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1. INTRODUCTION

In 1968, Kannan provided a generalization of the Banach contraction principle in that a con-

traction mapping with a fixed point need not be continuous, [1]. Kannan’s theorem characterizes

the completenesss of the metric space and was proved by Subrahmanyam in 1975, [2]. In [3],

the authors presented results dealing with fixed point for maps that are not continuous on a met-

ric space and addressed the aspect of convergence which improves the classical results.

Reich’s fixed point theorem is a generalization of Banach’s fixed point theorem,

Theorem 1.1. [4] Let (X ,d) be a complete metric space. Suppose that the self-map T : X → X

satisfies the following:
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d(T x,Ty)≤ α1d(x,T x)+α2d(y,Ty)+α3d(x,y)(1)

for x,y ∈ X where α1 +α2 +α3 < 1. Then T admits a unique fixed point.

with α1 = α2 = 0 while α1 = α2 =
1
2 and α3 = 0 yields Kannan’s fixed point theorem, [4].

Several generalizations of the Banach contraction principle were derived by either changing the

contraction conditions or by changing the space. Samet et.al., in [6], introduced a new type of

θ -contractive maps and established a new fixed point theorem for such maps on the setting of

a generalized metric space. In this paper, we introduce a new type of θ -contractive maps that

display a sublinearity nature on a generalized b2-metric space. Before we proceed, we provide

a generalization of the concept of a b2-metric space. The authors in a similar way provided

generalizations of the concept of a metric in [7, 8, 9].

Definition 1.2. [5] Let X be a non-empty set and d : X ×X ×X → [0,∞) be a map satisfying

the following properties:

(i) d(x,y,z) = 0 for x,y,z ∈ X, if at least two of the three points are the same.

(ii) For x,y ∈ X such that x 6= y there exists a point z ∈ X such that d(x,y,z) 6= 0.

(iii) symmetry property: for x,y,z ∈ X ,

d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x).

(iv) rectangle inequality:

d(x,y,z)≤ d(x,y, t)+d(y,z, t)+d(z,x, t)

for x,y,z, t ∈ X .

Then d is a 2-metric and (X ,d) is a 2-metric space.

Definition 1.3. Let X be a non-empty set and d : X ×X ×X → [0,∞) be a map satisfying the

following properties:

(i) d(x,y,z) = 0 for x,y,z ∈ X, if at least two of the three points are the same.

(ii) For x,y ∈ X such that x 6= y there exists a point z ∈ X such that d(x,y,z) 6= 0.
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(iii) symmetry property: for x,y,z ∈ X ,

d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x).

(iv) modified rectangle inequality:there exists α,β ,γ ≥ 1 such that

d(x,y,z)≤ αd(x,y, t)+βd(y,z, t)+ γd(z,x, t)]

for x,y,z, t ∈ X .

Then d is a generalized b2-metric and (X ,d) is a generalized b2- metric space.

If α = β = γ = 1 then the generalized b2-metric is a 2-metric. If α = β = γ = s > 1 then the

generalized b2-metric is a b2-metric.

Example 1.4. Let X = (0,1) and define

d(x,y,z) =

 0, if at least two of the three points are the same

e|x−y|ξ+|y−z|ξ+|z−x|ξ , otherwise.
(2)

for x,y,z ∈ X and ξ ≥ 1. Properties i)− iii) of definition 1.3, can be easily verified. We shall

verify property iv):

For x,y,z ∈ X and using Jensens’ inequality, we get

d(x,y,z) = e|x−y|ξ+|y−z|ξ+|z−x|ξ

= e
1
2 |x−y|ξ+ 1

3 |y−z|ξ+ 1
6 |z−x|ξ e

1
2 |x−y|ξ+ 2

3 |y−z|ξ+ 5
6 |z−x|ξ

≤ e2e
1
2 |x−y|ξ+ 1

3 |y−z|ξ+ 1
6 |z−x|ξ

≤ e2
[

1
2

e|x−y|ξ +
1
3

e|y−z|ξ +
1
6

e|z−x|ξ
]

≤ e2
[

1
2

e|x−y|ξ+|y−t|ξ+|t−x|ξ +
1
3

e|z−y|ξ+|y−t|ξ+|t−z|ξ +
1
6

e|z−x|ξ+|x−t|ξ+|t−z|ξ
]

= αd(x,y, t)+βd(z,y, t)+ γd(z,x, t)

where α = e2

2 ≥ 1, β = e2

3 ≥ 1 and γ = e2

6 ≥ 1.

