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Abstract. In this paper, we discuss the unique common fixed point of two pair of weakly compatible mappings on

a complete multiplicative b-metric space, which satisfies the following inequality:

d(Sx,Ty)≤ [k{max{d(Ax,By),d(Ax,Sx),d(By,Ty),d(Sx,By),d(Ax,Ty)}}]λ ,

where A and S are weakly compatible, B and T also are weakly compatible. Our results improve and generalize

the results of X. He et al. [3].
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1. INTRODUCTION

The study for the fixed point of contractive mappings is a famous topic in metric spaces.

fixed point theory is, in fact, a simple, powerful, and useful tool for research area. In addition to

an acceptable contraction condition, the metrical common fixed point theorems usually include
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constraints on commutativity, continuity, completeness, and appropriate containment of ranges

of detailed maps. Since Banach [1] proved the Banach contraction principle in 1922.

Bashirov [2] introduced the usefullness of multiplicative calculus with some interesting appli-

cations. With the help of multiplicative absolute value function, they defined the multiplicative

distance between two non-negative real numbers as well as between two positive square matri-

ces. In 1976, Jungck [4] introduced the notion of commuting maps to prove the existence of a

common fixed point theorems on a metric space

In 2012, Ozavsar et al.[6] investigate the multiplicative metric space by remarking its topo-

logical properties and introduced the concept of multiplicative contraction mapping and some

fixed-point theorem of multiplicative, contraction mappings on multiplicative metric space.

They recently proved a common fixed-point theorem for four self-mappings in multiplicative

metric spaces.

We present some definition and result in common fixed-point theorem for compatible map-

pings in complete multiplicative b-metric space. For, we have introduced the notion of b-metric

in multiplicative metric space.

2. PRELIMINARIES

Definition 2.1. [3] Let X be a nonempty set. A multiplicative metric is a mapping d : X×X →

R+ satisfying the following conditions:

(i) d(x,y)≥ 1 for all x,y ∈ X and d(x,y) = 1 if and only if x = y;

(ii) d(x,y) = d(y,x) for all x,y ∈ X ;

(iii) d(x,y)≤ d(x,z)d(z,y) for all x,y ∈ X ,

(multiplicative triangle inequality).

We use the following definition for our main result:

Definition 2.2. Let X be a nonempty set. A multiplicative b-metric is a mapping d : X×X→R+

satisfying the following conditions:

[B1] d(x,y)≥ 1 for all x,y ∈ X and d(x,y) = 1 if and only if x = y;

[B2] d(x,y) = (y,x) for all x,y ∈ X ;
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[B3] d(x,y)≤ b.d(x,z).d(z,y) for all x,y,z ∈ X (multiplicative triangle inequality),

where b≥ 1.

Definition 2.3. [3] Let (X ,d) be a multiplicative metric space, {xn} be a sequence in X and

x ∈ X . If for every multiplicative open ball Bε(x) = {y | d(x,y) < ε}, ε > 1, there exists a

natural number N such that n≥N , then xn ∈B(x). The sequence {xn}is said to be multiplicative

converging to x, denoted by xn→ x (n→ ∞).

Definition 2.4. [3] Let (X ,d) be a multiplicative metric space and {xn} be a sequence in X . The

sequence is called a multiplicative Cauchy sequence if it holds that for all ε > 1 , there exists

N ∈ N such that d(xn,xm)< ε for all m,n > N.

Definition 2.5. [3] We call a multiplicative metric space complete if every multiplicative

Cauchy sequence in it is multiplicative convergence to x ∈ X .

Definition 2.6. [3] Suppose that S,T are two self-mappings of a multiplicative metric space

(X ,d); S,T are called commutative mappings if it holds that for all x ∈ X , ST x = T Sx.

Definition 2.7. [3] Suppose that S,T are two self-mappings of a multiplicative metric space

(X ,d); S,T are called weak commutative mappings if it holds that for all x ∈ X , d(ST x,T Sx)≤

d(Sx,T x).

Definition 2.8. [3] Let (X ,d) be a multiplicative metric space. A mapping f : X → X is called

a multiplicative contraction if there exists a real constant λ ∈ [0,1) such that d( f (x1), f (x2))≤

d(x1,x2)
λ for all x,y ∈ X .

