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Abstract. Let X,Y be two real Lp-spaces (p > 0), then a surjective map f : SX → SY satisfies

min{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= min{‖x+ y‖,‖x− y‖} (x,y ∈ SX ),

if and only if f is a multiplication of a linear isometry and a map with rang {−1,1}. It can be regarded as a new

Wigner’s theorem for real Lp-spaces (p > 0).
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1. INTRODUCTION

The metric structure of normed space affects the linear structure to some extent and has

been a topic of concern for many scholars. The classical Mazur-Ulam [17] states that every

surjective isometry between real normed spaces is automatically affine. In 1972, P. Mankiewiz

[16] showed that every surjective isometry between the open connected subsets of normed space

can be extended to a surjective affine isometry on the whole space. This means that the metric

spaces on the unit sphere of a real normed space constrains the linear structure of the whole

space. We are interested in whether the sphere can be raised for a particular space. In 1987,
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Tingley [12] first studied isometry on the unit sphere and proposed the following problem: let X

and Y be normed spaces with the unit spheres SX and SY , Assume that T : SX→ SY is a surjective

isometry. Does there exist a linear isometry T̃ : SX → SY such that T̃ |SX = T . Subsequently,

Wang [14] appears to be the first to sovle the space-specific Tingley problem and have a positive

answer.

In addition, Wigner’s[2, 5, 6, 13] theorem is associated with linear isometry mappings. The

famous wigner’s[1, 3, 4, 7, 8, 10, 11]theorem plays an important role in quantum mechanics. It

can be described in several ways, one of which is as follows: Let H and K be real or complex

Hilbert spaces and let f : H→ K be a mapping. Then f satisfies the functional equation

(1.1) |< f (x), f (y)> |= |< x,y > | (x,y ∈ H)

if and only if f is phase equivalent to a linear or conjugate linear isometry. Later, G. Maksa[6]

and Z. Pales proved the expression of wigner’s theorem on real version: let X and Y be two real

inner produce spaces.Suppose that f : X→ Y is a surjective mapping satisfying

(1.2) {‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {‖x+ y‖,‖x− y‖} (x,y ∈ X),

if and only if f is phase equivalent to a surjective linear isometry. And They asked the following

question, does it still hold true when X and Y be two normed spaces but not inner product

spaces. Recently, there was a positive answer to the above question when X and Y are real

atomic LP spaces (P > 0).

Since in the following lemma we prove that f is a max-phase-isometry but cannot be phase

equivalent to a surjective linear isometry. By Xujian Huang and Dongni[18] Tan explored min-

phase-isometries and Wigner’s theorem on real normed spaces and Xihong Jin[15] explored for

the unit sphere for LP-type space. In this article we will prove that a surjective map f : SX→ SY

satisfies if and only if f is phase equivalent to linear isometries and it can be extended to the

whole space .

2. PRELIMINARIES

Throughout this section, we consider the spaces all over the real field and denote by R the

set of of reals. This paper mainly discusses the atomic Lp-spaces on R with p > 0, p 6= 2. The
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spaces X and Y are used to denote such spaces unless otherwise stated. We use SX and SY to

denote the unit spheres of X and Y respectively. Moreover, f denotes a mapping from SX to SY .

An atomic Lp-space (p > 0) is linearly isometric to lp(Γ), where Γ is a nonempty index set.

The atomic Lp-space is

lp(Γ) = {x = ∑
γ

ξγeγ : ‖x‖= (∑
γ

|ξγ |p)
1
p < ∞, ξγ ∈ R, γ ∈ Γ},

where eγ : Γ→ R is the function for which eγ(γ) = 1,eγ(γ
′) = 0,∀γ ′ ∈ Γ,γ ′ 6= γ . For every

x = ∑γ∈Γ ξγeγ ∈ X, we denote the support of x by Γx, i.e.,

Γx = {γ ∈ Γ : ξγ 6= 0}.

