists 17, € In;, 13 € £n; such that
¢ (Dp(M2,m3)) = ¢ (Dp (IM, £12))

Dy(1n1,I11) Dy(n2,£1m2) Dy(n1,£1m2)
<[5|o é R ACTIRETY) +§ 2T+Dp(1m2.£12) +§ 3T+Dy(n1,£n2)
h Dy(m,3

+S4 % + 85D, (1M1,M2)

Dy(n1,1m2) Dy(n2,m3) Dy(11,1M3)

=150 &1 YD, (m1,m2) +§ 2T4D,(n2,1m3) +§ 314D, (m1,m3)
Dy(
+&4 ﬁ +&sDp (M1, M2)

E1Dy (M1, m2) + E2Dp (12 13) +§3Db(771,ﬂ3)) ))

N
=]
<

+84Dy (12,M2) + EsDp (M1, M2)
S1Dy (M, M2) + &D5 (M2, M3)
+83Q [Dp (M, m2) +Dp (M2, 13)]
+&Dp (M1, 12)

<50 (€1+Q§3+65)Db(m,nz)))>

N
=Y
<

+ (82 +Q8&3) Dy, (M2, M3)
which implies that

(3.6) (e—8&—Q&) o (Dp(N1,m)) < (81 + 8 +Q &) T (¢ (Dp(M0,M1)))
Then,

¢ (Dp(M3,m2)) = ¢ (Dp(£12,9M1))

é Dp(n2,£1m2) _|_§ Dyp(n1,9M1) é Dy(n2,9M1)
<15lo 114D, (n2.Sm0) 214D, (n1,3M1) 314D, (n2,3m1)
+64 % + 65Dy (12,m)
5 Dy(12,13) 5 Dy(11,1m2) é Dy (m2,1m2)
=139 YD, (mms) T 214D, (n1m2) ™ 23140y (12.m2)
+Eu TPy &5y, (m2,m1)
<3l 1Dy, (M2, M3) + &2Dy (N1, M2) + E3Dp (M2, 12)
+&4Dyp (N1,M3) +EsDp (M2, M1)
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1Dy (M2,M3) +&Dp (M1, M2)

+84Q[Dy (M1, Mm2) + Dy (M2,M3)]
+&sDy (M2, M1)

s/ <52+55+954>Db<m,n2>) )
+ (&1 + Q&) Dy (M2, 13)

N
=]
<

which implies that

(3.7 (e—81— Q&) (Dp(M3,m2)) < (E2+ 85+ Q84) T (¢ (Dp(M0,M1)))

Adding inequalities (3.6) and (3.7), we obtain ¢ (D, (11,12)) where,

(3.8) 2 oy < [T 56 00 (mom))
—Q& - Q& +Q &3+ Q&

Denote & + & + Q &3 + Q&4 = &, then (3.8) yields that

(3.9) (2e=8) 0 (Dp (M, m2)) < (285 +8)T (¢ (Dy (110,m)))

Continuing this process, we obtain by induction a sequence {7, } such that 1,11 € In2,,
Mont2 € £Mopy1 such that
O (Dp (M2n+1,M2n+2)) = ¢ (Dp (IM2n, £M2nv1))

5 Dyp( nzn IM2n) + g Dyp( 772n+1 LMont1) + é Dy( 712n LMn+1)

AN 14Dy (M20,IM21) 214D (Man+1,LM2n 1 1) 314D (M2n EM2n 1)
Dyp( 772n+1 o)
+‘5 1+Db Mont1,9M21) + gSDb (nZna nZn-H)

g Dip( nzn Mont1) 5 Dy( 712n+1 Mont2) 5 Dy( 712n Mont2)

=15|o 1+Dy (20, M2 +1) 214Dy (Monr1:M2n+2) 314D, (M2 M2ns2)

Dy( 712n+1 Mont1)
+64 41Dy (Mg 1, Man 1) +§5Db (M2n, M2n41)

