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Abstract. Iterative methods play a crucial role in numerical analysis and optimization problems. This paper intro-

duces a hybrid fixed-point iterative process and compares its convergence rate with the established Abbas iterative

approach, using Berinde’s criteria. Additionally, the stability and data dependency of the improved iterative pro-

cess are established. This study’s purpose is to demonstrate the superiority, in terms of convergence speed, of the

hybrid approach and provide further insights into its stability and data dependency. Furthermore, we apply the

iterative process to find solutions of delay differential equations.
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1. INTRODUCTION

One of the several applications of the Banach contraction theorem is to ascertain that a unique

fixed point exists. Consequently, it is commonly employed in the development of numerous it-

erative processes. Several well-known iterative processes include the Picard process [1], the

Mann process [2], the Ishikawa process [3], the Noor process [4], the Abbas process [5], the

Agarwal process [6], the SP process [7], the S* process [8] and the CR process [9]. Several

hybrid iterative processes were introduced, including the Picard-Mann [10], Picard-Ishikawa
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[11] and Picard-Noor [12] hybrid iterative processes. In Berinde’s sense [13], it was observed

that these procedures exhibited faster convergence compared to some well-known iterative pro-

cesses. This study presents a novel approach that combines the Picard and Abbas iterative

processes to create a hybrid. We establish the superiority of this hybrid over the Abbas itera-

tion, in terms of convergence rate, in Berinde’s sense [13]. We shall call this hybrid process

the Picard-Abbas hybrid iterative process or simply P-A hybrid iterative process. Furthermore,

the data dependency and stability results of the process are established. We also present an

application of the process.

2. PRELIMINARIES

Let C be a non-empty closed convex subset of a Banach space X . A point p ∈ C is a fixed

point of T : C→C if T p = p. Let Fix(T ) = {p ∈C|T p = p}.

A mapping T : C→C is a contraction if ∃θ ∈ (0,1), such that

(2.1) ‖T x−Ty‖ ≤ θ‖x− y‖ for all x,y ∈C

Definition 2.1. [13] If {xn}∞

n=1 and {yn}∞

n=1 are real sequences with xn→ x and yn→ y, and

lim
n→∞

|xn− x|
|yn− y|

= 0, then {xn}∞

n=1 converges to x faster than {yn}∞

n=1 does to y.

Definition 2.2. [13] Let the fixed point iterative processes {xn}∞

n=1 and {tn}∞

n=1 be such that

xn → p and tn → p. Suppose ‖xn− p‖ ≤ an and ‖tn− p‖ ≤ bn for all n ∈ N, where {an}∞

n=1

and {bn}∞

n=1 are two sequences with an→ 0,bn→ 0. If {an}∞

n=1 converges faster than {bn}∞

n=1,

then {xn}∞

n=1 converges faster than {tn}∞

n=1 to p.

Lemma 2.1. Let a real sequence {kn}∞

n=1 (kn≥ 0) satisfy kn+1≤ (1−µn)kn. If {µn}∞

n=1⊂ (0,1)

and
∞

∑
n=1

µn = ∞, then lim
n→∞

kn = 0.

Lemma 2.2. Let the real sequences {an}∞

n=1 and {bn}∞

n=1 (an ≥ 0,bn ≥ 0) satisfy an+1 ≤ (1−

λn)an +bn, where λn ∈ (0,1) ∀n ∈ N,
∞

∑
n=1

λn = ∞ and
bn

λn
→ 0 as n→ ∞. Then lim

n→∞
an = 0.

Lemma 2.3. Let θ be such that 0 ≤ θ ≤ 1, and let {εn}∞

n=1 (εn > 0) be a sequence, such that

lim
n→∞

εn = 0. Then for any sequence {ρn}∞

n=1, satisfying ρn+1 ≤ θρn+εn, n = 1,2,3, ..., we have

lim
n→∞

ρn = 0.
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Lemma 2.4. Let {ξn}∞

n=1 be non-negative real sequence. Suppose there exists n1 ∈ N, such

that ∀n ≥ n1, the inequality ξn+1 ≤ (1− ζn)ξn + ζnξn is satisfied, where ζn ∈ (0,1), ∀n ∈ N,
∞

∑
n=1

ζn = ∞ and λn ≥ 0, ∀n ∈ N. Then the inequality below holds

(2.2) 0≤ limsup
n→∞

ξn ≤ limsup
n→∞

λn

Picard-Mann hybrid iterative process

It is defined by {pn}∞

n=1 as

pn+1 = T qn

qn = (1−αn)pn +αnT pn(2.3)

where {αn} is a real sequence in (0,1).