It follows that d is a generalized b2-metric and not a b2-metric.
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Definition 1.5. Let {xn}n∈N be a sequence in a generalized b2-metric space (X ,d).

a) the sequence {xn}n∈N is convergent to x ∈ X iff for all ξ ∈ X,

lim
n→∞

d(xn,x,ξ ) = 0.

b) the sequence {xn}n∈N is a Cauchy sequence in X iff for all ξ ∈ X,

lim
n,m→∞

d(xn,xm,ξ ) = 0.

2. MAIN RESULT

Definition 2.1. Let (X ,d) be a generalized b2-metric space and a mapping T : X → X is a

θ -Reich-type contraction if x,y,z ∈ X ,

θ(d(T x,Ty,z))

≤ α1θ(d(x,y,z))+α2θ(d(x,T x,z))+α3θ(d(y,Ty,z))

where α1 +α2 +α3 < 1,

θ : [0,∞)→ [0,∞) is a function satisfying the following conditions:

(i) θ is continuous and non-decreasing.

(ii) for each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 0 ⇐⇒ lim
n→∞

tn = 0.

(iii) there exists k ∈ (0,1) and l ∈ [0,∞) such that limt→0+
θ(t)
tk = l.

Theorem 2.2. Let (X ,d) be a complete generalized b2-metric space and if a mapping T : X→X

is a θ -Reich-type contraction then T has a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrary. Then the sequence {xn}n∈N, where xn = T xn−1 = T nx0 is a

Cauchy sequence in X . If xn−1 = xn for some n ∈ N then {xn}n∈N is a Cauchy sequence. To

prove that {xn}n∈N is a Cauchy sequence we suppose that xn−1 6= xn for n ∈ N and let x = xn−1

and y = xn in the assumption, then we get

θ(d(xn,xn+1,z))

= θ(d(T xn−1,T xn,z))
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≤ α1θ(d(xn−1,xn,z))+α2θ(d(xn,xn−1,z))+α3θ(d(xn,xn+1,z)).

It follows that

(1−α3)θ(d(xn,xn+1,z))≤ (α1 +α2)θ(d(xn,xn−1,z))

θ(d(xn,xn+1,z))≤
(

α1 +α2

1−α3

)
θ(d(xn,xn−1,z))(3)

θ(d(xn,xn+1,z))≤ θ(d(xn,xn−1,z)),

since α1 + α2 + α3 < 1. Since θ is an increasing function it follows that d(xn,xn+1) ≤

d(xn,xn−1,z), thus {d(xn,xn+1,z)}n∈N is a decreasing sequence. Next, we show that

d(xn,xn+1,z)→ 0 as n→ ∞. Recursively using (3), we get

θ (d(xn+1,xn,z))

≤
(

α1 +α2

1−α3

)
θ (d(xn−1,xn,z))

≤
(

α1 +α2

1−α3

)2

θ (d(xn−1,xn−2,z))

...

≤
(

α1 +α2

1−α3

)n

θ(d(x0,x1,z)),(4)

since
(

α1+α2
1−α3

)
< 1, it follows that as n→∞, we get θ (d(xn+1,xn,z))→ 0 thus d(xn+1,xn,z)→

0. We now show that {xn}n∈N is a Cauchy sequence. It follows from the property of θ that from

k ∈ (0,1) and l ∈ (0,∞) that

lim
n→∞

θ(d(xn,xn+1,z))
[d(xn,xn+1,z)]k

= l.(5)

For 0 < λ < l, by the definition of a limit there exists n1 ∈ N such that

λ <
θ(d(xn,xn+1,z))
[d(xn,xn+1,z)]k

λ [d(xn,xn+1,z)]k ≤ θ(d(xn,xn+1,z))
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From inequality (4), we get

n[d(xn,xn+1,z)]k < nλ
−1(θ(d(xn,xn+1,z)))

≤ nλ
−1
(

α1 +α2

1−α3

)n

θ(d(x0,x1,z))

for all n > n1 which yields that

lim
n→∞

n[d(xn,xn+1,z)]k = 0.