Definition 2.9. [3] Suppose that f and g are two self-maps of a multiplicative metric space

(X ,d). The pair ( f g) are called weakly compatible mappings if f x = gx, x ∈ X implies f gx =

g fx. That is, d( f x,gx) = 1⇒ d( f gx,g f x) = 1.

Proposition 2.10. [5] Let S and A be compatible mappings of a multiplicative metric space

(X ,d) into itself. If for some t ∈ X , then SAt = SSt = AAT = ASt.

Proposition 2.11. [5] Let S and A be compatible mappings of a multiplicative metric space

(X ,d) into itself. Suppose that {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Axn = t
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for some t ∈ X .

Then we have

1. limn→∞ ASxn = St if S is continuous at t;

2. limn→∞ SAxn = At if A is continuous at t;

3. SAt = ASt and St = At if S and A is continuous at t.

Proposition 2.12. [6] Let (X ,d) be a multiplicative metric space, {xn} be a sequence in X and

x ∈ X . Then {xn}→ x (n→ ∞) if and only if d(xn,x)→ 1 (n→ ∞).

Proposition 2.13. [6] Let (X ,d) be a multiplicative metric space, {xn} be a sequence in X and

x ∈ X . Then {xn} is a multiplicative Cauchy sequence if and only if d(xn,xm)→ 1 (n,m→ ∞).

Proposition 2.14. [6] Let (X ,dx) be a multiplicative metric space, {xn} and {yn} be two se-

quences in X such that xn→ x,yn→ y (n→ ∞), x,y ∈ X . Then d(xn,yn)→ d(x,y) (n→ ∞).

Bashirov [2] proved the result i 2008 [see Theorem 2.1]. In 2012, Ozavsar [6] proved the

multiplicative contraction mapping [see Theorem 2.2] and in 2014, X. He. [3] Proved the fixed

point result using weakly commuting in mappings [see Theorem 2.3].

3. MAIN RESULTS

In this section, we prove some common fixed point results for generalized contaction map-

pings satisfying compatible conditions:

Theorem 3.1. Let S,T,A and B be self-mappings of a complete multiplicative b-metric space

X; which satisfy the following conditions:

(i) SX ⊂ BX ,T X ⊂ AX;

(ii) A and S are weakly compatible, B and T also are weakly compatible;

(iii) One of S, T , A and B is continuous;

(iv) d(Sx,Ty)≤ [k{max{d(Ax,By),d(Ax,Sx),d(By,Ty),d(Sx,By),d(Ax,Ty)}}]λ

Then S, T, A and B have a unique common fixed point

where b≥ 1 such that limm,n→∞(kb)
h

1−h
(m−n)

= 1.
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Proof. Since SX ⊂ BX , and T (X)⊂ AX , for an arbitrary chosen point x0 in X we obtain x1 in

X. For this x1 ∈ X , we may obtain x2 ∈ X ; etc. Continuing in this way we obtain a sequence

{yn} ∈ X ,

∃x2 ∈ X such that T x1 = Ax2 = y1,. . . ;

∃x2n+1 ∈ X such that Bx2n+1 = y2n,

∃x2n+2 ∈ X such that T x2n+1 = Ax2n+2 = y2n+1,. . . ; ∀n = 0,1,2....∞.

define a sequence {yn} ∈ X .

In order to show {yn} Cauchy sequence, let us put x2n for x, and x2n+1 for y in condition (iv),

and using (1) we have

d(y2n,y2n+1) = d(Sx2n,T x2n+1)

≤ [k (max{d(Ax2n,Bx2n+1),d(Ax2n,Sx2n),d(Bx2n+1,T x2n+1),d(Sx2n,Bx2n+1),

d(Ax2n,T x2n+1)}]λ

= [k (max{d(y2n−1,y2n),d(y2n−1,y2n),d(y2n,y2n+1),d(y2n,y2n),d(y2n−1,y2n+1)})]λ

≤ [k (max{d(y2n−1,y2n),d(y2n−1,y2n),d(y2n,y2n+1),

1,d(y2n−1,y2n) . d(y2n,y2n+1)})]λ

≤ [k (max{bd(y2n−1,y2n) . d(y2n,y2n+1),bd(y2n−1,y2n) .d(y2n,y2n+1),

bd(y2n−1,y2n) . d(y2n,y2n+1),1,bd(y2n−1,y2n) . d(y2n,y2n+1)})]λ

(using B3,as d(x,y)≤ bd(x,z).d(z,y)∀x ∈ X)