Picard-Ishikawa hybrid iterative process

For any fixed p1 in C, this process is defined by {pn}∞

n=1 as

pn+1 = T qn

qn = (1−αn)pn +αnTrn

rn = (1−βn)pn +βnT pn(2.4)

where {αn}, {βn} are real sequences in (0,1).

Picard-Noor hybrid iterative process

For any fixed p1 in C, this process is defined by {pn}∞

n=1 as

pn+1 = T qn

qn = (1−αn)pn +αnTrn

rn = (1−βn)pn +βnT sn

sn = (1− γn)pn + γnT pn(2.5)

where {αn}, {βn}, {γn} are real sequences in (0,1).
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Abbas iterative process

For any fixed t1 in C, this process is defined by {tn}∞

n=1 as

tn+1 = (1−αn)Tun +αnT vn

un = (1−βn)Ttn +βnT vn

vn = (1− γn)tn + γnTtn(2.6)

where {αn}, {βn}, {γn} are real sequences in (0,1).

Picard-Abbas hybrid iterative process

We introduce the Picard-Abbas hybrid iterative process below.

For any fixed x1 in C, the Picard-Abbas hybrid iterative process is defined by the sequence

{xn}∞

n=1 as

xn+1 = Tyn

yn = (1−αn)T zn +αnTwn

zn = (1−βn)T xn +βnTwn

wn = (1− γn)xn + γnT xn(2.7)

where {αn}, {βn}, {γn} are real sequences in (0,1).

3. CONVERGENCE AND STABILITY ANALYSIS

Theorem 3.1. Let T : C→C be a self-mapping on C and let T satisfy (2.1). If the process (2.7)

generates the iterative sequence {xn}∞

n=1 with {αn}, {βn}, {γn} being real sequences in (0,1)

satisfying
∞

∑
n=1

αnβnγn = ∞, then {xn}∞

n=1 converges to a unique fixed point p of T .

Proof. The Banach contraction principle assures that a unique p ∈ Fix(T ) exists. We will show

that xn→ p as n→ ∞. Using (2.7) we have

‖wn− p‖= ‖(1− γn)xn + γnT xn− p‖

≤ (1− γn)‖xn− p‖+ γn‖T xn−T p‖



CONVERGENCE ANALYSIS OF PICARD-ABBAS HYBRID ITERATIVE PROCESS 5

≤ (1− γn)‖xn− p‖+ γnθ‖xn− p‖

= (1− γn(1−θ))‖xn− p‖(3.1)

‖zn− p‖= ‖(1−βn)T xn +βnTwn− p‖

≤ (1−βn)‖T xn−T p‖+βn‖Twn−T p‖

≤ (1−βn)θ‖xn− p‖+βnθ‖wn− p‖

≤ (1−βn)θ‖xn− p‖+βnθ
(
1− γn(1−θ)

)
‖xn− p‖

= θ [1−βnγn(1−θ)]‖xn− p‖(3.2)

‖yn− p‖= ‖(1−αn)T xn +αnT zn− p‖

≤ (1−αn)‖T xn−T p‖+αn‖T zn−T p‖

≤ (1−αn)θ‖xn− p‖+αnθ‖zn− p‖

≤ (1−αn)θ‖xn− p‖+αnθ
2[1−βnγn(1−θ)‖xn− p‖

]
≤ (1−αn)θ‖xn− p‖+αnθ

(
1−βnγn(1−θ)

)
‖xn− p‖

= θ [1−αnβnγn(1−θ)]‖xn− p‖(3.3)

‖xn+1− p‖= ‖Tyn−T p‖

≤ θ‖yn− p‖

= θ
2[1−αnβnγn(1−θ)]‖xn− p‖(3.4)

Repeating the above process, we get

(3.5)



‖xn+1− p‖ ≤ θ
2[1−αnβnγn(1−θ)]‖xn− p‖

‖xn− p‖ ≤ θ
2[1−αn−1βn−1γn−1(1−θ)]‖xn−1− p‖

‖xn−1− p‖ ≤ θ
2[1−αn−2βn−2γn−2(1−θ)]‖xn−2− p‖

...