Hence there exists n2 ∈ N such that

n[d(xn,xn+1,z)]k ≤ 1

which implies that

d(xn,xn+1,z)≤
1
1
nk

(6)

for all n > n2. For m ∈ N, using (6) we obtain

d(xn,xn+m,z)

≤ αd(xn,xn+m,xn+1)+βd(xn+m,z,xn+1)+ γd(z,xn,xn+1)

≤max{α,β ,γ}(d(xn,xn+m,xn+1)+d(xn+m,z,xn+1)+d(z,xn,xn+1))

≤max{α,β ,γ}
(

2

n
1
k
+d(xn+m,z,xn+1)

)
≤max{α,β ,γ}

(
2

n
1
k
+αd(xn+m,z,xn+2)+βd(z,xn+1,xn+2)+ γd(xn+1,xn+m,xn+2)

)

≤max{α,β ,γ}

(
max{α,β ,γ} 2

n
1
k
+max{α,β ,γ}

(
2

(n+1)
1
k
+d(xn+m,z,xn+2)

))

= (max{α,β ,γ})2

(
2

n
1
k
+

2

(n+1)
1
k
+d(xn+m,z,xn+2)

)

≤ (max{α,β ,γ})m+1

(
2

n
1
k
+

2

(n+1)
1
k
+ · · ·+ 2

(n+m)
1
k

)

= (max{α,β ,γ})m+1
n+m

∑
j=n

2

j
1
k

≤ (max{α,β ,γ})m+1 2
∞

∑
j=n

1

j
1
k
.
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Based on the convergence of the series ∑
∞
j=n

1

j
1
k

, since 0 < 1
j < 1, we conclude that {xn}n∈N is a

Cauchy sequence in X . Since (X ,d) is a complete generalized b2-metric space there exist u ∈ X

such that u = limn→∞ xn. We show that u is a fixed of T ,

θ(d(xn+1,Tu,z))

= θ(d(T xn,Tu,z))

≤ α1θ(d(xn,u,z))+α2θ(d(xn,T xn,z))+α3θ(d(u,Tu,z))

≤ α1θ(d(xn,u,z))+α2θ(d(xn,xn+1,z))+α3θ(d(u,Tu,z)).

Taking the limits on both sides, we get

θ(d(u,Tu,z))≤ α3θ(d(u,Tu,z)),(7)

which is a contradication, unless d(u,Tu,z) = 0, u = Tu. To prove the uniqueness, we assume

that Tu′′ = u′′:

θ(d(u′,u′′,z)) = θ(d(Tu′,Tu′′,z))

≤ α1θ(d(u′,u′′,z))+α2θ(d(u′,Tu′,z))+α3θ(d(u′′,Tu′′,z))

It follows that

θ(d(u′,u′′,z))≤ α1θ(d(u′,u′′,z))

which is a contradiction unless d(u′,u′′,z) = 0, i.e., u′ = u′′. �

Example 2.3. Let X =
[
0, 1+

√
5

2

]
and define

d(x,y,z) =

 0, if at least two of the three are the same.

µe|x−y|+|y−z|+|z−x|, otherwise.
(8)

where 0 < µ < α1 < 1.

Then d is a generalized b2-metric. Let T : X → X and define

T x =
√

x+1
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and θ(t) = t. Then for x,y ∈ X, from the Mean Value Theorem, we get∣∣∣√x+1−
√

y+1
∣∣∣≤ ∣∣∣∣∣ 1√

ξ +1

∣∣∣∣∣ |x− y|

≤ |x− y|

since 0 < ξ < 1+
√

5
2 .

For x,z ∈ X: we obtain
∣∣z−√x+1

∣∣≤ |z− x| since

√
x+1≥ x

for 0 < x < 1+
√

5
2 .

Since the exponential function is increasing, we obtain that

θ(d(T x,Ty,z))

= µe|
√

x+1−
√

y+1|+|
√

y+1−z|+|z−
√

x+1|

≤ µe|x−y|+|y−z|+|z−x|

≤ α1θ(d(x,y,z))

with µ < α1 < 1 and α2 = α3 = 0. By applying theorem 2.2, it follows that T has a fixed point

in X.

