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Abstract. The purpose of this paper is to develop a common fixed point theorem for a pair of self-mappings in the
setting of (¢, B)-Z,-Geraghty type contraction via b-simulation function in C*-algebra valued Sj,-metric spaces.
We also discuss various applications for integral equations and homotopy. Furthermore, we present instances to
support our key findings.
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1. INTRODUCTION

A metric space is suitable for those interested in analysis, mathematical physics, and applied
sciences. Several extensions of metric spaces have been explored, and several results about the

*Corresponding author
E-mail address: upendermathsmgu @ gmail.com

Received March 08, 2024



2 N. NARSIMHA, G. UPENDER REDDY, P. NARESH, B. SRINUVASA RAO

existence of fixed points were obtained (see [1]-[5]).

In 2014, Ma et al. introduced C*-algebra-valued metric spaces [6]. In 2015, they introduced the
idea of C*-algebra-valued b-metric spaces and examined some findings [7]. Razavi and Masiha
also studied C*-algebra-valued b-metric spaces [8] to identify common principles.

Sedghi et al. [9] created S,-metric spaces by combining the concepts of S and b-metric spaces,
and demonstrated common fixed point findings in these spaces. To improve, numerous authors
developed many results on Sp,-metric spaces (e.g., [10]-[14]).

Inspired by the work of Souayah and Mlaiki in [10], in 2023, Razavi et al. presented the idea
of C*-algebra valued Sj,-metric space [15], and established some common fixed point results in
this space [16].

In 2015, Khojasteh et al. [17] proposed the use of simulation functions to expand the class of
mappings that give a fixed point and present a novel approach for proving fixed point theorems.
Demma et al. [18] developed a b-simulation function and demonstrated fixed point outcomes in
b-metric space. Several academics have studied simulation functions in broader contexts (e.g.,
[19]-[21D).

Geraghty, on the other hand, generalised the Banach contraction principle, coining the term
“Geraghty contraction”. S. Chandok [22] proposed the notion of (o, 8)-admissible Geraghty
type contractive mapping in metric space. Several authors later used this strategy, giving fasci-
nating results (e.g., [23]-[25] and their references).

Inspired and motivated by the results of Demma et al. [18] and S.Chandok [22], S.Negi et al.
[26] introduce the notion of (o, B)-Z;-Geraghty type contraction for a pair of mappings using
b-simulation function and construct a common fixed point theorem in the setting of b-metric-
like spaces.

The current study aims to offer common fixed point theorems by employing (¢, B)-Z,-Geraghty
type contraction mappings via b-simulation function in the context of C*-algebra valued Sj-
metric spaces. We can also present examples that are acceptable and relevant to both integral
equations and homotopy.

First we recall some basic results.
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2. PRELIMINARIES

This section provides a short introduction to some realities about the theory of C*- algebras
[27]. First, suppose that 2 is a unital C* algebra with the unit 1g. Set2(;, = {s € A:s=s"}. The
element s € 2 is said to be positive, and we write s > Og( if and only if s = s* and o(s) C [0,0),
in which Oy in 2 is the zero element and the spectrum of s is ¢ (s). On 2, we can find a natural
partial ordering given by ¢ < @ if and only if go— ¢ = Og. We denote with 2, = {s € :s > Oy}
and A = {s € A: st =15Vt € A}.

Definition 2.1. ([15]) Let &4 be a non-empty set and x € ' with ||k|| > 1. Suppose that a

mapping Sy : 9> — A be a function satisfying the following properties :

(Sp,) So(€,B,y) = O forall ¢,B,y €Y,

(S,) Sp(0,B,7) =0 = l=B =,

(Sby) Sp(4,B,7) 2 k(Sp(£,£,0) +Sp(B,B,6) +Sp(7,7,0)) forall £,,7,6 € 4.
Then the function Sy, is called a C*-algebra valued Sy-metric on 4 and the pair (4,21,S}) is
called a C*-algebra valued S,-metric space (C*-AV-S,MS) with a coefficient K.

Example 2.2. ([15]). Let ¥ =R and A = M, (R) be all 2 x 2 matrices with the usual operations

2
of addition, scalar multiplication, and matrix multiplication. It is clear that ||P||= | ¥ |pij|?
ij=1
defines a norm on A, where P = (p;j) € . * : A — A defines an involution on A and where

A* = Then, A is a C*-algebra. For P = (p;;) and Q = (qij) in 2, a partial order on U can
be given as follows:
P=Q < pij—qij<0Vi j=12.
Let (9,d) be a b-metric space where, ||k|| > 1 and Sy, : 43 — M, (R), fulfilling
d(p,q) +d(q,r)+d(r,p) 0

0 d(p,q)+d(q,r)+d(r,p)
Then, clearly (4,21,Sp) is a C*-AV-S,MS.

Sb(P7CIa”) =

Definition 2.3. ([15]) A C*-AV-S,MS S, is symmetric if
Sb(&gvﬁ) = Sb(ﬁaﬁvg) vg?ﬁ €Y

Definition 2.4. ([15]) Let (¢4,2,S),) be a C*-AV-S,MS and {x,} be a sequence in 4 :
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(1) If for all p € N,

Sb(Xntps Xn+p> Xn)|| = 0, where n — oo, then {x,} is a Cauchy se-
quence in'Y.
(2) If |1Sp(Xns Xns X)|| — O, where n — oo, then { ), } converges to X, and we present it with
lim x, = x.
n—soo
(3) Ifevery Cauchy sequence is convergentind , then (4,24, Sy) is a complete C*-AV-S,MS.
Definition 2.5. ([15]) Suppose that (41,21,,Sp1) and (%»,A2,Sp,) are C*-AV-S,MS, and let
I:(4,2,851) = (%,242,Sp,) be a function. Then, T is continuous at a point ¥ € 9 if, for

every sequence, {Xn} in % , Sp(Xn, Xn, X) — Ost, (n— o) implies Sp(T(xn), T(Xn), Y(X)) — Og

where n — oo. A function I is continuous at 4 if and only if it is continuous at all Y € 4 .