‖x2− p‖ ≤ θ
2[1−α1β1γ1(1−θ)]‖x1− p‖
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From (3.5) we get

(3.6) ‖xn+1− p‖ ≤ ‖x1− p‖θ 2n
n

∏
k=1

[1−αkβkγk(1−θ)]

Since θ ,αn,βn,γn ∈ (0,1), we have

(3.7) 1−αnβnγn(1−θ)< 1

We know that ∀x ∈ (0,1), 1− x < e−x. Using these facts and (3.6), we get

(3.8) ‖xn+1− p‖ ≤ ‖x1− p‖θ 2ne−(1−θ)∑
∞
n=1 αkβkγk

Taking limit as n→ ∞ on both sides of (3.8), we get lim
n→∞
‖xn− p‖= 0.

Therefore, {xn}∞

n=1 converges to a unique fixed point p of T . �

Theorem 3.2. Let T : C→C be a self-mapping on C and let T satisfy (2.1). If the process (2.7)

generates the iterative sequence {xn}∞

n=1 with {αn}, {βn}, {γn} being real sequences in (0,1)

satisfying
∞

∑
n=1

αnβnγn = ∞, then (2.7) is T -stable.

Proof. Let {tn}∞

n=1 be any sequence in C. Let (2.7) generate the sequence xn+1 =F(T,xn) which

converge to a unique x∗ ∈ Fix(T ) (by Theorem 3.1) and εn = ‖tn+1−F(T,xn)‖.

We will show that lim
n→∞

εn = 0 ⇐⇒ lim
n→∞

tn = x∗.

Let lim
n→∞

εn = 0. We have

‖tn+1− x∗‖ ≤ ‖tn+1−F(T,xn)‖+‖F(T,xn)− x∗‖

≤ εn +θ
2(1−αnβnγn(1−θ)

)
‖tn− x∗‖

≤ εn +
(
1−αnβnγn(1−θ)

)
‖tn− x∗‖

Now, θ ∈ (0,1), αn,βn,γn ∈ (0,1) for all n ∈ N and lim
n→∞

εn = 0.

Using Lemma (2.2), we get lim
n→∞

tn = x∗.

Conversely, let lim
n→∞

tn = x∗.

εn = ‖tn+1−F(T,xn)‖

≤ ‖tn+1− x∗‖+‖F(T,xn)− x∗‖

≤ ‖tn+1− x∗‖+θ
2(1−αnβnγn(1−θ)

)
‖tn− x∗‖
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≤ ‖tn+1− x∗‖+
(
1−αnβnγn(1−θ)

)
‖tn− x∗‖

This implies that lim
n→∞

εn = 0.

Hence, (2.7) is T -stable. �

We now prove that (2.7) converges faster than (2.6) in Berinde’s sense.

Theorem 3.3. Let T : C→C be a contraction satisfying (2.1) with a unique p ∈ Fix(T ). For

t1 = x1 ∈C, let (2.6) and (2.7) generate the iterative sequences {tn}∞

n=1 and {xn}∞

n=1 respectively,

with {αn}, {βn}, {γn} being real sequences in (0,1) satisfying

(i) α ≤ αn < 1,β ≤ βn < 1,γ ≤ γn < 1 for some α,β ,γ > 0 and ∀n ∈ N.

Then {xn}∞

n=1 converges to p faster than {tn}∞

n=1.

Proof. From inequality (3.6) of Theorem 3.1, we have

(3.9) ‖xn+1− p‖ ≤ ‖x1− p‖θ 2n
n

∏
k=1

[1−αkβkγk(1−θ)]

Using assumption (i) to (3.9), we get

(3.10) ‖xn+1− p‖ ≤ θ
2n[1−αβγ(1−θ)]n‖x1− p‖

Let

(3.11) an = θ
2n[1−αβγ(1−θ)]n‖x1− p‖

Using (2.6), we have

‖vn− p‖= ‖(1− γn)tn + γnTtn− (1− γn + γn)p‖

≤ (1− γn)‖tn− p‖+ γn‖Ttn−T p‖

≤ (1− γn)‖tn− p‖+ γnθ‖tn− p‖

= [1− γn(1−θ)]‖tn− p‖(3.12)