The following theorem is a result of [11], in which they introduced the notion of a θ -

contractions and Suzuki contractions, but in this case the underlying space is a generalized

b2-metric space.

Theorem 2.4. Let (X ,d) be a complete generalized b2-metric space and a mapping T : X → X

satisfying: for all x,y,z ∈ X ,

θ(d(T x,Ty,z))

≤ [θ (max{d(x,y,z),d(x,T x,z),d(y,Ty,z)})]r

where 0 < r < 1, θ : (0,∞)→ (1,∞) is a function satisfying the following conditions:

(i) θ is continuous and non-decreasing.
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(ii) for each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 1 ⇐⇒ lim
n→∞

tn = 0.

(iii) there exists k ∈ (0,1) and l ∈ (0,∞) such that limt→0+
θ(t)−1

tk = l.

Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrary. Then the sequence {xn}n∈N, where xn = T xn−1 = T nx0 is a

Cauchy sequence in X . If xn−1 = xn for some n ∈ N then {xn}n∈N is a Cauchy sequence. To

prove that {xn}n∈N is a Cauchy sequence we suppose that xn−1 6= xn for n ∈ N and let x = xn−1

and y = xn in the assumption, then we get

θ(d(xn,xn+1,z))

= θ(d(T xn−1,T xn,z))

≤ [max{d(xn,xn−1,z),d(xn,xn+1,z)}]r .

If max{d(xn,xn−1,z),d(xn,xn+1,z)}= d(xn,xn+1,z) then

θ(d(xn,xn+1,z))≤ [θ(d(xn,xn+1,z))]
r ,(9)

which leads to a contradiction, since 0 < r < 1. It follows that

θ(d(xn,xn+1,z))≤ [θ(d(xn,xn−1,z))]
r < θ(d(xn,xn−1,z))(10)

Since θ is an increasing function it follows that d(xn,xn+1) ≤ d(xn,xn−1,z) thus

{d(xn,xn+1,z)}n∈N is a decreasing sequence. Next, we show that d(xn,xn+1,z)→ 0 as n→ ∞.

Recursively, using (10), we get

θ (d(xn+1,xn,z))

≤ [θ (d(xn−1,xn,z))]
r

≤ [θ (d(xn−1,xn−2,z))]
r2

...

≤ [θ(d(x0,x1,z))]
rn
,(11)
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since r < 1, it follows that as n→ ∞, we get θ (d(xn+1,xn,z))→ 1 thus d(xn+1,xn,z)→ 0. We

now show that {xn}n∈N is a Cauchy sequence. It follows from the property of θ that from

k ∈ (0,1) and l ∈ (0,∞) that

lim
n→∞

θ(d(xn,xn+1,z))−1
[d(xn,xn+1,z)]k

= l.(12)

For 0 < λ < l, by the definition of a limit there exists n1 ∈ N such that

λ <
θ(d(xn,xn+1,z))−1

[d(xn,xn+1,z)]k

λ [d(xn,xn+1,z)]k ≤ θ(d(xn,xn+1,z)).(13)

From inequality (11), we get

n[d(xn,xn+1,z)]k < nλ
−1(θ(d(xn,xn+1,z)))−1

≤ nλ
−1 [θ(d(x0,x1,z))]

rn
−1(14)

for all n > n1 which yields that

lim
n→∞

n[d(xn,xn+1,z)]k = 0.(15)

Hence, there exists n2 ∈ N such that

n[d(xn,xn+1,z)]k ≤ 1,(16)

which implies that

d(xn,xn+1,z)≤
1
1
nk

,(17)

for all n > n2. For m ∈ N, we obtain

d(xn,xn+m,z)

≤ αd(xn,xn+m,xn+1)+βd(xn+m,z,xn+1)+ γd(z,xn,xn+1)

≤max{α,β ,γ}(d(xn,xn+m,xn+1)+d(xn+m,z,xn+1)+d(z,xn,xn+1))

≤max{α,β ,γ}
(

2

n
1
k
+d(xn+m,z,xn+1)

)
≤max{α,β ,γ}

(
2

n
1
k
+αd(xn+m,z,xn+2)+βd(z,xn+1,xn+2)+ γd(xn+1,xn+m,xn+2)