Definition 2.6. ([29]) Let 4 be a non-empty set, I' /A : ¢ — 4 be two mappings and o, f3 :
G x4 — Ay be two functions then (I',A) is called a pair of (@, B)-admissible mappings, if for
alll, e € Y

o(l,e) = g, B(L &) = ly implies a(Tl,Az) = 1o, o (Al Te) = 1y
and B(Tl, A=) = Lo, B(AL,T) = 1y
Lemma 2.7. ([28]) Suppose that 2 is a unital C*-algebra with a unit 1g:
1) If {xn};r_; A and lgll Xn = Og(, then for any y € 2, lgll X xnx = Oy
n—ro0 n—oco
2) If x,& € Ay and s € A then x < & yields sy < s& in which A/, =2 NA’.

3
4) If x,&E € Ay such that x§ = Ey, then x& = Oqy.

If x €Ay with ||x|] < % then 1y — y is invertible,and || (19— x) || < 1.

~~ N N

)
)
)
)

3. MAIN RESULTS

In this section, first we introduce (¢, 3)-Z,-Geraghty type contraction and then prove our

main result.

Definition 3.1. Ler (4,2,S,) be a C*-AV-S,MS, T',A : 4 — < be two mappings and o, :
G x4 x4 — A, be two functions then (I',A) is called a pair of («, B)-admissible mappings,
ifforall {,® €9

a(l,l,@) = ly, B(L,0,&) = ly implies a(TL, T, Az) = 1o, (AL, AL, T) = 1y
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and B(TL,T0, Az) = 1y, B(AL, AL, Tz) > 1y

Definition 3.2. Let (4,2,S,) be a C*-AV-S,MS, T',A : 9 — < be two mappings and o, :
G xG xG — Ay be two functions then ¥ is said to be (a, B)-regular, if { X, } is a sequence in 9
such that X, — x €9 and &(Xn, Xn, Xn+1) = Lot B(Xns Xns Xn+1) = Lo, V n € N, then there exists
a subsequence { X, } of {Xn} such that (X, Xng> Xnir) = 120 BXngs Xogr Xneor) = la VK EN.
Also o(yx,2,Tx) = Lo and B(x, 2, AX) = la.

Definition 3.3. Let (4,2,S,) be a C*-AV-S,MS. A b-simulation function is a function My,

A x Ay — A satisfying the following conditions:

(M) M6 (X:6) <6 —x for all x,& = Oy
(Mb,) if {xn} and {&,} are sequences in A such that

0.< lim ||z < lim inf[[&]| < lim sup[|&] < & lim |[7,]] < e
then lim sup| 10, (k1. &)| < 0.

Throughout the paper Z, will represent the family of all b-simulation functions.

Definition 3.4. Let (¢,2(,S,) be a C*-AV-SpMS with coefficient ||x|| > 1,
VA9 — 9 be two mappings and &, : 9 X G x G — A be two functions such that for all
U, € G withr =1,2,3,4, then we say that the pair of mappings (I',A) is (¢, B)-Zp-Geraghty
type generalized contraction if for N, € Zyp, we have
3B.1) np(ka(l,l,T0)B(s,5¢,A5)Sp(TCTL,Ax), (M (¢, 5))a*M" (£, )a) = Oy
where @ : 20, — [0,1) is a Geraghty function, a € U in which ||a|| < 1 and

Ml (67 %) =S (&67 %)

M? (0, 5) = maxy S, (0,0,5¢),Sp (AL, AL T 5) }

{ Sy (4,0,52), sb(e,e,m);rif(%,z,/\%) ,

3 _
M’ (¢, ) = max Sp(0,0,A5)+Sp(5¢,5.TF)

2k4

Sb (é,é, %) ,Sb (E,E,FE) y

Sp (52,30, Ax2), Sb(fva/\%)zﬁb(%,%,re)
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Theorem 3.5. Let (¢,2,S},) be a complete C*-AV-S,MS, {,B : 4 x G — A be two functions
and T, A 1 9 — & be two mappings with the following assumptions:
(i) (T',A) is a pair of (o, B)-admissible mappings;
(it) (T',A) is a pair of (a, B)-Zp-Geraghty type generalized contraction mappings with r =
4;
(iii) there exist by € G such that a(Ly, Ly, T'ly) = 1o, B (Lo, Lo, Aly) = 1y

(iv) either I and A are continuous or ¢ is (o, B)-regular space.

Then T" and A have a unique common fixed point in 4.