‖un− p‖= ‖(1−βn)Ttn +βnT vn− p‖

≤ (1−βn)‖Ttn−T p‖+βn‖T vn−T p‖

≤ (1−βn)θ‖tn− p‖+βnθ‖vn− p‖
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≤ (1−βn)θ‖tn− p‖+βnθ
(
1− γn(1−θ)

)
‖tn− p‖

= θ [1−βnγn(1−θ)]‖tn− p‖(3.13)

‖tn+1− p‖= ‖(1−αn)Tun +αnT vn− p‖

≤ (1−αn)‖Tun−T p‖+αn‖T vn−T p‖

≤ (1−αn)θ‖un− p‖+αnθ‖vn− p‖

≤ (1−αn)θ
2[1−βnγn(1−θ)]‖tn− p‖+αnθ [1− γn(1−θ)]‖tn− p‖

< θ {1−αn− (1−θ)(1−αn)βnγn +αn− (1−θ)αnγn}‖tn− p‖

≤ θ {1− (1−θ)αnβnγn +(1−θ)αnβnγn− (1−θ)αnβnγn}‖tn− p‖

= θ [1−αnβnγn(1−θ)]‖tn− p‖(3.14)

Repeating the above process, we get

(3.15)



‖tn+1− p‖ ≤ θ [1−αnβnγn(1−θ)]‖tn− p‖

‖tn− p‖ ≤ θ [1−αn−1βn−1γn−1(1−θ)]‖tn−1− p‖

‖tn−1− p‖ ≤ θ [1−αn−2βn−2γn−2(1−θ)]‖tn−2− p‖

...

‖t2− p‖ ≤ θ [1−α1β1γ1(1−θ)]‖t1− p‖

From (3.15) we get

(3.16) ‖tn+1− p‖ ≤ ‖t1− p‖θ n
n

∏
k=1

[1−αkβkγk(1−θ)]

Using assumption (i) to (3.16), we get

(3.17) ‖tn+1− p‖ ≤ θ
n[1−αβγ(1−θ)]n‖t1− p‖

Let

(3.18) bn = θ
n[1−αβγ(1−θ)]n‖t1− p‖

an

bn
=

θ 2n[1−αβγ(1−θ)]n‖x1− p‖
θ n[1−αβγ(1−θ)]n‖t1− p‖

=
θ n‖x1− p‖
‖t1− p‖

→ 0 as n→ ∞

Therefore, the process (2.7) converges faster than the process (2.6). �
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4. DATA DEPENDENCY

Theorem 4.1. Let T̃ be an approximate operator of a contraction mapping T . Let the process

(2.7) generate the iterative sequence {xn}∞

n=1 for T . We define {x̃n}∞

n=1 as follows

x̃n+1 = T̃ ỹn

ỹn = (1−αn)T̃ z̃n +αnT̃ w̃n

z̃n = (1−βn)T̃ x̃n +βnT̃ w̃n

w̃n = (1− γn)x̃n + γnT̃ x̃n(4.1)

where αn, βn, γn in (0,1) satisfying

(i)
1
2
≤ αnβnγn,∀n ∈ N

(ii)
∞

∑
n=1

αnβnγn = ∞

If T p = p and T̃ p̃ = p̃ be such that lim
n→∞

x̃n = p̃, then ‖p− p̃‖ ≤ 8ε

1−θ
, where ε > 0 is a fixed

number.

Proof.

‖xn+1− x̃n+1‖= ‖Tyn− T̃ ỹn‖

= ‖Tyn−T ỹn +T ỹn− T̃ ỹn‖

≤ ‖Tyn−T ỹn‖+‖T ỹn− T̃ ỹn‖

≤ θ‖yn− ỹn‖+ ε(4.2)

‖wn− w̃n‖= ‖(1− γn)xn + γnT xn− (1− γn)x̃n− γnT̃ x̃n‖

≤ (1− γn)‖xn− x̃n‖+ γn‖T xn− T̃ x̃n‖

≤ (1− γn)‖xn− x̃n‖+ γn
{
‖T xn−T x̃n‖+‖T x̃n− T̃ x̃n‖

}
≤ (1− γn)‖xn− x̃n‖+ γnθ‖xn− x̃n‖+ γnε

=
(
1− γn(1−θ)

)
‖xn− x̃n‖+ γnε(4.3)
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‖zn− z̃n‖= ‖(1−βn)T xn +βnTwn− (1−βn)T̃ x̃n−βnT̃ w̃n‖