Then x can be rewritten in the form x = ∑γ∈Γx ξγeγ ∈ X . For all x,y ∈ lp(Γ), if Γx∩Γy = /0, then

we say that x is orthogonal to y and write x⊥y. It should be noted that lp(Γ) for 0 < p < 1 is a

quasi-normed space but not a normed space.

Definition 2.1. We say a mapping f : SX → SY is a min-phase-isometry which satisfies

(2.1) min{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= min{‖x+ y‖,‖x− y‖} (x,y ∈ SX).

3. MAIN RESULTS

Lemma 3.1. For any two real numbers ξ and η ,

|ξ +η |p + |ξ −η |p = 2(|ξ |p + |η |p)⇔ ξ ·η = 0, p > 0, p 6= 2.

By this lemma, one can conclude the following result whose proof is obvious, and thus omit-

ted.

Lemma 3.2. [1] Let x,y be two elements in lp(Γ), where p > 1 and p 6= 2. Then, it exists two

situations:

• ‖x+ y‖p +‖x− y‖p ≥ 2(‖x‖p +‖y‖p) for all p > 2;

• ‖x+ y‖p +‖x− y‖p ≤ 2(‖x‖p +‖y‖p) for all 1 < p < 2;

The equal sign holds if and only if x⊥y.
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Lemma 3.3. Let X = lp(Γ) and Y = lp(∆),1 < p < 2. Suppose that f : SX → SY is a surjective

min-phase-isometry. Then for any x,y ∈ SX , we have

x⊥y⇔ f (x)⊥ f (y).

Proof. Let x,y ∈ SX with x = ∑γ∈Γ ξγeγ ,y = ∑γ∈Γ ηγeγ and x⊥y. Since f is a min-phase-

isometry, we have

min{‖ f (x)+ f (y)‖p,‖ f (x)− f (y)‖p}= min{‖x+ y‖p,‖x− y‖p}= 2.

Thus, ‖ f (x)+ f (y)‖p+‖ f (x)− f (y)‖p≥ 4. By Lemma 3.2, we know ‖ f (x)+ f (y)‖p+‖ f (x)−

f (y)‖p ≤ 4. So we have ‖ f (x)+ f (y)‖p +‖ f (x)− f (y)‖p = 4. In conclusion, f (x)⊥ f (y). The

proof is complete. �

Theorem 3.4. Let X and Y be inner spaces. Suppose that f : SX → SY is a min-phase-isometry.

Then there exists a function ε : SX →{−1,1} such that ε f is an isometry.

Proof. For any x,y ∈ SX , we have

< x,y >=
1
4
(‖x+ y‖2−‖x− y‖2).

Since x⊥y, we have

‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2) = 4.

Therefore

< x,y >=
1
4
(4−2‖x− y‖2) = 1− 1

2
‖x− y‖2,

or

< x,y >=
1
4
(2‖x+ y‖2−4) =

1
2
‖x+ y‖2−1.

Since f (x)⊥ f (y), we have

‖ f (x)+ f (y)‖2 +‖ f (x)− f (y)‖2 = 2(‖ f (x)‖2 +‖ f (y)‖2) = 4.

Therefore

< f (x), f (y)>=
1
4
(4−2‖ f (x)− f (y)‖2) = 1− 1

2
‖ f (x)− f (y)‖2,
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or

< f (x), f (y)>=
1
4
(2‖ f (x)+ f (y)‖2−4) =

1
2
‖ f (x)+ f (y)‖2−1.

Since

min{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= min{‖x+ y‖,‖x− y‖},

In conclusion, |< f (x), f (y)> |= |< x,y > |.

The proof is complete. �

Lemma 3.5. Let X = lp(Γ) and Y = lp(∆), p > 0, p 6= 2. Suppose that f : SX → SY is a surjec-

tive min-phase-isometry. Then

(a). f (−x) =− f (x) for all x ∈ SX .

(b). f is injective for all x ∈ SX .

(c). there is a bijection σ : Γ→ ∆ such that f (−eγ) ∈ {eσ(γ),−eσ(γ)}.

Proof. Since f is surjective, for each x ∈ SX , there is y ∈ SX such that f (y) =− f (x). It implies

that

min{‖y+ x‖,‖x− y‖}=min{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}

=min{0,‖2 f (x)‖}= 0.