Proof. From (iii) hypotheses, there exists s € ¥ such that o(s,s0,2) > lg,
B(50,70,I'29) > 1g.  We construct a sequence {s,} by setting s,,1 = I'sz, and
spr2 = Ay ¥V p € NU{0}.  Since (I'A) is a pair of (a,f)-admissible map-
pings, then (s, 3¢,1) = lg implies & (s¢1,3¢1,50) = 1y and B (s, 20, 1) = 1y implies
B(5¢1,501,50) = 1g. By repeating similar process, we obtain o(s,,p,5,4+1) = ly and

B(5¢p, 5, 5p11) = 1y for every p € N. From Equation 3.1, we have

My (K(32p, 325, T36p) B (56p11, 52p 11, Asp 1) Sp (T, Tt Asep 1), @(M* (52, 32p11) )a" M* (50, 505 11)a) = Oy

From (7, ), we have

K (2, 75, T30) B (31, #p 1, Ao2p s 1) ST, Taty, Asep 1) < @(M* (52, 50p41))a*M* (50, 525 41)a

Now from above inequality, we see that

So(3pt1,50p+1,5p12) = Sp(Up,Taep, Asepiy)

= KO(32p, 50, Uaep) B(5¢p1, 3p41, Asep 1) Sp(Daep, Taep, Asgp i)
= (P<M4(%p7%p+1))a*M4<%pa%p+l)a

(3.2) < a*M*(5¢p,511)a

Now, by simple computations, we have

Sb (%pu Ap, %p+1) 7Sb (%[N %Pvr%p) ’

m* (%p,%p+1) = =max
Sb (3¢p41,2p41,A50p11) Sb(%p’%P’A%P“);:f(”pﬂa%pﬂfxp)
Sb (%p; Hp, %p-H) ,Sb (%Ih Hp, %p—H) )
= max

Sp (%p+1 » Xp+1; %p+2) ) Sb(%p,%,;,%1;+2)+;i£%p+l’%p+17%p+1)
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Sb (%p7%p7%p+1) )

Sb (341, #p11, #p12) 5 Sb(%p’%p’%p+2)+;,i£%"+l 1 )

= max

Notice that

Sp (%]N Hp, J{er2) +Sp (%p+l y Xp+1, %p+l) < 2kSp (%pu Ap, %erl) +KSp (%p+Za Hp+25 %p+1)

24 - 24

Sb (%P7%P7%p+1> )

IN

max
Sp (%erl’ Hp+1, J{erZ)

From (3.2), we obtain that

Sb(%p+la%p+17%p+2) j a*M4(%p7%p+l)a

% Sb (%pa%p»%pﬂ)’
a max

(3.3)

A

Sh (3p 1, 3p11,5p12)

Sb (%pa Hp, %erl) ’

If we take max = Sp (36p+1, p+1,%p42), since ||a|| < 1 then (3.3)

S (3¢p41, pt1, 7p12)
gives a contradiction. Thus, we obtain

Sb(%p—H y Xp+1, %p+2) = a*Sb<%pa Hp, %p-H)a

< (@)2Sp(52p1,7p1, ) (a)?

=< (a*)PTLSy (520, 520, 1) ()P
By remembering the property where if a,b € 2, then a < b yields u*au < u*bu, we see the
following for each p € N,

Sp(3p, 22, 7p11) =2 (@) Sp (220, 20, 1) (a)”

Let Sy (370, 20, »¢1) = Xo for some Xy € 2. For any [ € N, we achieve

Sp(#pr1s #pr1 7p) =X K (Sb(%p-‘rlv Spity Zpri—1) FSp(Hptts Hpits Hpri—1) +Sp (3, 7p, 5p 111 ))
=2 2K (5%t Hpt, pi—1) + KSp (54, 7, Hpii-1)
= 2KSp(50p+1s #p ity Hpi—1) T KSp(5psi—1, Hpi-1, p)
= 2KSy(%pt1s Hptits Hpri—1) + 2K2Sb(%p+l—l s Hpl—1, Hpsi—2)
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2
+KSp(#p11-2, %py1-2, p)

< 2KSp (%1, #pts Hpri1) + 2Ky (3p 115 Hp 115 Hps1-2)
+2K3Sb<%p+1727%p+1727%p+173)+-~+2Klsb<%p+17%p+l7%p)
< 2k(a")P Sy (e, 300, 500 ) (@) 203 (a2 (520, 520, 51) (@)1
+213 (@) P38y (500, 520, 21) (@) T3 L 12 (%) P S (320, 30, 541 ) (a)P
-1
< 22Kl(a*)p+lile(%O,%o7%])(a)p+lil
i=1
-1 ) )
— ZZKt(a*)p+lsz0(a)p+lft
i=1
ol i Ly ,
— 22 <(a*)p+l—lK2X02> (on K.z(a)p+l—z>
i=1
-1 oy AN oy ,
< 2) <X02 K‘Zap'H_’) <X02 KZ(a)p”_’)
i=1
-1, .
< 2Y X kia P g
i=1
-1 ' .
< 20Xl Y el Pl 1

i=1
TSI

211 Xl ———————
Xl 1kl = 1l

log = 0as p — oo.

in which 1y is the unit element in 2(. As {sz,} is a Cauchy sequence in ¢ , and ¢ is complete,

there exists s« € ¢ such that lim s, = s = lim s, and
p—reo p—reo

(3.4) gi_rgosb(%[h Hp, %) = Sb(%7 i, %) = p}ligwsb(%lﬂ Xp, %l) =0.

Now, we shall show that I'>c = 2r = A

By hypotheses (iv), First we assume that I" and A are continuous, then using (3.4), we have

l}i_r)rf}oSb(%pH,%pH, %) = l}i_r)rf}oSb(F%p,F%p,%) = Sb(F%,F%, %) =0.

Similarly,

gglgoSb(%p+2, Hpt2, %) = 1}213051)(/\%17+17A”P+1’%) = Sp(Ase,As,32) = 0.