= [k (max{bd(y2n−1,y2n) . d(y2n,y2n+1)})]λ , (using B1,as d(x,y)≥ 1∀x ∈ X)

≤ kλ bλ [d(y2n−1,y2n)]
λ . [d(y2n,y2n+1)]

λ

=⇒ d1−λ (y2n,y2n+1)≤ kλ bλ . dλ (y2n−1,y2n)

=⇒ d(y2n,y2n+1)≤ (kb)
λ

1−λ d
λ

1−λ (y2n−1,y2n).

Let λ

1−λ
= h, where λ ∈ (0, 1

2) then

d(y2n,y2n+1)≤ (kb)hdh(y2n−1,y2n).

Similarly, putting x = x2n+2, y = x2n+1 on (iv), we may obtain
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d(y2n+1,y2n+2)

= d(Sx2n+2,T x2n+1)

≤ [k max{d(Ax2n+2,Bx2n+1),d(Ax2n+2Sx2n+2),d(Bx2n+1,T x2n+1),d(Sx2n+2,Bx2n+1),

d(Ax2n+2,T x2n+1)}}]λ

≤ [k (max{d(y2n+1,y2n),d(y2n+1,y2n+2),d(y2n,y2n+1),d(y2n+2,y2n),d(y2n+1,y2n+1)})]λ

≤ [k (max{d(y2n,y2n+1),d(y2n+1,y2n+2),d(y2n,y2n+1).d(y2n,y2n+1),

d(y2n+1,y2n+2),1)})]λ

≤ [k (max{bd(y2n,y2n+1).d(y2n+1,y2n+2),bd(y2n,y2n+1).d(y2n+1,y2n+2),bd(y2n,y2n+1).

d(y2n+1,y2n+2),bd(y2n,y2n+1).d(y2n+1,y2n+2),1)})]λ

= [k (max{bd(y2n,y2n+1).d(y2n+1,y2n+2)})]λ

≤ kλ bλ [d(y2n,y2n+1)]
λ .[d(y2n+1,y2n+2)]

λ .

This implies that d1−λ (y2n+1,y2n+2)≤ kλ bλ . dλ (y2n+1,y2n)

d(y2n+1,y2n+2)≤ (kb)
λ

1−λ d
λ

1−λ (y2n+1,y2n).

Let λ

1−λ
= h, where λ ∈ (0, 1

2) then

(3.1) d(y2n,y2n+1)≤ (kb)h.dh(y2n−1,y2n),

(3.2) d(y2n+1,y2n+2)≤ ((kb)h.dh(y2n,y2n+1).

From (3.1) and (3.2), we obtain d(yn,yn+1) ≤ (kb)hdh(yn−1,yn), n = 1,2,3, ... which induc-

tively implies that

d(yn,yn+1)≤ (kb)h[(kb)hdh(yn−2,yn−1)]
h

= (kb)h+h2
[dh2

(yn−2,yn−1)]

≤ (kb)h+h2
[(kb)hdh(yn−3,yn−2)]

h2

= (kb)h+h2+h3
[dh3

(yn−3,yn−2)]

...
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≤ (kb)h+h2+h3+...+hn
[dhn

(y0,y1)]

≤ (kb)
h

1−h [dhn
(y0,y1)], h+h2 +h3 + ...+hn ≤ h

1−h
.

Let m,n ∈ N such that m≥ n, then for Cauchy sequence, we have

d(ym,yn)≤ d(ym,ym−1).d(ym−1,ym−2)...d(yn+1,yn)

≤ (kb)
h

1−h dhm−1
(y0,y1).(kb)

h
1−h dhm−2

(y0,y1)...(kb)
h

1−h dhn
(y0,y1)]

≤ {(kb)
h

1−h }(m−n){dh[(m−1)+(m−2)+...+n]
(y0,y1)}

= {(kb)
h

1−h }(m−n){dh(m−n)[(m−1)− 1
2 (m−n−1)]

(y0,y1)}

≤ {(kb)
h

1−h }(m−n)dhm(m−n)
(y0,y1), since (m−1)+(m−2)+ ...+n≤ m(m−n) where m > n,

= Bdhm(m−n)
(y0,y1), where B = {(kb)

h
1−h }(m−n)→ 1 as n→ ∞.