E1Dy (Mans Man+1) + E2Dp (Mant1, Man+2)
+83Q[Dy (M2ns N2nt1) + Dy (Mant1, M2nt2)]
+&sDyp (M2n, Man+1)

— g (p (él +§5+Q§3)Db (n2n7n2n+l)
+ (&2 4+ Q&3) Dy, (M2nt1, M2nt2)

which implies that

N
=
<

(3.10)  (e—& —Q&3) O (Dp (Mant1,M2ny2)) < (81 +E5+QE3) T (0 (Dp (M2n, M2nt1)))

11
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Also,
¢ (Dp (M2n+2:M2n+1)) = O( Dy (£M2041,IM21))
Dy( T]zn+1 LMont1) Dy( T]zn IM24) Dy( 712n+1 In2n)
<3¢ é LT D, (Mant 1, 2M20 1 1) +é 2T4+Dp (M0, IM2n) +§ 14Dy, (2041, M2)
Dy, (M2n, £
+§ 1+an?72n g%;l:-] + 55 b (n2n+1 ’ nzn)
g lDb M2nt1,M2n12) g lDb M2n,M2n 1) 5 lDb M2nt1,M2n1 1)

=50 +Dp(M2n+1,M2012) +Dp(M2n,M2nt 1) +Dp(M2n+1,M2n+1)
+&4 M’%ﬂ%s b (M2n+1,M2n)
&1Dy (M2n+1, M2n+2) + E2Dp (M2ns Man+1)
S| S| 9| +84QIDy (M2n, M2ns1) + Do (M2nt1, M2ns2)]

+&sDp (M2n+1,M2n)

_{s(o (52-1-55+Q§4)Db(n2n,n2n+1)>))

+ (&1 +Q&4) Dy (M2n+1, M2n+2)
which implies that

GBIl (e— &1 +Q8) O (Dp (Mont2:Mant1)) < (&2 + 85 +Q84) T (¢ (D (M2n; M2n+1)))

Add up (3.10) and (3.11) yields that

Gy [0 0 (Dy (Mans1, Mania)) < 265t (6 (Dp (Mans Mans1)))
—Q& — Q& +Q8&3 +Q&4

Denote & + & +Q & + Q&4 = &, then (3.12) yields that

(3.13) (2¢=8) ¢ (Dp (M2n+1, M2nt2)) < (285 +8) T (¢ (Dy (M2ns M2nt1)))

Therefore,

O(Dp (M s Mn+1)) = ¢ (Dp (INp—1, £Mn))

N

(3.14) (2651 52) 0 (Dp (T Mt 1))
—Q&; - Q&

Denote & + & 4+ Q & + Q&; = &, then (3.14) yields that

265 +&1+&
+Q&3 4 Q&4

) S((b (Db (nn—bnn)))
(3.15) (26 = &) & (Dp (M Mn+1)) < (265 +8) T (9 (Dp (Mn—1,Mn)))

Note that

2p(8) < (Q+1)p(5) <2Qp (S5) +(Q+1)p(§) <2
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p (&) <1< 2, then by Lemma (2.8) it follows that (2e — &) is invertible. Furthermore,

too gi

-8 =T 55

By multiplying in both sides of (3.15) by (2¢ — &) ", we get

(3.16) ¢ (D (1 Me1)) < (26— &) (285 +E)F (9 (Dp (1a-1,1a)))
Lety=(2¢e—&)! (2E5+ &), then by (3.16) we get

O (Dp (M sMnt1)) < T (Y9 (Dp (Mu=1,Mn)))
< Y8 (¥9 (Dp (M2 s Mn—1)))
=3 (,},Z(P (Db (nana nnfl)))

<Y'S (9 (Dp(M0,m)))

Since &5 commutes with &, it follows that

(e-&) ' (285+8) = (Ti5Hr) 285 +8)
—2(zf5 k) &+ (s E0)
=2¢ (545 50) +¢ (T3 )
= (285+8) (B 58 ) = (285 +8) 2e—8) !