(a, B)-Z,-GERAGHTY TYPE CONTRACTION 9

This implies that I'sc = Asr = 5. Hence, the pair (I', A) has a common fixed point s € ¥.
Now, consider that ¢ is (¢, B)-regular space then there exists a subsequence {¢,_} of {s,} such
that & (3¢, 5¢p., 5., ) = locand B (3¢, 5¢p_, 5., ) = ly foreachz € N and o (3¢, 52, ) = 1g,
B (52,32, As) = 1g.

From (3.1), we have
M (K0t (5¢p,, 52y, Tty ) B (52,52, A3¢)Sp(Tep T2y, Asx), O(M* (52, 3))a*M* (2., »)a) = Oy
From (1;,) and (1;,), we have
KOsy, 2y, Uty ) B (52,22, Ase)Sp(Dsep, . Taep , Ase) < (p(M4(%pZ,%))a*M4(%pz,%)a
This further implies that

Sb(%[’z+1 RgJ SNE A%) - Sb (F%pz’ F%Pz ’ A%)

PN

Ko(sep,, 22p, Uty ) B (52,52, Asc)Sp(Taep, , Taepy , Asz)

=< (p(M4(%pz,%))a*M4(%pz,%)a

(3.5) < a*M* ()., %)a
where
Sp (22p., 2., 2) ,Sp (52, 50y, T3z,
Mm* (%pm%) = max ( r pz’S,,z;pz,%(p,,i}:)+1;z;:(%,u1})%:,z)
Sb(%a%vA%)v — 212 '
Sp (%pw Zp, %) +Sb (%Pz’ Zp %pm) )
= max

N ) 7A N 17y
Sb (%7 %7/\%)7 b(%m “r: %2);_4 b(%%%pZH)

Taking limit as z — oo in above expression, we get

6 1i 4 Sb(%7%7A%)v A
(3.6) lim M (5¢p,,5¢) = max §y e ) = S, (32,32, Axz)
G

Therefore, taking limit as z — oo in (3.5) and using (3.6), we get

185, 2, A5 | = 1 (1835, Al | < T [|Q(M* (52 50))a” M (., )l

< |lal|?|ISp (5, ¢, A5) ||
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since ||a|| < 1,this implies li_r)n |@(M*(5¢.,5))|| = 1 and therefore, lgn ||M*(5¢,,.,3)|| = 0.
n—oo n—oo
Thus, we obtain ||Sj, (37, 3¢, As)|| = 0 implies that A = ». Similarly, we get I'sc = 5 and

we conclude that s is a common fixed point of I" and A.
Now, for the uniqueness part, let sc and ¢ are two common fixed points of I" and A and s # /.
Also o (52,3¢,T5) = 1g, o0 (€,£,T0) = 1o and B (3¢, 5¢,Asc) = 1y, B (¢, 4,Al) = 1g. By (3.1),

we have

M (Kot (52, 5¢,T3¢) B(€, £, AL)Sp(T3¢,Tse, AL), (M* (5¢,0))a*M* (5¢,)a) = Ogy.
From (7, ), we have
(3.7) il (5¢, 72, T5¢) B (0, £, AL)Sy(T5¢,Tse, AL) < @(M*(3¢,0))a*M*(5¢,0)a

where

Sp (52,5¢,4) ,Sp (5¢,5¢,T'5) ,

Sy (£,4,A0), Sb(%,%,/\ez);s,,(e,é,r%)

M*(5¢,0) = max

= Sp(s2,¢,0)
Thus, by using (3.7), we have

Sp(52,52,0) = Sp(Tse, T3¢, Al) < k0((32,5¢,T3¢) B(, £, Al)Sp (T3¢, T3¢, AL)

< q)(M4(%,€))a*M4(%, O)a

< a*M*(s,0)a
(3.8) = a*Sy(s,,0)a.
Therefore,
185 (5252, 0) || < llal 1S (52, ,€) |
This is incongruous. Consequently, 1 = ¢. Therefore, the UCFP of I" is 1. 0

Theorem 3.6. A complete C*-AV-S,MS with the coefficient ||x|| > 1 is defined as (4 ,2,Sy). Let
A9 — 9 be a (o, B)-Zy-Geraghty type generalized contraction mappings with r = 3,2, 1,
assuming that all the requirements in Theorem (3.5) are true. Then, in Y, there is a UCFP of '

and A.
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Proof. If we substitute M> (¢, 3c), M? (¢, 5¢) or M" (¢, ) for M* (¢, ») in Theorem (3.5), then

follows in a manner similar to Theorem (3.5). ]

Theorem 3.7. A complete C*-AV-S,MS with the coefficient ||x|| > 1 is defined as (4,2, Sp).
LetT': 9 — 9 be a (o, B)-Zy-Geraghty type generalized contraction mappings withr =3,2,1,

assuming that all the requirements in Theorem (3.5) are true. Then, inY, there is a UCFP of T

Proof. If we substitute M> (¢, »), M? (£, 3c) or M"' (¢, »¢) for M* (£, »¢) in Theorem (3.5), and take

A = Iy then follows in a manner similar to Theorem (3.5). ]

Corollary 3.8. Let (¢,2(,Sp) be a complete C*-AV-SpMS, (,B : 4 x4 — A be two functions
and I : 9 — 94 be a mapping with the following assumptions:
(i) T is a pair of (a, B)-admissible mappings;

(ii) there exist U, ¢ € 4 and a € A with ||a|| < 1 such that
M (KOC(€7£7F£)I}(%7 %, F%)Sb(rgurgar%)u (p(Sb(&gv %))G*Sb(g,f, %)a) = Oy

where, @ is a Geraghty function and Ny, € 2,
(iii) there exist by € G such that a(ly, Lo, Tlo) = Lo, B (Lo, 40, Tlo) = 1,

(iv) either I is continuous or ¢ is (., B)-regular space.