≤ (1−βn)‖T xn− T̃ x̃n‖+βn‖Twn− T̃ w̃n‖

≤ (1−βn)
{
‖T xn−T x̃n‖+‖T x̃n− T̃ x̃n‖

}
+βn

{
‖Twn−T w̃n‖+‖T w̃n− T̃ w̃n‖

}
≤ (1−βn)θ‖xn− x̃n‖+(1−βn)ε +βnθ‖wn− w̃n‖+βnε

= (1−βn)θ‖xn− x̃n‖+βnθ‖wn− w̃n‖+ ε

≤ (1−βn)θ‖xn− x̃n‖+βnθ
{(

1− γn(1−θ)
)
‖xn− x̃n‖+ γnε

}
+ ε

≤ θ [1−βnγn(1−θ)]‖xn− x̃n‖+ ε(1+βnγnθ)

≤ [1−βnγn(1−θ)]‖xn− x̃n‖+ ε(1+βnγnθ)(4.4)

‖yn− ỹn‖= ‖(1−αn)T zn +αnTwn− (1−αn)T̃ z̃n−αnT̃ w̃n‖

≤ (1−αn)‖T zn− T̃ z̃n‖+αn‖Twn− T̃ w̃n‖

≤ (1−αn)‖T zn−T z̃n +T z̃n− T̃ z̃n‖+αn‖Twn−T w̃n +T w̃n− T̃ w̃n‖

≤ (1−αn)
{
‖T zn−T z̃n‖+‖T z̃n− T̃ z̃n‖

}
+αn

{
‖Twn−T w̃n‖+‖T w̃n− T̃ w̃n‖

}
≤ (1−αn)θ‖zn− z̃n‖+(1−αn)ε +αnθ‖wn− w̃n‖+αnε

= (1−αn)θ‖zn− z̃n‖+αnθ‖wn− w̃n‖+ ε

≤ (1−αn)θ {[1−βnγn(1−θ)]‖xn− x̃n‖+ ε(1+βnγnθ)}

+αnθ
{(

1− γn(1−θ)
)
‖xn− x̃n‖+ γnε

}
+ ε

≤ θ {(1−αn)(1−βnγn(1−θ))+αn(1− γn(1−θ))}‖xn− x̃n‖

+θε(1−αn)(1+βnγnθ)+ ε(1+αnγnθ)

≤ {1+αnβnγn(1−θ)−βnγn(1−θ)−αnγn(1−θ)}‖xn− x̃n‖

+θε(1−αn)(1+βnγnθ)+ ε(1+αnγnθ)

≤ {1+αnβnγn(1−θ)−αnβnγn(1−θ)−αnβnγn(1−θ)}‖xn− x̃n‖

+θε(1−αn)(1+βnγnθ)+ ε(1+αnγnθ)

= {1−αnβnγn(1−θ)}‖xn− x̃n‖+θε(1−αn)(1+βnγnθ)+ ε(1+αnγnθ)(4.5)
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From (4.2) and (4.5), we have

‖xn+1− x̃n+1‖ ≤ θ [1−αnβnγn(1−θ)]‖xn− x̃n‖+θ
2
ε(1−αn)(1+βnγnθ)

+θε(1+αnγnθ)+ ε

≤ [1−αnβnγn(1−θ)]‖xn− x̃n‖+ ε(1−αn)(1+βnγnθ)

+ ε(1+αnγnθ)+ ε

≤ [1−αnβnγn(1−θ)]‖xn− x̃n‖+ ε(1−αn)(1+1)+ ε(1+1)+ ε

= [1−αnβnγn(1−θ)]‖xn− x̃n‖+2ε(1−αn)+3ε

≤ [1−αnβnγn(1−θ)]‖xn− x̃n‖+2ε(1−αnβnγn)

+3(1−αnβnγn +αnβnγn)ε(4.6)

From assumption (i) we have 1−αnβnγn ≤ αnβnγn. Using this in (4.6) we get

‖xn+1− x̃n+1‖ ≤ [1−αnβnγn(1−θ)]‖xn− x̃n‖+8αnβnγnε

= [1−αnβnγn(1−θ)]‖xn− x̃n‖+αnβnγn(1−θ)
8ε

1−θ
(4.7)

Let ξ := ‖xn− x̃n‖, ζn := αnβnγn(1−θ) ∈ (0,1), λn :=
8ε

1−θ
.