then, (2e — 5)71 commutes with (2§54 &). Note by Lemma (2.5) and Lemma (2.10) that

p(r) =p((285+8&)(2e-&)")
<p(@e-&)") p(2¢5+8))
e 20 (&) +p (&)
= roEraragtas) 2PE)+pEi+&E+Q 6 +Q8)]
<& [since 20p (&) +(@+1)(p (&) +p (52)+Qp (&) +Qp (&) <2]

IN

Which establishes that (e — Q) is invertible and || ¥" ||— 0(m — +oo). Hence, for any m > 1,

p>1andye P withp(y) < é, we have that
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O (Dp (M, Mmtp)) < S (9L [Dp (M, Mnt1) + Do (M1, Mimtp)])

QF (¢Dp (M, NMmr1)) + Q*F (¢

Dy (M1, Mm+2) ] )
+Dp (Mm+2, Mn-+p)
QF (Dp (M Nn1)) + Q°F (9D (41, Mim+2))

+QF (9Dp (My2, M +3)) +
+QPF (0D (Mp—2:Mmtp—1))
+QP ' F (0D (Mmp—15Mmtp)
QY"F (9D (Mo, m)) + Y™ (9D (Mo, m))
+Q Y2 F (9Dy (M0, M) +
+QP LY (0D, (10, M)
+QPY" P IF (9D (Mo, 1))
= Qy" [e+Qy+ QP +...+(QY)P '] F(9Dy (n0,m))
< Qy"(e—Qy) 'F(0Dy, (M0, M)) -

e

A

In view, | Qy"S (¢ (Dp (110, m))) <1 QY™ [l §(9(Dp (M0,M1))) [|= 0 (m — o), it follows

that, for any ¢ < 2, with 68 < ¢, there exists 91 € N such that for any n > m > 91, we have

O (Dp (M, Minsp)) < QY™ (e — Q) "' (9D (M0, m1)) < c.

Next by using Lemma (2.11) and Lemma (2.7), we conclude that {n,} is a Cauchy sequence.

Since (X, Dy) is complete, there exists s € X such that 17, — s (n — +o0). We shall prove that

s is a common fixed point of J and £.

¢ (Dy (Mant1, £5)) = ¢ (Dp (IMan, £5))

<

A

5

¢

D IMNon
+&4 % +&sDyp (M2n,5)
Dy( 712n Mont1) Dy(s,Ls) Dy( Thn £s)
i 14Dy (M2n,M2nt1) +& 214Dy s, 25 +& 314Dy (20, L5)
D n
+&4 % +&5Dp (1121,5)

E1Dp (Man, Mant1) + E2Dp (5, £5) + E3Dy, (124, 25)) ) )

3 Dy( nzn JM20) & Dy(s,Ls5) & Dy( nzn £s)
14+Dp(N21,IM21) 1+D,7 5, 25 1+D;, Non,L5)

+E4Dy, (8, M2n+1) + EsDp (Man, 5)



A
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§1Q[Dy, (M2n,5) + Dy (5, Mont1)]
+&Q[Dy (5, M2n+1) + Dp (M2nt1, £5)]
+&Q[Dy (M2n, Man+1) + Dp (M2n+1,M2n)]
+&4Dy (5, Mon+1) + EsDp (M2n, 5)
E1QDy, (M2n,5) +E12Dy (5, M2n+ 1)
+862QDy (5, Mont1) + 522Dy (N2n+ 1, £5)
+&Q2Dy, (M2n,5) + D (5, N2 1)]
+&3QDy, (M2n+1,M2n) + 84Dy (5, M2nv1) + EsDp (M2n, 5)
§1QDy, (M20,5) + E1QDy (5, M2n+1)
+E2QDy, (5, Mon+ 1) + E22Dp (N2n+ 1, £5)
+&Q°Dy (N2n,5) + E3Q° Dy (5, Mon+1)
+&3QDy, (M2n+1,M2n) + 84Dy (5, M2nv1) + EsDp (M2n, 5)
(124 &Q% +&5)Dpy (1124,5)

O | +(&1Q+EHQ+EQ2+E4)Dy (5, M2ns1)