Then T has a unique fixed point in 4 .
Proof. The proof follows from Theorem (3.5) by taking I' = A. U

Example 3.9. Let & = [0,00) and A = M,(R) be all 2 x 2 matrices whose norm is defined in
Example (2.2) and define the mapping d : 4% — [0,) as

d(l,5) = (0 — )% for all £,5c € 4. Then clearly, (¥4,d) is b-metric space with k = 2. Let
d(p,q)+d(g,r)+d(r,p) 0

0 d(p,q)+d(q,r)+d(r,p)
Then, clearly (¢4 ,2,Sp) is a complete C*-AV-S,MS with ||x|| =2 > 1.

Sbigs —>M2(R) beaSSb(pqur) =

Let np : AL x Ay — A defined by (R, 0) = — X and a € A with ||a|| = 75 <L We

H—JO

4

define mappings U, A : 9 — ¢, and Geraghty function ¢ : 2, — [0,1) as follows F(K) =30

A(l) = 2+€f0rall€6€4wzthb€ (0, ¢]
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IM €>1)Q|
and @(¢) = . Also, wedeﬁnea,ﬁ:%x%x%—)QLJrasaN,N,p =
0 /=0
A

19[ lf N?cpe [07 1]
Oy Otherwise

Now for a(X,R,0) = 1y and B(X,N,0) = ly, then we have X, @ € [0,1], implies
it follows that a(TR,TR,AP) = 1y, a(T@,T@,AR) = lg,and B(IR,TR,AL) = lg,
B(To, T2, AR) = ly. Therefore, (I',A) is a pair of (, B)-admissible mapping.

Furthermore, if {2, } is a sequence in 4 such that &(,, 2y, §2p+1) = Ly and
B($2p, p, 2p+1) = Ly then {,} C [0,1]. Suppose g, — o then g € [0,1] and implies that
(2,2, T2) = 1o and (0, 2, Ap2) = 1

Indeed, we obtain

s (KOC(E, 0,T0) B (52,50, A32)Sp(TU,T0, Asc), (M* (£, 32))a*M* (¢, %)a)

(p(M4(€,%))a*M4(€,%)a

& oM (0, ))a Ml 0)a — Ko, 0,T0)B (52, ¢, As¢)Sp(TL, T, Asc)

a*M*(0,x)a
- % — KoL, 0,T°0) B(5¢, 3¢, As¢) Sp (T, T'L, Axc)
I Tortg
a*M*(¢,)a

= — 00,14 A e, re,A
1+M4(€,%)+a*M4(€,%)a K'OC( ) )ﬁ(%,%, J{)Sb( s Ly %)

a*Sy(L,0, »)a
1 +Sb(£a£a %) +a*Sb(£:£7 %)Ll

—ka(£,0,T'0) B (52, 3¢,As)Sp(T0, 0, Asc)
Therefore, we have

1B (m(e,e,w)ﬁ(%, 2, A2)Sp(TC,T'0, As), (p(M4(€,%))a*M4(€,%)a) I
> | a*Sy(L,4,x)a
= L+ Sp(4, 0, 5c) +arSp(L, 4, x)a
> ) a*Sp(L,4,»)a
= LS00, 5c) +arSp(L, 4, )a
- [lalI*[1S5 (£, £, >0)]]
— L [ISp(6.4,59) [+ lal P ISs (€,€, )|
V2(0—»)? 2 (=)
itV 0P

— Ko, 0,T0) B (52, 5¢,A5¢)Sp(TL, T, Asc)||

|| = [1a(€,£,T0) B (3¢, 3¢, M) S (TL,TL, Ase) |

—2[|Sp(T¢, I, A) |
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V2(0 = 5)? 2 (L=x)
14+3v2(0 — )2 ~36v2b 14+3v2(0 — )2
(1—=36b%)V2(€ — »)?

14320 — 5)?

>0Vl xe¥9

Thus all the conditions of Theorem 3.5 are satisfied. Hence I" and A have a common fixed point

(at £ =0).

4. APPLICATION TO INTEGRAL EQUATIONS

Suppose that & = [0, 1] be a Lebesgue measurable set with m(&’) < oo such that
¢ = L™(&) and B(L*(&)) is a set of bounded linear operators on a Hilbert space L*(&).
We equip & with S, : ¥ x 4 x4 — B(L*(&)), which is ascertained by S,(z,B,ce) =
M| —ce|+[B—ce|)p> Where M (x| 4|p—c|)r 1S the multiplication operator on L?(&) ascertained
by My, («) = h.a, & € L*(&). Therefore, (4,B(L*(&)),S,) is a complete C*-AV-S,MS with
x = 22(P=1) where p > 1. Let us consider the two-point boundary value problem of the second
order differential equation:

d*((s)

“.1 7

= (s,1,£(r)) ¥ s € [0,1] and £(0) = 1 = £(1)

where f: & x & x R — R is integrable.