By Lemma (2.4), we have

(4.8) 0≤ limsup
n→∞

‖xn− x̃n‖ ≤ limsup
n→∞

8ε

1−θ

We know that lim
n→∞

xn = p (by Theorem 3.1). Also by assumption, lim
n→∞

x̃n = p̃.

Therefore, we have ‖p− p̃‖ ≤ 8ε

1−θ
.

This completes the proof. �

5. NUMERICAL ILLUSTRATION

We now compare the P-A hybrid iterative process with Abbas, Picard-Mann, Picard-Ishikawa

and Picard-Noor iterative processes by an illustration.

Example 5.1. Let C = [1,6] ⊆ X = R and T : C→ C be defined in C by T x =
√

x+2 for all

x ∈ C. Choose αn = βn = γn = 1
2 for each n ∈ N with initial value x1 = 5. Clearly, T is a

contraction and Fix(T ) = 2. The comparison is shown in table 1.
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Step Picard-Abbas Abbas Picard-Mann Picard-Ishikawa Picard-Noor

1 5.00000000000 5.00000000000 5.00000000000 5.00000000000 5.00000000000

2 2.06655558777 2.27065199733 2.41306354154 2.38883481446 2.38629784546

3 2.00171524137 2.02760217242 2.06322476109 2.05528840652 2.05441369100

4 2.00004438379 2.00285282760 2.00984688238 2.00797195435 2.00776739377

5 2.00000114860 2.00029526479 2.00153779502 2.00115180092 2.00111089764

6 2.00000002972 2.00003056401 2.00024026142 2.00016646296 2.00015892486

7 2.00000000077 2.00000316385 2.00003754038 2.00002405893 2.00002273666

8 2.00000000002 2.00000032751 2.00000586567 2.00000347726 2.00000325285

9 2.00000000000 2.00000003390 2.00000091651 2.00000050257 2.00000046537

10 2.00000000000 2.00000000351 2.00000014320 2.00000007264 2.00000006658

11 2.00000000000 2.00000000036 2.00000002238 2.00000001050 2.00000000953

12 2.00000000000 2.00000000004 2.00000000350 2.00000000152 2.00000000136

13 2.00000000000 2.00000000000 2.00000000055 2.00000000022 2.00000000019

14 2.00000000000 2.00000000000 2.00000000009 2.00000000003 2.00000000003

15 2.00000000000 2.00000000000 2.00000000001 2.00000000000 2.00000000000

16 2.00000000000 2.00000000000 2.00000000000 2.00000000000 2.00000000000

17 2.00000000000 2.00000000000 2.00000000000 2.00000000000 2.00000000000

18 2.00000000000 2.00000000000 2.00000000000 2.00000000000 2.00000000000

19 2.00000000000 2.00000000000 2.00000000000 2.00000000000 2.00000000000

20 2.00000000000 2.00000000000 2.00000000000 2.00000000000 2.00000000000

TABLE 1. Comparison of convergence rate of iterative processes (2.3), (2.4),

(2.5), (2.6) and (2.7).

6. APPLICATION TO DELAY DIFFERENTIAL EQUATIONS

Let us endow the space C
(
[a,b]

)
with the norm ‖x− y‖∞ = max

t∈[a,b]
|x(t)− y(t)| with C

(
[a,b]

)
being the space of real-valued functions which are continuous on the interval [a,b]. The space(
C
(
[a,b]

)
,‖ · ‖∞

)
is known to be a Banach space.
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Let the following delay differential equation be considered:

(6.1) x′(t) = f (t,x(t),x(t− τ)), t ∈ [t0,b]

with initial condition

(6.2) x(t) = ϕ(t), t ∈ [t0− τ, t0]

We assume the following conditions are satisfied:

(C1) t0,b ∈ R, τ > 0;

(C2) f ∈C
(
[t0,b]×R2,R

)
;

(C3) ϕ ∈C
(
[t0− τ,b],R

)
;

(C4) there exists L f > 0 such that ∀ui,vi ∈ R, i = 1,2, t ∈ [t0,b]

(6.3)
∣∣ f (t,u1,u2)− f (t,v1,v2)

∣∣≤ L f

2

∑
i=1
|ui− vi|

(C5) 2L f (b− t0)< 1

A solution x of problem (6.1) – (6.2) is a function x ∈C
(
[t0− τ,b],R

)⋂
C1([t0,b],R).