So x + y = 0 or x− y = 0, which implies that y ∈ {x,−x}. Since f (x) ∈ SY , then y = −x.

Therefore, it is an odd mapping.

Let f (x1) = f (x2), we have

min{‖x1 + x2‖,‖x1− x2‖}=min{‖ f (x1)+ f (x2)‖,‖ f (x1)− f (x2‖}

=min{0,‖2 f (x1)‖}= 0.

So x1 + x2 = 0 or x1− x2 = 0, which implies that x1 ∈ {x2,−x2}. Since f (−x) = − f (x), then

x1 = x2. Hence, f is injective.

Let γ ∈ Γ and denote by ∆ f (eγ ) the support of f (eγ). For any δ ∈ ∆ f (eγ ), we can find x∈ SX such

that f (x) = eδ . For any γ ′ ∈ Γ with γ ′ 6= γ , by Lemma 3.3

f (eγ)⊥ f (eγ ′)⇒ f (x)⊥ f (eγ ′)⇒ x⊥eγ ′.
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This means x ∈ {eγ ,−eγ}, and { f (eγ), f (−eγ)} ∈ {eδ ,−eδ}. So ∆ f (eγ ) is a singleton. Now

we define an injective mapping σ : Γ→ ∆ by σ(γ) = δ . We will show that σ is a surjective

mapping. Suppose it is true, there is a δ0 ∈ ∆ such that δ0 /∈ σ(Γ). As f is surjective, there

exists y ∈ SX satisfying f (y) = eδ0 . By Lemma 3.3 again,

f (y)⊥ f (eγ)⇒ y⊥eγ , ∀γ ∈ Γ.

So y = 0, which is a contradiction. �

Lemma 3.6. Let X = lp(Γ) and Y = lp(∆), 1 < p < 2. Suppose that f : SX → SY is a surjective

min-phase-isometry. As Lemma 3.5, let σ : Γ→ ∆ be the bijection. Then for any element

x = ∑γ∈Γ ξγeγ ∈ SX , we have f (x) = ∑γ∈Γ ηγ f (eγ), where |ξγ |= |ηγ | for any γ ∈ Γ.

Proof. We can assume that x = ∑γ∈Γ ξγeγ ∈ SX , ∑γ∈Γ |ξγ |p = 1. It is easy to see that f (x)⊥eγ ′

for each γ ′ ∈ Γ\Γx. We can write f (x) = ∑γ∈Γ ηγ f (eγ), ∑γ∈Γ |ηγ |p = 1. For any γ ∈ Γx, we

have

min{‖ f (x)+ f (eγ)‖p,‖ f (x)− f (eγ)‖p}

=min{‖x+ eγ‖p,‖x− eγ‖p}

=min{(1−|ξγ |p + |ξγ +1|p),(1−|ξγ |p + |ξγ −1|p)}

=1−|ξγ |p + ||ξγ |−1|p

On the other hand, f (eγ) =±eσ(γ), we have

min{‖ f (x)+ f (eγ)‖p,‖ f (x)− f (eγ)‖p}

=min{(1−|ηγ |p + |ηγ +1|p),(1−|ηγ |p + |ηγ −1|p)}

=1−|ηγ |p + ||ηγ |−1|p

A short calculation shows that

||ξγ |−1|p−|ξγ |p = ||ηγ |−1|p−|ηγ |p

Since the function ϕ(t) = (1− t)p− t p is strictly increasing (decreasing) on [0,1] for p > 1.

Thus |ξγ |= |ηγ | for any γ ∈ Γx. �
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Lemma 3.7. Let X = lp(Γ) and Y = lp(∆), 1 < p < 2. Suppose that f : SX → SY is a surjective

min-phase-isometry. Then for all nonzero orthogonal vectors x,y in SX ,and a,b ∈R ,there exist

two real numbers α and β with absolute value 1 such that

f (ax+by) = αa f (x)+βb f (y)where ax+by ∈ SX and α,β ∈ {−1,1}.