—|—(§2.Q. + 53Q)Db (n2n+1 ) 25)

which implies that

(3.17) (

¢ (Dp (M2n41,L£5))

(e—5Q—-85Q) <50 (E1Q+EQ? +&5)Dp, (Mon, 5)
+(E1Q+EQ+E3Q + E4)Dy (5, Mont1)

For another thing,
O (Dp (£5,M2n11)) = 0 ( Dy (£5,TIM21))

é lDb 5,£5) _i_g lDb M2n,IM2n) g lDb 5,3M2n)

<[5|o +Dp(s, 25 +Dy(Mon,IM2n) +Dy(5,IM2,)
+~5 %Jrﬁsl)b (5,M20)

(5 (o [ ST el e
+§ %Jrésl)b (s,M2n)

< {s(e &1Dy (5, £5) +EaDy, (Man, Man+1) +E3Dp (5, M2n+ 1)

+&4Dy, (Mon, £5) + EsDy (5, M2s)

)

)
)
)

15
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E1Q[Dy (5, M2n+1) + Dp (M2nt1, £5)]
+&Q[Dy (M2155) + Dy (8, M2n+1)]
+&Dy (5, Mont1)
+&4Q[Dy, (M2n, Mant1) +Dp (M2n+1, £5)]
+&5Dy (s, M2n)

E1QDy (5, Mon+1) + 192Dy (N2n+1, £5)
+82QDp (M2n, 5) + 52Dy, (8, M2n+1)
+&3Dp (5, Mon+1) ++E6QDy (N2n+1, £5)
+84Q2[Dy, (M2n,5) + Dy (5, M2n+1)]
+E&sDyp (5,M2n)

§1QDy, (5, Mant1) + E1QDp (N2n+1, £5)
+E2QDy, (M2n,5) + E22Dy (5, M2n+ 1)
+&3Dp (5, Mon+1) ++E4QDy (2041, £5)
+E4Q%Dy, (M1, 5) + E4QDy, (8, M2 s1)
+&5Dp (5, M)

(£2Q+ £4Q% +&5)Dy, (5,120)
+(61Q2+EQ+ &+ 8Q?)Dy (5,M2011)
+(&1Q2+ E4Q) Dy, (N2n+1, £5)

A
SR
©

N
SR
<

A
R
<

A
R
<

which implies that
(3.18)

2
(e —81Q—Q&) ¢ (Dy (M2n+1,L5)) < (g (¢ ( (62Q 4 84Q7 + &5)Dy, (5, M2n) ) ) )

+(&1Q+EHQ+ &3+ E4Q2)Dy, (5, Mont 1)

Adding inequalities (3.17) and (3.18), it follows that,

(3.19)
2e — Qél — ng

(2e — Q&) (Dp (M2n11,L5)) < ) ¢ (Dp (M2n+1,£5))
—Q& - Q&

(o (25 +Q&)Dy (5,Mm20)
H(EQ+EQ+ &+ 84+ QE)Dy (5,M2041)

N
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Note that

P(QE) =Qp(5) < (Q+1)p(5) <2Qp (&) +(Q+1)p(§) <2
then by Lemma (2.8) it follows that (2e — Q&) is invertible. As a result, it follows immediately
from (3.19) that

(285 +Q&E)Dy (5,Mm24)
+(&1Q+EQ+E3+ 84 +QE)Dy, (5, M2n+1)

Since {Dp(s,M2,)} and {Dj(8,M2n+1)} are c-sequence, then by Lemma (2.7), we deduce

¢ (Dp (N2nt1,L8)) < (2e—QE) " [ F [ ¢

that{Dj, (s, £s)} is a c-sequence, thus 12,41 — 6 (n — +o0) . Hence Js = £5 = w. In the
following we shall prove £ and J have a unique point of coincidence. Such that s # s* then

from (3.1) we have

¢ (Dy(s,57)) = 9(H(Ts,L5%))

Dy, (5,35) Dy (5%, Dy (5,8
élhss é;lbss_|_§1;,55)