This implies that d(ym,yn)→ 1 as m,n→ ∞. Hence {yn} is a multiplicative Cauchy sequence

in X .

By the completeness of X , there exists z ∈ X such that yn→ z as n→ ∞.

We claim that z is a coincidence point of the pair A,S for, putting x = z and y = x2n+1 in the

inequality (1) we have;

Moreover, since

{Sx2n}= {Bx2n+1}= {y2n} and {T x2n+1}= {Ax2n+2}= {y2n+1},

are subsequence of {yn}, so we obtain

lim
n→∞

Sx2n = lim
n→∞

Bx2n+1 = lim
n→∞

T x2n+1 = lim
n→∞

Ax2n+2 = z.

Taking condition (ii) and (iii) we obtain following cases:

Case 1: Suppose that A is continuous then

lim
n→∞

ASx2n = lim
n→∞

A2x2n = Az.

Since A and S are weakly compatible, then

d(ASx2n,SAx2n) = d(Sx2n,Ax2n).

Let n→ ∞, we get limn→∞ d(SAx2n,Az) = d(z,z) = 1, i.e., limn→∞ SAx2n = Az.
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Putting Ax2n and x2n+1, respectively for x and y in condition (iv) of Theorem 3.1, and using

the continuity of A, we respectively obtain,

d(SAx2n,T x2n+1)≤ [k{max{d(A2x2n,Bx2n+1),d(A2x2n,SAx2n),

d(Bx2n+1,T x2n+1),d(SAx2n,Bx2n+1),d(A2x2n,T x2n+1)}}]λ .

Let n→ ∞, we can obtain

d(Az,z)≤ [k{max{d(Az,z),d(Az,Az),d(z,z),d(Az,z),d(Az,z)}}]λ

= [k{max{d(Az,z),1}}]λ

(dropping 1 as d(x,y)≥ 1 ∀x,y ∈ X in the multiplicative metric space)

= kλ .dλ (Az,z).

This implies that d(Az,z) = 1 i.e., Az = z,

d(Sz,T x2n+1)

≤ [k{max{d(Az, ,Bx2n+1),d(Az,Sz),d(Bx2n+1,T x2n+1),d(Sz,Bx2n+1),d(Az,T x2n+1)}}]λ .

Let n→ ∞ we can obtain

d(Sz,z)≤ [k{max{d(z,z),d(z,Sz),d(z,z),d(Sz,z),d(z,z)}}]λ

= [k{max{d(Sz,z),1}}]λ

(dropping 1 as d(x,y)≥ 1 ∀x,y ∈ X in the multiplicative metric space)

= kλ .dλ (Sz,z),

This implies that d(Sz,z) = 1,

i.e. Sz=z. On the other hand,

since z = Sz ∈ SX ⊆ BX , so ∃z∗ ∈ X such that z = Sz = Bz∗

d(z,T z∗) = d(Sz,T z∗)

≤ [k{max{d(Az,Bz∗),d(Az,Sz),d(Bz∗,T z∗),d(Sz,Bz∗),d(Az,T z∗)}}]λ

= [k{max{d(z,T z∗),1}}]λ

= kλ .dλ (z,T z∗),
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which implies d(z,T z∗) = 1 i.e., T z∗ = z.

Since B and T are weakly compatible mappings then

d(Bz,T z) = d(BT z∗,T Bz∗) = d(Bz∗,T z∗) = d(z,z) = 1,

so Bz = T z,

d(Sx2n,T z)≤ [k{max{d(Ax2n,Bz),d(Ax2n,Sx2n),d(Bz,T z),d(Sx2n,Bz),d(Ax2n,T z)}}]λ .

Let n→ ∞ we can obtain

d(z,T z)≤ [k{max{d(z,T z),d(z,z),d(T z,T z),d(z,T z),d(z,T z)}}]λ

= [k{max{d(z,T z),1}}]λ

= kλ .dλ (z,T z).

which implies d(T z,z) = 1 i.e., T z = z. So z is a common fixed point of S, T , A and B.

Case 2: Suppose that B is continuous , we can obtain the same result by the way of case 1.