)
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≤max{α,β ,γ}

(
max{α,β ,γ} 2

n
1
k
+max{α,β ,γ}

(
2

(n+1)
1
k
+d(xn+m,z,xn+2)

))

= (max{α,β ,γ})2

(
2

n
1
k
+

2

(n+1)
1
k
+d(xn+m,z,xn+2)

)

≤ (max{α,β ,γ})m+1

(
2

n
1
k
+

2

(n+1)
1
k
+ · · ·+ 2

(n+m)
1
k

)

= (max{α,β ,γ})m+1
n+m

∑
j=n

2

j
1
k

≤ (max{α,β ,γ})m+1 2
∞

∑
j=n

1

j
1
k
.

Based on the convergence of the series ∑
∞
j=n

1

j
1
k

, since 0 < 1
j < 1, we conclude that {xn}n∈N is a

Cauchy sequence in X . Since (X ,d) is a complete generalized b2-metric space there exist u ∈ X

such that u = limn→∞ xn. We show that u is a fixed of T ,

θ(d(xn+1,Tu,z))

= θ(d(T xn,Tu,z))

≤ [θ max{(d(xn,u,z),d(xn,T xn,z),d(u,Tu,z)}]r

Taking the limits on both side we get

θ(d(u,Tu,z))≤ [θ(d(u,Tu,z))]r(18)

which is a contradication, unless d(u,Tu,z) = 0, u = Tu. To prove the uniqueness, we assume

that Tu′′ = u′′ 6= u′ = Tu′:

θ(d(u′,u′′,z)) = θ(d(Tu′,Tu′′,z))

≤
[
θ
(
max

{
d(u′,u′′,z),d(u′,Tu′,z),d(u′′,Tu′′,z)

})]r(19)

It follows that

θ(d(u′,u′′,z))≤
[
max

{
θ(d(u′,u′′,z))

}]r
,

which is a contradiction, since 0 < r < 1, thus u′ = u′′. �

The following theorem provides a θ -type contraction of the principle result found in [12].
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Theorem 2.5. Let (X ,d) be a complete generalized b2-metric space and a mapping T : X → X

satisfying:

θ(d(T x,Ty,z))

≤ α1θ(d(x,y,z))+α2θ(d(x,T x,z))+α3θ(d(y,Ty,z))+α4θ(d(x,Ty,z))

+α5θ(d(y,T x,z))(20)

for all x,y,z ∈ X , where α1 +α2 +α3 +α4 +α5 < 1, and

θ : [0,∞)→ [0,∞) is a function satisfying the following conditions:

(i) θ is continuous and non-decreasing.

(ii) for each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 0 ⇐⇒ lim
n→∞

tn = 0.

(iii) there exists k ∈ (0,1) and l ∈ (0,∞) such that limt→0+
θ(t)
tk = l.

Then T has a unique fixed point in X.

Proof. For x,y,z ∈ X ,

θ(d(T x,Ty,z))

≤ α1θ(d(x,y,z))+α2θ(d(x,T x,z))+α3θ(d(y,Ty,z))+α4θ(d(x,Ty,z))

+α5θ(d(y,T x,z)).(21)

It follows that

θ(d(Ty,T x,z))

≤ α1θ(d(y,x,z))+α2θ(d(y,Ty,z))+α3θ(d(x,T x,z))+α4θ(d(y,T x,z))

+α5θ(d(x,Ty,z)).(22)

Adding (21) and (22) and by the symmetry of the metric, we get

θ(d(T x,Ty,z))

≤ α1θ(d(x,y,z))+
α2 +α3

2
[θ(d(x,T x,z))+θ(d(y,Ty,z))]
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+
α4 +α5

2
[θ(d(x,Ty,z))+θ(d(y,T x,z))] .(23)

Taking y = T x in (23), we get

θ(d(T x,T 2x,z))

≤ α1θ(d(x,T x,z))+
α2 +α3

2
[
θ(d(x,T x,z))+θ(d(T x,T 2x,z))

]
+

α4 +α5

2
[
θ(d(x,T 2x,z))+θ(d(T x,T x,z))

]
.(24)

Replacing z by T x, (24) reduces to(
1− α2 +α3

2

)
θ(d(T x,T 2x,z))

≤
(

α1 +
α2 +α3

2

)
[θ(d(x,T x,z))]