<50 +Dy(s,Js) +Dp (5%, Ls* +Dp(s,£5*)
o Dy, (s*,35)

+§4m+§5Db(5 s")
<30 1Dy (5,35) +EDyp (5™, £5™) + &3Dp (5, £57)
<

+8&4Dy (5%,75) + & Dy (5,57)
S:((p (§3Db (575*) + §4Db (575*> + §5Db (575*)))
= (63+84+85) T (¢Dp (5,57))
Set (&3 + &4+ &s) = 7, then it follows that

(3.20) 9 (Dy(s,5")) < 75 (¢ (Dp (5,57))) < - S T'F (@ (D (5,57)))

Because of

2p (&) +2p (§) <2Qp (&) +(Q+1)p (§) <2,

It follows that p (&) + p (&) < 1. Since & commutes with &, then by Lemma (2.5),

p(&s+c)<p(&)+p(§) <l

Accordingly, by Lemma (2.11), we speculate that {(&s5+&)"} is a c-sequence. Noticing that
T <&+ & leadsto 7" < (E5+&)", we claim that {7"} is a c-sequence. Consequently, in view
(3.20), it easy to see § (@D, (s,5%)) =0, that is s = s*.

Finally, if (J,£) is weakly compatible, then Lemma (2.9), we claim that £ and J have a

unique common fixed point. U
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Corollary 3.1. Let (X,Dy) be a cone b-metric space over Banach algebra A and i be a solid
cone in 2 with the coefficient Q> 1. & € P (i =1, 2, ...4, ) be a generalized Lipschitz
constant with 2Qp (1) + (Q+ Dp (E1 +Q &+ Q&3 ) < 2. Suppose that &4 commutes with
&1+ Q & + Q&3 and the mappings 3, £ : X — X be generalized (¢,F)-contraction mapping,
satisfies that

¢ (¢ (I1,£Q)) < F(¢(TN(n,))

where,

o Db(nvjr” Db(’?,gC) Db(C7jn)
1010 =8 D, tmam) T2 15D, (1,20) TS 11D, (€,0m)

where, § € P, ¢ € ® such that for all n,§ € X. Moreover, if 3 and £ are weakly compatible,

+&Dy(n,¢)

then J and £ have a unique common fixed point.
Proof. Choose & = &3 =&, = &5 =& and & = 0 in theorem 3.1, the proof is valid. O

Corollary 3.2. Let (X,Dy) be a cone b-metric space over Banach algebra A and B be a solid
cone in A with the coefficient Q> 1. §; € B (i =1, 2, ...4, ) be a generalized nonnegative
real constant with 2Q (&) + (Q+ 1) (§ +Q &+ Q&3 ) < 2. Let mappings 3,£ : X — X be

generalized (9,5 )-contraction mapping, satisfies that

¢ (& (In,£8)) < F(9(61Dp (,IN) + E2Dp (M, £8) +E3D, (£,IN) + EaDp(n, §))

where, § € P, ¢ € ® such that for all n,{ € X. Moreover, if J and £ are weakly compatible,

then J and £ have a unique common fixed point.
Proof. Taking &;,&3,&4,&5 € R in theorem 3.1, we obtain the desired result. O

Corollary 3.3. Let (X,Dy) be a cone b-metric space over Banach algebra 2l and 5§ be a solid
cone in 2 with the coefficient Q < 1. & € B be a generalized Lipschitz constant with p (&) <
QZ—LQ' Suppose that the mappings J,£ : X — X be generalized (,5)-contraction mapping,
satisfies that

¢ (5 (In,£8)) < F(9(S (D (., £8) + Dy (£,T1M))
where, § € P, ¢ € ® such that for all N, € X. Moreover, if 3 and £ are weakly compatible,

then J and £ have a unique common fixed point.