Case 3: Suppose that S is continuous then limn→∞ SAx2n = limn→∞ S2x2n = Sz.

Since A and S are weakly compatible then d(ASx2n,SAx2n) = d(Sx2n,Ax2n).

Let n→ ∞ we get then limn→∞ (ASx2n,Sz) = d(z,z) = 1, i.e., limn→∞ ASx2n = Sz,

d(S2x2n,T x2n+1)≤ [k{max{d(ASx2n,Bx2n+1),d(ASx2n,S2x2n),d(Bx2n+1,T x2n+1),

d(S2x2n,Bx2n+1),d(ASx2n,T x2n+1)}}]λ .

Let n→ ∞ we can obtain

d(Sz,z)≤ [k{max{d(Sz,z),d(Sz,Sz),d(z,z),d(Sz,z),d(Sz,z)}}]λ

= [k{max{d(Sz,z),1}}]λ

= kλ dλ (Sz,z),

which implies d(Sz,z) = 1 i.e., Sz = z.

z = Sz ∈ SX ⊆ BX , so ∃z∗ ∈ X such that z = Bz∗

d(S2x2n,T z∗)≤ [k{max{d(ASx2n,Bz∗),d(ASx2n,S2x2n),d(Bz∗,T z∗),d(S2x2n,Bz∗),d(ASx2n,T z∗)}}]λ
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d(z,T z∗) = d(Sz,T z∗)

≤ k{max{d(Sz,Bz∗),d(Sz,Sz),d(z,T z∗),d(Sz,z),d(Sz,T z∗)}}]λ

= [k{max{d(z,T z∗),1}}]λ

= kλ .dλ (z,T z∗),

which implies that d(z,T z∗) = 1, i.e., T z∗ = z = Bz∗.

Since T and B are weakly compatible,then

d(T z,Bz) = d(T Bz∗,BT z∗) = d(T z∗,Bz∗) = d(z,z) = 1, so Bz = T z,

d(Sx2n,T z)≤ [k{max{d(Ax2n,Bz),d(Ax2n,Sx2n),d(Bz,T z),d(Sx2n,Bz),d(Ax2n,T z)}}]λ .

Let n→ ∞ we can obtain

d(z,T z)≤ [k{max{d(z,Bz),d(z,z),d(Bz,T z),d(z,T z),d(z,Bz)}}]λ

= [k{max{d(z,T z),1}]λ

= kλ .dλ (z,T z).

which implies d(z,T z) = 1 i.e., T z = z.

z = T z ∈ T X ⊆ AX , so ∃z∗∗ ∈ X , such that z = Az∗∗

d(Sz∗∗,z) = d(Sz∗∗,T z)

≤ [k{max{d(Az∗∗,Bz),d(Az∗∗,Sz∗∗),d(Bz,T z),d(Sz∗∗,Bz),d(Az∗∗,T z)}}]λ

= [k{max{d(z,z),d(z,Sz∗∗),d(z,z),d(Sz∗∗,z),d(z,z)}}]λ

= [k{max{d(Sz∗∗,z),1}}]λ

= kλ .dλ (Sz∗∗,z).

This implies that d(Sz∗∗,z) = 1 i.e., Sz∗∗ = z.

Since S and A are weakly compatible, then

d(Az,Sz) = d(ASz∗∗,SAz∗∗) = d(Az∗∗,Sz∗∗) = d(z,z) = 1, so Az = Sz,

We obtain Sz = T z = Az = Bz = z,

so z is common fixed point of S, T , A and B.

Case 4: Suppose that T is continuous, we can obtain the same result by the way of case 3.
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In addition we prove that S,T , A and B have a unique common fixed point. suppose that w ∈ X

is also a common fixed point of S,T ,A and B, then we obtain

d(z,w) = d(Sz,Tw)

≤ [k{max{d(Az,Bw),d(Az,Sz),d(Bw,Tw),d(Sz,Bw),d(Az,Tw)}}λ

= [k{max{d(z,w),1}}]λ

= kλ .dλ (z,w).

This implies that d(z, w)=1 and so w=z.

Therefore z is a unique common fixed point of A,B,S,T ⊂ X . �

Corollary 3.2. Let X ,d be a complete multiplicative b-metric space S,T,A and B be four map-

pings of X into itself.