+
α4 +α5

2
[
θ(d(x,T 2x,z))

]
.(25)

It follows that

θ(d(T x,T 2x,z))

≤
(

2α1 +α2 +α3

2−α2−α3

)
[θ(d(x,T x,z))]

+
α4 +α5

2−α2−α3

[
θ(d(x,T 2x,z))

]
(26)

Using the modified triangle inequality, we obtain

θ(d(T 2x,x,z))≤ αθ(d(T 2x,x, t))+βθ(d(x,z, t))+ γθ(d(z,T 2x, t))(27)

Taking t = T x, inequality (27) becomes

θ(d(T 2x,x,z))≤ αθ(d(T 2x,x,T x))+βθ(d(x,z,T x))+ γθ(d(z,T 2x,T x)).(28)

Rearrange terms, and using inequality (26),we get

θ(d(T 2x,x,z))−αθ(d(T 2x,x,T x))−βθ(d(x,z,T x))

≤ γθ(d(z,T 2x,T x))

≤ γ

(
2α1 +α2 +α3

2−α2−α3

)
[θ(d(x,T x,z))]
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+ γ

(
α4 +α5

2−α2−α3

)[
θ(d(x,T 2x,z))

]
.(29)

It follows that (
1− γ

(
α4 +α5

2−α2−α3

))[
θ(d(x,T 2x,z))

]
−αθ(d(T 2x,x,T x))

≤
(

γ

(
2α1 +α2 +α3

2−α2−α3

)
+β

)
[θ(d(x,T x,z))] .

(30)

Replacing z = T x in (30),(
1− γ

(
α4 +α5

2−α2−α3

)
−α

)
[θ(d(T 2x,x,T x))]

≤
(

γ

(
2α1 +α2 +α3

2−α2−α3

)
+β

)
[θ(d(x,T x,T x))]

(31)

It follows that (
1− γ

(
α4 +α5

2−α2−α3

)
−α

)
[θ(d(T 2x,x,z))]

≤
(

γ

(
2α1 +α2 +α3

2−α2−α3

)
+β

)
[θ(d(x,T x,z))] .

(32)

Substituting (32) into (26), we get

θ(d(T x,T 2x,z))

≤

2α1 +α2 +α3

2−α2−α3
+

α4 +α5

2−α2−α3


(

γ

(
2α1+α2+α3

2−α2−α3

)
+β

)
(

1− γ

(
α4+α5

2−α2−α3

)
−α

)
θ(d(x,T x,z))

≤ µθ(d(x,T x,z)),(33)

where µ =

(
2α1+α2+α3

2−α2−α3
+ α4+α5

2−α2−α3

( (
γ

(
2α1+α2+α3

2−α2−α3

)
+β

)
(

1−γ

(
α4+α5

2−α2−α3

)
−α

)
))

< 1. Let x0 ∈ X be arbitrary. Then

the sequence {xn}n∈N, where xn = T xn−1 = T nx0 is a Cauchy sequence in X . If xn−1 = xn for

some n ∈ N then {xn}n∈N is a Cauchy sequence. To prove that {xn}n∈N is a Cauchy sequence

we suppose that xn−1 6= xn for n ∈ N and let x = xn−1 in (33), then we get
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θ(d(xn,xn+1,z)) = θ(d(T xn−1,T (T xn−1),z))

≤ µθ(d(xn−1,T xn−1,z)) = µθ(d(xn−1, ,xn,z))

since µ < 1 and θ is an increasing function it follows that d(xn,xn+1,z) ≤ d(xn,xn−1,z) thus

{d(xn,xn+1,z)}n∈N is a decreasing sequence. Next we show that d(xn,xn+1,z)→ 0 as n→ ∞.

Recursively, using (33), we get

θ (d(xn+1,xn,z))

≤ µθ (d(xn−1,xn,z))

≤ (µ)2
θ (d(xn−1,xn−2,z))

...

≤ (µ)n
θ(d(x0,x1,z)),(34)

since µ < 1, it follows that as n→ ∞, we get θ (d(xn+1,xn,z))→ 0 thus d(xn+1,xn,z)→ 0.