COMMON FIXED POINT THEOREMS FOR (¢,§)-CONTRACTION MAPPINGS 19

Proof. Putting & = & = &s =0 and & = & = € in theorem 3.1, we complete the proof.  [J

Example 3.1. Let B = R2 P = {(n,§) € AN, > 0} and let X = [0,1]. Define a function
Dp: X xX — A by Dp(n,8) =|n—{|. Clearly, (X,Dy) is a complete cone b-metric space
over Banach algebra A with coefficient Q = 2. Now define § : B — P by § (t) =t forall t > 0.
Then § € W. Also define ¢ - — B by ¢ (t)= ¢, forall t > 0. Then § is a continuous
comparison function.

Define 3,£:X — X) by 3(n) = &k, £(¢) = &, for all n,{ € X. Then,

¢ (Dy (30, £8)) <F(¢(T(n,8)))

where,
(n.9) = & oIy & DUEE 2 g 2B 1 E5D, (1, 0)
i+ enhy - o
¢(Dy(30.£8)) <3¢ +Ea etk + &0 - |
-] g 15 -4
I 511+|n n’| & 1| ‘C +531+‘77—C
+&4 1+|c16 +&n—¢|
<F(9(F =2,
<F(g(oln—<),
<F(§In-¢N)
<ZIn-{l, for 0<a<1
< E€M(n,¢))

¢ (Dy (M, £6)) <F(¢(T(n,8)))-

Choose & = & =& =&, =0, & = ¢. Note that J and £ commute at the coincidence point
N = 0. The pair (3, L) is weakly compatible, it is easy to see that all the conditions of theorem

3.1 holds trivially good and 0 is the unique common fixed point of J and L.

Example 3.2. Let B = R2, P = {(n,{) € AN, { =0} and let X = {0,%,3 }, be a cone b-

metric space over Banach algebra 2 with coefficient Q = 3 > 1. let Dp: X xX — A and



20 KANTHASAMY, RADENOVIC, KARUPPASAMY, KHAN, ISIK
S: P> PbyF(t) <tforallt>0. Then § € §. Also define ¢ : P — P by ¢ (t) = Kt for some
K> 0. Then ¢ is a continuous comparison function. Now define the mapping J,£ : X — X by

1) Dp(n,&) =0, where { =n, forall {,n € X.
2) Dy (0,3) =Dy (3,0) = 3. D5 (0,3) =D (3,0) = 5. D (3.:3) =D» (3,3) = 3.

Define by
1 3
J3(0)=0,7 <§) =0,7 (5) =0.

£(0)=0,¢ (%) _ %2 (%) 0.

Let & =6 =86=¢& =& = %, clearly, & + & + &3+ &4+ & < 1. Next we will verify the
condition (3.1). It have the following cases to be considered.

Case (i): ¢ (D (IN,L£E)) =0, the inequality (3.1) holds.

Case (ii): ¢ (Dy, (IN,LL,)) # 0, we have following cases to be considered.

Case (ii-a): N =0, { = 2, we can get ¢ (D, (IN,£8)) = %, then

¢ (D (In,£6)) < 5(¢ ((n, ¢))

where,
Db(najn) Db(Cv’QC) Dh(nv’gC) Db(c’jn)
_ D
1018 =D, o) T T D, (€,08) TS T Dy (n.20) T Ty (o) TP (M)
1 D,0300) 1 Po(3:2()) | 1 Do(02(3))
I 6 T+05(03(0)) T 615, (L.2(1)) T 0170,(0,2(3))
° 11 DG30) iy g 1)
611D, (1.3(0)) ' 670 \02
Dh(0,0) + Db(%’%) + Db(()’%)
<1 | TE00) T, (13) T 0, (03)
-6 Dy(3.0) 1
+1+D,,( 0)+Db(0’5)
| 3 % 1 1
Sa(0+ﬁ+ﬁ+ﬁ+z)
1 /(1 2 8 1 4 1
<s(ax3+gx5+axs+y)
1 /1 1
<s(3+s+s+i)
1 1 /16
s <% (%)
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Therefore, the inequality (3.1) holds.