The inequality (4.1) is equivalent to the following integral equation:

1
0s) = / A (5,0)§(s,1, (1)) for all s € [0, 1].
0

: : , s(l—r) if0<s<t
where Green function associated to (4.1) is defined by ¢ (s,1) =
t(1—s) ifr<s<l

Assume that the following conditions hold:

(ip) ®,¥:R> — A, and A € (0,1) such that |f(s,z,a)| +|§(s,t,b)| < A||a—b|| forall s, € &
and a,b € R with ®(a,a,b) > Oy and ¥(a,a,b) = Oy

(i) 3lp €9 > P(lo(s),lo(s),T(s)) = Oy and ¥ (lo(s),Lo(s),[ly(s)) = Oy for all s € &
where I' : 4 — ¢ is defined as
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= /%(s,t)f(s,t,ﬁ(t))dt forall s € [0, 1].

(iy) for each s € & and £,3c € G, ®(L(s),L(s),s(s)) = Oy = P(TL(s),Tl(s),Ts(s)) = Og
and W(£(s), £(s), (s)) = Og = W(T(s),Tl(s),Ts¢(s)) > O

(i3) for each s € & and {{,} C & be a sequence such that ¢/, — ¢ in ¢ and
D(Lp(s),6p(s),lp11(s)) = O, W(Ly(s),£p(s),£p11(s)) > Oy for all p € N then
D(1y(5),£5(5), £(5)) = Oa. WLy (5),£5(s). £(5)) = O forall p € N

Theorem 4.1. Under the assumption (ig)-(is), the equation (4.1) has a solution in in L= (&).

Proof. DefineI': 4 — ¢ by I'l(s) = fl,)i/( 1)f(s,2,£(¢))dt for all s € [0, 1].
Now for all £,c € G, D({(s),¢ (s),%(()s)) = Oy and W({L(s),£(s),s(s)) = Oy Vs€]0,1]. we
have

Sp(T,T0,T'3¢) = Mare_rs)r

‘We obtain that

HS],(FK,F@,F%)H = Hshlp <M (2IT¢—T'5|) Ph h>
h||=1

= sup <2pM|rg F%\/’h l’l>
||A]|=1
1

= sup [ (2P|TL(t) — Tae(r)|P)h(t)h(1)dt

=1
17 1 1 p
< o [ A 003,060 | [ H (s.0)f (5,50 | |n) Pl
b ] |
11 14
< 2 swp [ | [H 0t >>+f<s,r,%<>|>] OIRE
=ty o
1 p
< o A (s.0)dt | [H(OPAP]E— ]2
i/ _0/ }
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s€[0,1]

< A sup [/«%/ Stdf] V(16— 40— se)pr ]|

IN

lal> sup {/%stm] Isy(6,6,)]

s€[0,1]

By setting a = A1p;2(4)), thena € B(L*(&)) and ||a]| = A < 1,

1 1 p
since [ (s,t)dt = —% + 5 forall s € [0, 1], we have supc(g | [f Q%/(s,t)dtl = (3)?, then it
0 0

follows that
4.2) IS5(TETET5)]| < [lal (571185 (4,6, )]

Let np: Ay x Ay — A as np(x,y) = 6y xV x,y € 2 and Geraghty function ¢ : 20, — [0,1)
is defined by ||@(x)|| = 3, for all x € 2. For ¢ € [0, 1] the following is defined: a, 3 : 4 x ¢ x
Lo if ®(U(2),0(t), (1)) > Oy
Oy Otherwise
Ly ifWP(l(2),0(1),5(t)) = Oy

Oy Otherwise
From (4.2), we have

G —>Apaso(l,l, )=

and B(¢,0,) =

|85 (0, T, Ts)|| = [[22P~ s, (T, T4, Tae) || < 220~ ||a||< )7|1S5 (£, £, )|
@3 < lalllisy(e.t. )]
Now, using (4.3), we get
§||<p<sb<e,f,%>>||||a||2||sb(£,€,%)||—||a<£,e,rf>||||ﬁ<%,%,r%>||||xsb<w,r€,r%>||
= 2 al P11S5(¢,€,2)|| — 1185 (T, TE T0) | > 0
Hence
N (Kot (£,0,T0)B (52,52, 05¢) Sy (LU, T, Tac), @(Sp (£, £, 32))a*Sy (£, €, )a) = Ogy.

Therefore the mapping I' is (@, B)-Z;-Geraghty type contraction. From (i ), there exists £y € &
such that a(4y(s),4o(s), Tl (s)) = Oy and B (Lo(s),lo(s), Tl(s)) = Og.
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Now using (i), we get
a(l,l,x) = la = P(U(1),£(t), (1)) > O
= D(TU(r),T0(t),T(t)) = Oy

= ([Tl ) = ly.
Similarly,
B, 6,5) = 1y = W(L(1),£(r), 5(t)) > Oy
= W([(t),T(t),T()) = Oy
= B(IC,T0 ) - 1g.

So, the mapping I" is (¢, 3)-admissible. Therefore, all the hypotheses of Corollary 3.8 are

satisfied. Hence, I" must have a fixed point in L*(&) (say £), which is a solution of (4.1). [

5. APPLICATION TO HOMOTOPY

In this section, we investigate whether homotopy could have a unique solution.

Theorem 5.1. If (4,21, S},) is a complete C*-AV-S,MS, then A and i\ are open and closed subsets
of 9, respectively, such that  C 1. Let $3, : 4 x [0,1] — & be an homotopy operator meeting

the requirements listed below.