We now show that {xn}n∈N is a Cauchy sequence. It follows from the property of θ that from

k ∈ (0,1) and l ∈ (0,∞) that

lim
n→∞

θ(d(xn,xn+1,z))
[d(xn,xn+1,z)]k

= l.(35)

For 0 < λ < l, by the definition of a limit there exists n1 ∈ N such that

λ <
θ(d(xn,xn+1,z))
[d(xn,xn+1,z)]k

λ [d(xn,xn+1,z)]k ≤ θ(d(xn,xn+1,z)).(36)

From inequality (34), we get

n[d(xn,xn+1,z)]k < nλ
−1(θ(d(xn,xn+1,z)))

≤ nλ
−1 (µ)n

θ(d(x0,x1,z))(37)

for all n > n1 which yields that

lim
n→∞

n[d(xn,xn+1,z)]k = 0.(38)
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Hence, there exists n2 ∈ N such that

n[d(xn,xn+1,z)]k ≤ 1,(39)

which implies that

d(xn,xn+1,z)≤
1
1
nk

(40)

for all n > n2. For m ∈ N, we obtain

d(xn,xn+m,z)

≤ αd(xn,xn+m,xn+1)+βd(xn+m,z,xn+1)+ γd(z,xn,xn+1)

≤max{α,β ,γ}(d(xn,xn+m,xn+1)+d(xn+m,z,xn+1)+d(z,xn,xn+1))

≤max{α,β ,γ}
(

2

n
1
k
+d(xn+m,z,xn+1)

)
≤max{α,β ,γ}

(
2

n
1
k
+αd(xn+m,z,xn+2)+βd(z,xn+1,xn+2)+ γd(xn+1,xn+m,xn+2)

)

≤max{α,β ,γ}

(
max{α,β ,γ} 2

n
1
k
+max{α,β ,γ}

(
2

(n+1)
1
k
+d(xn+m,z,xn+2)

))

= (max{α,β ,γ})2

(
2

n
1
k
+

2

(n+1)
1
k
+d(xn+m,z,xn+2)

)

≤ (max{α,β ,γ})m+1

(
2

n
1
k
+

2

(n+1)
1
k
+ · · ·+ 2

(n+m)
1
k

)

= (max{α,β ,γ})m+1
n+m

∑
j=n

2

j
1
k

≤ (max{α,β ,γ})m+1 2
∞

∑
j=n

1

j
1
k
.

Based on the convergence of the series ∑
∞
j=n

1

j
1
k

, since 0 < 1
j < 1, we conclude that {xn}n∈N is a

Cauchy sequence in X . Since (X ,d) is a complete generalized b2-metric space there exist u ∈ X

such that u = limn→∞ xn. We show that u is a fixed of T ,

θ(d(xn+1,Tu,z))

= θ(d(T xn,Tu,z))
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≤ α1θ(d(x,y,z))+α2θ(d(x,T x,z))+α3θ(d(y,Ty,z))+α4θ(d(x,Ty,z))

+α5θ(d(y,T x,z)).

Taking the limits on both sides, we get

θ(d(u,Tu,z))≤ (α3 +α4)θ(d(u,Tu,z)),(41)

which is a contradication, since α3 +α4 < 1, unless d(u,Tu,z) = 0, u = Tu. To prove the

uniqueness, we assume that Tu′′ = u′′. Then using inequality (20)

θ(d(u′,u′′,z)) = θ(d(Tu′,Tu′′,z))

≤ α1θ(d(u′,u′′,z))+α2θ(d(u′,Tu′,z))+α3θ(d(u′′,Tu′′,z))

+α4θ(d(u′,Tu′′,z))+α5θ(d(u′′,Tu′,z))

= α1θ(d(u′,u′′,z))+α4θ(d(u′,Tu′′,z))+α5θ(d(u′′,Tu′,z))

= α1θ(d(u′,u′′,z))+α4θ(d(Tu′,T 2u′′,z))+α5θ(d(Tu′′,T 2u′,z))

≤ α1θ(d(u′,u′′,z))+α4µθ(d(u′,Tu′,z))+α5θ(d(u′′,Tu′′,z)).

It follows that

θ(d(u′,u′′,z))≤ α1θ(d(u′,u′′,z)),

which is a contradiction, since α1 < 1, unless d(u′,u′′,z) = 0, i.e., u′ = u′′. �
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