| oi(ba() 1 pie) 1 oi(ha()
psar 6 1+Dy(3.3(3)) 161+1Db(§7£(7)) 0 1+Dy(3.8(3))
8 _|_l Db(jﬂ j)) +lD 1 l)
sTiny(La(l)) T (22
p(Lo) | mu(3d) | D)
1 13 13
<1 1+Db(2’0>l)b(;§)Db 73) 11J;Db(§77)
tip,(10) TP (33)
1 1 1 1
1 s 4 2 4 2 . 3
§6(1+}1+1+%+1 T+ i+0)
1(lo 5,12, 1,2,1.5
<g(axitaxi+ixi+ix3)
1(5, 1,15
<s(3+3+3+3)
1 1 (46
s <5(2)
Therefore, the inequality (3.1) holds.
Case (ii-c): { = %, n= % we can get ¢ (D, (35, £1)) = %, then
EYCEE) AL O I CE )
1 og | [T T (L) e Tn (D))
8 _{_1 Db(jﬂ j)) —i—lD 3 l)
sTin(1a(3)) oD (52
D30 | milid) | DlEd)
3 13 33
<1 14D,(3.0) * 14Dy(3.3) * 1+D4(3.3)
— 6 _}_M +D (§ 1
14D, (3.0) T 7P \202
1 1 1
1 8 4 2 4 41
<6 <1+}; + 1+1 +0+ 1+ +2>
11,8 1,2, 1,41
<s(gxo+ax3+3x5+3)
1(1 1,11
<s(s+3+s5+2)
1 1103
5 <5(%0)

¢ (D (3¢, £1)) < T (9 ((E,m)))

Therefore, the inequality (3.1) holds. We showed that the condition (3.1) is satisfied in all cases.
Finally, if (3,£) is weakly compatible, then Lemma (2.9), we claim that £ and J have a unique

common fixed point N = 0.
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4. APPLICATION

We find the existence and uniqueness of common solutions for a system of functional equa-
tions arising in dynamic programming, which was initiated by Bellman and Lee [8]
Let (P,||.]|) and (Q,||.||) are Banach spaces, M C P and D C Q. Taking M and D signify the
state and decision spaces, respectively. Let B(M) denotes the set of all real-valued functions on
M. Tt is easy to verify that B(M) is a linear space over R under usual definitions of addition and

scalar multiplication, and with the norm ||.|| for an arbitrary n € B(M), define

Il = sup{[n(0)]: 0 € M}.

Let Dp(n,8) =sup|n(d) — (9)| forall n, ¢ € B(M). Then (B(M),||.||) is a Banach space. As
proposed in Bellman and Lee [8], the fundamental form of the functional equation in dynamic
programming is
®(0) = opt;ep$H (0,3, ®(3(0,3))),forall 0 € M,

where 0 and 3 denote the state and decision vectors, respectively. J denotes the transformation
of the process, ®(0) denotes the optimal return function with the initial state 9 and opt represents
sup or inf.

Further, Liu et al. [21] established common fixed point theorems satisfying contractive con-
dition of integral type and applied their results for the existence and uniqueness of common

solutions to the following system of functional equations arising in dynamic programming.
P0) =opt;cp {€(0,3) +9(2,5, B (3(0,5)))} forallo € M,

4.1)
T(0) =optyep {€(0,3) + & (2,3, T(3(0,3)))} ,for all 0 € M,

where € . MxD—Z,1:-MxD—Mand H,&:MxDXAF— A.

Theorem 4.1. Suppose that the following conditions are verified

1. 3, 9 and T are bounded.
2. Let &1,&5,&35,&4 and Es be defined as in Theorem (3.1).

(4.2) &11(0) = optycp {€(0,3) +H1 (0,5, (3(0,3)))} for all(d,n) € M x B(M),
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(4-3) QIC<0) = Opt;,ED{QE(075) +f£1 (0,3,C(:(0,5)))},f0r all(aaC) eEM XB(M)'

4.4 8191 (0,3, (30,3))) = T1 (0,3,£ (A0,3))) | < 61, 2)))
where
L m—em) (€ - D)
100 =8 ey TR -0
(n-210) (C—&m)|
ST o] T € sy SO

where 1,6 € BIM),0 e M,3 € D,y € ¥, ¢ € ®. Then the system of functional equations (4.1)

has a unique common solution in B(M).