(1) £# Hp(L,s), for each € € sl and s € [0,1] (here L is boundary of U in )
(71) there exist £, € U and a € A with ||a|| < 1 such that

un (ZKZOC(E,E,)’Jb(&s))ﬁ(%, 2, 95(52,5))Sp (95 (4,5),95(€,5), 95 (52,5)), (Sp(£, £, 32))a™Sp (£, £, %)a) = Oy

where, @ is a Geraghty function and M, € %5, and s € [0, 1];
(2) 3Mp, = 0> Sp(H6(L,5), 95 (£, 5), 95 (£,1)) < ||Mp|||s —1| for every £ € SLand 5,1 € [0, 1];
(13) $p is a pair of (a, B)-admissible mappings and ¢ is (o, B) regular space;
(t4) 3 by €Y such that o (Lo, Lo, Hp(Lo,s)) = g, B (Lo, Lo, Hp(lo,s)) = lg.

Then $,(.,0) has a fixed point <= (., 1) has a fixed point.

Proof. Take into account the set B = {s € [0,1] : £ = §,(,s) for some ¢ € U}.
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Due to the fact that $,(,0) has a FP in A, we have that 0 € B. The set ‘B is not empty as a
result. We will prove that 8 = [0, 1] by establishing that 9B is both open and closed in [0, 1].
$5(,1) has a FP in 4l as a result. The first thing we do is show that B is closed in [0,1]. To
observe this, assign s, — s € [0,1] as p — oo and let {s,,}_; C B. We must show that s is in
B. Given that s, in B for p =0,1,2,..., there is £, in Y with £, | = $,(¢,,s,). The proof is
successful if p € N exist such that S,(¢,,£,,95(¢),sp)) = 0.
Since ), is a pair of (o,f)-admissible mappings, then «a(fy,%y,¢1) = lg im-
plies a($y(4o,50),$5Lo,50),9p(l1,51)) = a(£1,€1,42) = 19 and B (o, lo,¢1) = 1g implies
B($5(%o,50),95(£0,50),95(l1,51)) = B(¢1,£1,¢2) = 1g. By repeating similar process, we ob-

tain (€, £p,lps1) = 1o and B(€,,£p,€,11) = 1o for every p € N. So, we assume that

n 2K2a(£p7€p7€[7+1)ﬁ(Eerl7£p+17Eerz)Sb(‘f)b(ép?Sp)"ﬁb(fp’sp)aﬁb(ngrl7Sp))? “0
b - VL.
(p(Sb(Epygmgp-i-l ))a*Sb(ewgpvgp-&-l )a

From (n;, ), we have

262 0L, L, S35y 5p)) B (Lp1s o1, 95 (Lpis5p1))S (96 (ps5p), 96 (Lpyp)s 95 (Lpi1,5p))

= QD(Sh(fm€p7€p+l))a*5b(€pa€p=£1)+l)a‘

Now from above inequality, we see that

Sb(€p+1>£p+17€p+2) = Sb(ﬁb(gpa Sp)»ﬁb(gpa Sp)aﬁb(€p+lysp+l))

IA

2x8,(96(Lp,5p), 96 (L, 5p), 6 (Lpt155p)) + KSh (D6 (Cpt1,8p+1): 96 (Lps1,Sp+1), 96 (Lp+1,5p))

IA

2K2a(€p7€pvﬁb(€pasp))ﬁ (€p+1 ) €p+1,~6b(ﬁp+l»SpH))Sb(fJb(gpasp)af)b(fpasp)af-)b(gpﬂ ) Sp))

+KMp||sp+1—spl]

= @(Sp(lp, Ly, Lp11))a Sp(Ep, Ly, Lpr1)a+ K||Mpl[|sp+1— s

A

0S5 (L, L ) ] (M [Isps1 — 5,

Letting p — oo, we obtain
l}i_rgosb(gp—i-laep—o—laepﬁi) = ;g}oa*sb(gpvgp?‘ep-ﬁ-l)a

< l}ii)T(}o(a*)2Sb(%pfl y Xp—1, %P) <a>2
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< Lim (a*)P*1 Sy (300, 30, 241 ) (@)
p—reo

which, together with the property, if a,b € 2;, and a < b implies u*au < u*bu, yields that for
each p € NU{0}, put 6, = Sp(£p+1,¢p+1,¢p4+2), we have

Og =< ;g{}o op = I}i_fgosb(fpﬂ,gpﬂ,fpﬂ) = I}i_fgo(a*)pﬂ%(a)pﬂ-

Since ||a|| < 1, it follows that li_r>n Sp(lpt1,€p11,Lp12) = Oy It is now time to demonstrate
p oo

the C*-AV-S,-CS {{,} in (¢,2,S,). On the other hand, suppose {¢,} is not a C*-AV-S,-CS.

Natural numbers {¢; } and {p;} can be arranged in a monotone increasing sequence with € > 0

such that py > g,

G.D Sb (Carr Cags Upy) = €
and
(5.2) Sb (gLIk?eqk?ngfl) <€

From (5.1) and (5.2), we have

€ = 5 (qu,ﬁqk,ﬁpk)

= 28p (L Lgs L) + K8 (Cars L Upe)

< 2KSh (g L Lagar) + KSp (95(LaSa)s 90 (LasSae)s 9 (Lpe 1 35pi 1))

< 2K8p (g lay Loy y) +2K7Sh (96(Lgyr S4,), 96 (g 54,96 (Lpy. 1 554,))
+K25b ("?jb(gpkfl 1S )50 (L1 s5q.)s 96 (Upy_y S pe_y )) :