Proof. Let x and y be nonzero orthogonal vectors in SX such that x = ∑γ∈Γx ξγeγ and y =

∑γ∈Γy ηγeγ , and 0 6= λ ∈ R. By Lemma3.6, we can know

f (x) = ∑
γ∈Γx

ξ
′
γ f (eγ), f (y) = ∑

γ∈Γy

η
′
γ f (eγ),

f (ax+by) = a ∑
γ∈Γx

ξ
′′

γ f (eγ)+b ∑
γ∈Γy

η
′′

γ f (eγ),

where |ξ ′γ |= |ξ ′′γ |= |ξγ | and |η ′γ |= |η ′′γ |= |ηγ | for any γ ∈ Γx∪Γy. Since f is a min-phase-

isometry,

(1−|a|)p + |b|p

=min{(a+1)p + |b|p,(1−a)p + |b|p}

=min{‖(ax+by)+ x‖p,‖(ax+by)− x‖p}

=min{‖ f (ax+by)+ f (x)‖p,‖ f (ax+by)− f (x)‖p}

=min{∑
γ∈Γx

|aξ
′′

γ +ξ
′
γ |p + |b|p, ∑

γ∈Γx

|aξ
′′

γ −ξ
′
γ |p + |b|p}.

We can obtain

(1−|a|)p = ∑
γ∈Γx

|aξ
′′

γ +ξ
′
γ |p,

or

(1−|a|)p = ∑
γ∈Γx

|aξ
′′

γ −ξ
′
γ |p.

Then

∑
γ∈Γx

|aξ
′′

γ ±ξ
′
γ |p ≥ ∑

γ∈Γx

(|ξ ′γ |− |aξ
′′

γ |)p = (1−|a|)p.

Due to strict convexity, it follows that ξ ′′γ + ξ ′γ = 0 for all γ ∈ Γx, or ξ ′′γ − ξ ′γ = 0

for all γ ∈ Γx. This implies that ∑γ∈Γx ξ ′′γ f (eγ) ∈ { f (x),− f (x)}. In the same way,
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∑γ∈Γy η ′′γ f (eγ) ∈ { f (y),− f (y)}. In conclusion, f (ax + by) ∈ {a f (x) + b f (y),a f (x) −

b f (y),−a f (x)+b f (y),−a f (x)−b f (y)} The proof is complete. �

Theorem 3.8. Let X = lp(Γ) and Y = lp(∆), 1< p< 2. Suppose that f : SX→ SY is a surjective

min-phase-isometry, Then f is phase equivalent to an isometry.

Proof. Fix γ0 ∈ Γ, and let Z := {x ∈ X : x⊥eγ0},W := {w ∈ Y : w⊥ f (eγ0)}. Then SX =

{ z+λeγ0
‖z+λeγ0‖

: z ∈ SZ,λ ∈ R} ∪ {±eγ0}. For each λ ∈ R, put aλ = 1
‖z+λeγ0‖

,bλ = λ

‖z+λeγ0‖
. By

Lemma 3.7, we can write

f (aλ z+bλ eγ0) = α(z,λ )aλ f (z)+β (z,λ )bλ f (eγ0) α(z,λ ),β (z,λ ) ∈ {−1,1}

for any z ∈ SZ .

Define a mapping g : SX → SY as follows:

g(eγ0) = f (eγ0), g(−eγ0) =− f (eγ0), g(z) = α(z,1)β (z,1) f (z)

g(aλ z+bλ eγ0) = α(z,λ )β (z,λ )aλ f (z)+bλ f (eγ0)

for all z ∈ SZ and 0 6= λ ∈ R. Then g is a min-phase-isometry, which is phase equivalent to

f . Since f (SZ) = SW , by Lemma 3.6 we can know g(SZ) ⊂ SW . Next, we will show that

g : SZ → SW is a surjective isometry. Let z ∈ SZ and 0 6= λ ∈ R. Take a1 = b1 =
1

‖z+eγ0‖
= 1

2p .