Proof. Assume that the conditions (1) and (2). Then the system of functional equations (4.1)
have a unique bounded solution if and only if the operator (4.2) and (4.3) have a common fixed
point.

Let 0 € M,for all n,{ € B(M). Suppose that opt t;ep = sup,¢p. For each € > 0. Then using
(4.2) and (4.3) we can find 31,32 € D such that

(4.5) Sin@)  <€@,5)+9510,5,m((30,51))) +(¢),
(4.6) Qi¢0)  <€0,52)+%1(0,5,6(3(0,52))) + (8),
4.7) Sim®)  >€(0,5)+H (0,52,1(3(2,32))).
(4.8) Qi16() = €0,51)+T1(0,51,6(3(0,51)))-

From (4.5) and (4.8), we get
S1n(0) —Q14(0) <H:1(0,51,1m(3(2,51))) = F1 (0,51, €(3(2,31))) + (€)

S |£)1 (0»51,7? (:(0,51)» _zl (07317C(j(0731)))| +(£)

Hence we get

(4.9) S1n®) —218®) <91 (2,31,1 (3(0,31))) —F1(0,31, (3 (0,31))) | + (¢)
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[(n—&1n)] Le (£ —210)|

<&

L =&m)| 1210
-2u0)] . |E-&m)] .
T m g T ey PRI

From (4.6) and (4.7), we get

Q14(0) = 61m(0) <T1(0,52,5(3(2,52))) — H1 (0,32, (3(0,52))) + (€)
< 1%1(0,52,6(3(0,52))) — 91 (0,32, (3(2,52))) + (¢)-
|[(n—&in)] " (9,0

(4.10)

<&

+[m—6m)| Z1+[(—:0)]
(N —10)] (C—&m)| -
+§31+|(n—91€)|+§41+|(C—6m)|+§5|(n &)+ (g)

From (4.9) and (4.10), we get

¢(I61m(0) =18 (@)]) <F (9191 (0,51,1 (3(0,31))) —F1(0,531,¢ (3(0,51)))1)) + ¢ (¢)

[(n—61m)] L | (& —210)]
1+[(n—-61m)] 1+](€—2:10)]

-1 lG-sml L,
20 ST e TR

Using (4.4) and above inequality we have

<3 (&

+&4

+&3

¢161m () — 1) <F(¢0(TT(n, L))+ o (¢)

where

|(M—&m)]
I1+|(n—-61n)]

[(€—-9210)]

.8 =¢& 1+](E—910)]

+&

((-210)]
ST -]

[(E—-6in)|

ST =6

+6sl(n—¢)l

Since the above inequality is true for all 9 € M and € — +oo, and using § € ¥, and ¢ € ® we

get
9Dy(611,218) <F(¢(T(n.£)))
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where
. Dy(n,61m) Dy (£,2:0)
108 =&, trem) T 2T Dy (€ 0)

6 Db(nﬂﬂIC) 54 Db(CJGIn)
14D, (1,910) 1+Dy,(C,61m)

+ 55Db(n7 C)

If J=6;, and £ = 1, it is easy to observe that all the hypotheses of Theorem (3.1) are
satisfied. Hence the mappings &; and Q; have a unique common fixed point in B(M), and

hence the system of functional equations (4.1) has a unique bounded common solution. 0

5. CONCLUSIONS

In Theorem (3.1) we have formulated a new contractive conditions to modify and extend
some common fixed point theorem (¢,§)-contraction mapping in cone b-metric space over
Banach algebra. We consider the existence and uniqueness of fixed points for the contraction
in the framework of b-metric spaces. As an application, we find existence and uniqueness of
solutions for system of functional equations arising in dynamic programming are demonstrated
with the help of our main results. We have also given examples which satisfies the condition
of our main result. Our new result may be the vision for other authors to extend and improve

several results in such spaces and applications to other related areas.
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