< 2kxS, (qu7£qk7€qk+l) + K2||Mb| |ISqe = Spi |

0 (Cas L 96 (Lgr5.)) B (Cpiys Lpiys 96 (Cp 1S y))
Sp (ﬁb(gfIk’s‘Ik)7"6b(£‘1k7S‘Ik)’f)b(£Pk—l 7Sf1k))
= (P(Sb(%k?eqk?gpkfl))a*Sb(ngZCIk?ePkﬂ)a+2KSb (ngngngrl) + K'2| !Mb!Hqu —Spr_i

+ 2K2

PN

a*Sb(K‘]k’nggpk—l >a+2KSb (quangeqkﬂ) + Kz‘ |Mb| | ’qu —Spr_i |

We obtain that by setting kK — o on both sides.
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0<e < Jim [la"Sy(LyLay
< |lalle < €.
This leads to the conclusion that ||a|| < 1, it contradicts itself. In the C*-AV-S,MS (¢4,2,S}),
the sequence {¢,} is a C*-AV-5,-CS. The sequence {(,} — Vv € (¥,2,S,) comes from the
completeness of (¢,2,Sy).
lim (41 = 2= lim (.
We can prove » = $),,(,s).
Now, consider that ¢ is (a,f3)-regular space then there exists a subsequence {/ }
of {¢,} such that & (€, 0p,,0p,.,) = 1o and B (€, Ly, p,.,) = 1o for each k € N and

o (22,56, (52,5)) = Lo, B (5¢,¢,9p(5¢,5)) = 1o

From (71), we have

n ZKZOC(KPk76171(7*61)(6171(7‘9))[3(%»%;y)b(%aS))Sb(f—)b(gpk?S)vﬁb(gl?ws)aﬁb(%?s))a “ 0
b — V.

(P(Sb(gpkvgpm%))a*Sb(epk’epk’%)a
From (n;,), and (7, ), we have
2K2a(£17k7€[7k757)h(£llk7s))[3(%a %757)17(%7S))Sb(f)b(epk7S)7~6b(€[7k,s),f)b(%as))
< q)(Sb(ka,Epk?%))a*Sb(fpk,fpk,%)a
= a* Sp(lp, Ly, >)a.

Now from above inequality, we see that

0 < [[Sp(52, 56,95 (52,8)) || = Tim [[Sp(95(pes )96 (Cpy»5), 955, 5) )|

IN

lim ||2K2a(£17k7617k7“6b(£17k7S))ﬁ(%7 %7517(%7s))Sb(f)b(gpkaS)afjb(gpkas)afjb(%7 S))H

n—oo

IN

lim inf|a Sy (Cp,. £y, 2)a
< im sup||a*Sy(£p. Lpe, )a| < [lal] 1im sup]1Sy (€, Eyy. )] = 0.

Accordingly, »c = $);,(5¢, s) indicates that Sy, (3¢, 52,9, (3¢,5)) = 0. So, s in B. It is obvious that ‘B

is closed in [0, 1]. Let B be so. Then, £, exists in 4l such that £y = £, (o, so). Because 4l is open,
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6 > 0 must exist for B, (£p,0) C Ll Select the value of s € (so — €, 50 + €) such that |s —so| <

m < €. Consequently, for B, (£, 8) = {£ €94 : ||Sy(£,€,£0)|| < & + K2||Sp (€0, 40, 40)||}-

Now

n 2120 (4,4, 55(£,50)) B (€0, 0,55 (Lo,50)) Sk (95 (£,50), 95 (£, 50),55(Lo,50)) 0
b > Og.
(p(Sb(E,f,fo))a*Sb(f,f,Eo)a

From (7, ), we have

212 a(,4,95(¢,50)) B (Lo, €0, 95 (£0,50))Sp (95 (£, 50), 55(£,50), 95 (£, 50))
=< (p(Sb(E,ﬁ,ﬁo))a*Sb(ﬁ,E,Eo)a

= a*Sp(l, ¢, 4y)a.
Now from above inequality, we see that

(5.3) Sb (ﬁb(£>s)vﬁb(£vs)v£0))

= 8 (ﬁb(&S),ﬁb(&s)vfjb(gmso))

PN

2kSy (954, 5),95(£,5),95(£,50)) + KSp (95(€,50), 95 (£, 50), 95 (0, 50))

A

2KkMp|s — so|

+ 2k a(l, 4,95 (£,50)) B (Lo, €0, 55(£0,50))Sh (95 (£, 50), 95 (£, 50), 95 (£o,50) )

= 2kMpls —so|+a"Sp(¢,¢,lo)a
2K
< ———+a’S, (0,4, p)a.

Letting p — oo, we get that

1S (95(£,5),95(£,5),£0)) || < [|al[*||Ss (£, £, £0)] .

Since ||a|| < 1 implies that

155 ($95(£,5),59(€,5), €0)) | < 1S5 (£,€,60)|| < 8+ K2[|Ss (Lo, o, bo) .

Thus for each fixed s € (s — €,50+€), Hp(-,0) : By(Lo,8) — By({p, ). Then, all the conditions
of Theorem (5.1) holds.Thus, we conclude that £);(.,0) has a FP in $[. But this must be in 4l
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Therefore, s € B for s € (so — €,50+ €). Hence (so— €,50+€) C B. Clearly 95 is open in [0, 1].

A similar procedure can be used to demonstrate the opposite. U

6. CONCLUSION

This paper uses contractive mappings of the («, )-Z,-Geraghty type via b-simulation func-
tions to demonstrate certain FPT in the context of complete C*-algebra valued Sj,-metric spaces,
along with appropriate examples that highlight the main findings. Applications for integral

equations and homotopy are also given.
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