Since g is a min-phase-isometry, we have

min{|a1 +aλ |p + |a1 +bλ |p, |a1−aλ |p + |a1−bλ |p}

= min{‖(a1z+a1eγ0)+(aλ z+bλ eγ0)‖
p,‖(a1z+a1eγ0)− (aλ z+bλ eγ0)‖

p}

= min{‖g(a1z+a1eγ0)+g(aλ z+bλ eγ0)‖
p,‖g(a1z+a1eγ0)−g(aλ z+bλ eγ0)‖

p}

= min{|a1α(z,1)β (z,1)+aλ α(z,λ )β (z,λ )|p + |a1 +bλ |p,

|a1α(z,1)β (z,1)−aλ α(z,λ )β (z,λ )|p + |a1−bλ |p}.

If α(z,1)β (z,1) =−α(z,λ )β (z,λ ), Then we deduce that

min{|a1−aλ |p + |a1 +bλ |p, |a1 +aλ |p + |a1−bλ |p}.
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But

min{|a1−aλ |p + |a1 +bλ |p, |a1 +aλ |p + |a1−bλ |p}

6=min{|a1 +aλ |p + |a1 +bλ |p, |a1−aλ |p + |a1−bλ |p}.

It is contradiction. So we can obtain α(z,1)β (z,1) = α(z,λ )β (z,λ ), and

(3.1) g(aλ z+bλ eγ0) = aλ g(z)+bλ g(eγ0)

for all z ∈ SZ and λ ∈ R. Let z1,z2 ∈ SZ and 2λ > ‖z1 + z2‖. By (3.1), we can obtain

1
1+λ p‖g(z1)−g(z2)‖p

=
1

1+λ p min{‖g(z1)+g(z2)‖p +(2λ )p,‖g(z1)−g(z2)‖p}

=min{‖g(
z1 +λeγ0

‖z1 +λeγ0‖
)+g(

z2 +λeγ0

‖z2 +λeγ0‖
)‖p,‖g(

z1 +λeγ0

‖z1 +λeγ0‖
)−g(

z2 +λeγ0

‖z2 +λeγ0‖
)‖p}

=min{‖
z1 +λeγ0

‖z1 +λeγ0‖
+

z2 +λeγ0

‖z2 +λeγ0‖
‖p,‖

z1 +λeγ0

‖z1 +λeγ0‖
−

z2 +λeγ0

‖z2 +λeγ0‖
‖p}

=
1

1+λ p min{‖z1 + z2‖p +(2λ )p,‖z1− z2‖p}

=
1

1+λ p‖z1− z2‖p

The implies that ‖g(z1)−g(z2)‖p = ‖z1− z2‖p for any z1,z2 ∈ SZ . On the other hand, we know

a1 = b1 =
1

‖z+eγ0‖
= 1

2p , so

1
2
‖g(z)+g(−z)‖p

=
1
2

min{‖g(z)+g(−z)‖p,‖g(z)−g(−z)‖p +2p}

=min{‖g(a1z+a1eγ0)+g(−a1z−a1eγ0)‖
p,‖g(a1z+a1eγ0)+g(−a1z−a1eγ0)‖

p}

=min{‖a1z+a1eγ0 +(−a1z−a1eγ0)‖
p,‖a1z+a1eγ0 +(−a1z−a1eγ0)‖

p}

=
1
2
{0,2p}

=0
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for any z ∈ SZ . It is implies g(−z) =−g(z) for any z ∈ SZ . Since g is phase equivalent to f , we

see that g : SZ → SW is a surjective isometry. In conclusion, g : SX → SW is a isometry. The

proof is complete. �

Theorem 3.9. Let X = lp(Γ) and Y = lp(∆), 1 < p < 2. Suppose that f : SX → SY is a min-

phase-isometry,Then f is a phase-isometry.

Corollary 3.10. Let X = lp(Γ) and Y = lp(∆), 1 < p < 2. Suppose that f : SX → SY is a min-

phase-isometry, Its positive homogenous extension is a phase-isometry which is phase equiva-

lent to a linear isometry.
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