Suppose that there exists λ ∈ (0, 1
2) ∀x,y ∈ X ,

such that S(X)⊂ B(X),T (X)⊂ A(X) and

d(Spx,T qy)≤ kλ{max{dλ (Ax,By),dλ (Ax,Spx),dλ (By,T qy),dλ (Spx,By),dλ (Ax,T qy)}},

Assume one of the following conditions is satisfied:

(a) either A or S is continuous the pair S,A and the pair T,B are commuting mappings;

(b) either A, B, S or T is continuous;

Then S,T,AandB have a unique common fixed point

where b≥ 1 such that limn→∞ bn = B < 1.

Corollary 3.3. Let X ,d be a complete multiplicative b-metric space S,T,AandB be four map-

pings of X into itself.

Suppose that there exists λ ∈ (0, 1
2) ∀x,y ∈ X ,

such that S(X)⊂ B(X),T (X)⊂ A(X) and

d(Sx,Ty)≤ kλ{max{dλ (Ax,By),dλ (Ax,Sx),dλ (By,Ty),dλ (Sx,By),dλ (Ax,Ty)}},

Assume one of the following conditions is satisfied:

(a) either A or S is continuous the pair S,A and the pair T,B are weakly compatible;

(b) either B or T is continuous the pair (T,B) and the pair (S,A) are weakly compatible.
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Then S,T,AandB have a unique common fixed point

where b≥ 1 such that limn→∞ bn = B < 1.

Corollary 3.4. Let X ,d be a complete multiplicative b-metric space S,T,A and B be four map-

pings of X into itself.

Suppose that there exists λ ∈ (0, 1
2) ∀x,y ∈ X ,

such that S(X)⊂ B(X),T (X)⊂ A(X) and

d(Spx,T qy)≤ kλ{max{dλ (Ax,By)+dλ (Ax,Spx)+dλ (By,T qy)+dλ (Spx,By)+dλ (Ax,T qy)}}

for all x,y ∈ X. Here a1,a2,a3,a4,a5 ≥ 0 and 0≤ a1+a2+a3+a4+a5 ≤ 1 Assume one of the

following conditions is satisfied:

(a) either A or S is continuous the pair S,A and the pair T,B are commuting mappings;

(b) either A, B, S or T is continuous;

Then S,T,AandB have a unique common fixed point.

Corollary 3.5. Let X ,d be a complete multiplicative b-metric space S,T,AandB be four map-

pings of X into itself.

Suppose that there exists λ ∈ (0, 1
2) ∀x,y ∈ X ,

such that S(X)⊂ B(X),T (X)⊂ A(X) and

d(Sx,Ty)≤ kλ{max a1dλ (Ax,By)+a2dλ (Ax,Sx)+a3dλ (By,Ty)+a4dλ (Sx,By)+a5dλ (Ax,Ty)}}

for all x,y ∈ X. Here a1,a2,a3,a4,a5 ≥ 0 and 0 ≤ a1 +a2 +a3 +a4 +a5 ≤ 1. Assume one of

the following conditions is satisfied:

(a) either A or S is continuous the pair (S,A) and the pair (T,B) are weakly compatible;

(b) either B or T is continuous the pair (T,B) and the pair (S,A) are weakly compatible.

Then S,T,A and B have a unique common fixed point.

Corollary 3.6. Let (X ,d) be a complete multiplicative b-metric space S,T,A and B be four

mappings of X into itself.

Suppose that there exists λ ∈ (0, 1
2) and p,q ∈ Z+

d(T px,T qy) ∈ kλ{max (dλ (x,y),dλ (x,T px),dλ (y,T qy),dλ (T px,y),dλ (x,T qy)}})

for all x,y ∈ X. Then T have a unique fixed point.
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Corollary 3.7. Let (X ,d) be a complete multiplicative b-metric space S,T,A and B be four

mappings of X into itself.

Suppose that there exists λ ∈ (0, 1
2) such that

d(T x,Ty)≤ kλ{max (a1dλ (x,y)+a2dλ (x,T x)+a3dλ (y,Ty)+a4dλ (T x,y)+a5dλ (x,Ty))}}

for all x,y ∈ X. Here a1,a2,a3,a4,a5 ≥ 0 and 0≤ a1 +a2 +a3 +a4 +a5 ≤ 1.

Then T have a unique fixed point.
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