We can reformulate the given problem (6.1) – (6.2) as an integral equation below:

(6.4) x(t) =


ϕ(t), t ∈ [t0− τ, t0],

ϕ(t0)+
∫ t

t0
f (s,x(s),x(s− τ))ds, t ∈ [t0,b]

We first state the following result established by Coman et al. [14]

Theorem 6.1. If (C1) – (C5) are satisfied, then a unique solution, say x∗, to the problem (6.1) –

(6.2) exists in C
(
[t0− τ,b],R

)⋂
C1([t0,b],R) and

(6.5) x∗ = lim
n→∞

T n(x) for any x ∈C
(
[t0− τ,b],R

)
.

Theorem 6.2. If (C1) – (C5) are satisfied, then a unique solution, say x∗, to the problem (6.1) –

(6.2) exists in C
(
[t0−τ,b],R

)⋂
C1([t0,b],R) and the Picard-Abbas iterative process (2.7) with

real sequences αn,βn,γn in (0,1) such that
∞

∑
n=1

αnβnγn = ∞, converges to x∗.
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Proof. Let the iteration (2.7) generate the iterative sequence {xn}∞

n=1 for the operator

(6.6) x(t) =


ϕ(t), t ∈ [t0− τ, t0],

ϕ(t0)+
∫ t

t0
f (s,x(s),x(s− τ))ds, t ∈ [t0,b]

Let x∗ ∈ Fix(T ). We will prove that xn→ x∗ as n→ ∞.

We can see that xn→ x∗ for each t ∈ [t0− τ, t0].

Now, for each t ∈ [t0,b] we have

‖wn− x∗‖∞ = ‖(1− γn)xn + γnT xn− x∗‖∞

≤ (1− γn)‖xn− x∗‖∞ + γn‖T xn−T x∗‖∞

≤ (1− γn)‖xn− x∗‖∞ + γn max
t∈[t0−τ,b]

∣∣T xn(t)−T x∗(t)
∣∣

= (1− γn)‖xn− x∗‖∞ + γn max
t∈[t0−τ,b]

∣∣∣∣∣∣∣∣
ϕ(t0)+

∫ t

t0
f (s,xn(s),xn(s− τ))ds

−ϕ(t0)−
∫ t

t0
f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣∣
= (1− γn)‖xn− x∗‖∞ + γn max

t∈[t0−τ,b]

∣∣∣∣∣∣∣∣
∫ t

t0
f (s,xn(s),xn(s− τ))ds

−
∫ t

t0
f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣∣
≤ (1− γn)‖xn− x∗‖∞ + γn max

t∈[t0−τ,b]

∫ t

t0

∣∣∣∣∣∣∣
f (s,xn(s),xn(s− τ))ds

− f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣
≤ (1− γn)‖xn− x∗‖∞

+ γn max
t∈[t0−τ,b]

∫ t

t0
L f
(
|xn(s)− x∗(s)|+ |xn(s− τ)− x∗(s− τ)|

)
ds

≤ (1− γn)‖xn− x∗‖∞ + γn

∫ t

t0
L f

 max
t∈[t0−τ,b]

|xn(s)− x∗(s)|

+ max
t∈[t0−τ,b]

|xn(s− τ)− x∗(s− τ)|

ds

≤ (1− γn)‖xn− x∗‖∞ + γn

∫ t

t0
L f
(
‖xn− x∗‖∞ +‖xn− x∗‖∞

)
ds

≤ (1− γn)‖xn− x∗‖∞ +2γnL f (t− t0)‖xn− x∗‖∞

≤ [1− γn
(
1−2L f (b− t0)

)
]‖xn− x∗‖∞(6.7)
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‖zn− x∗‖∞ = ‖(1−βn)xn +βnTwn− x∗‖∞

≤ (1−βn)‖xn− x∗‖∞ +βn‖Twn−T x∗‖∞

≤ (1−βn)‖xn− x∗‖∞ +βn max
t∈[t0−τ,b]

∣∣Twn(t)−T x∗(t)
∣∣

= (1−βn)‖xn− x∗‖∞ +βn max
t∈[t0−τ,b]

∣∣∣∣∣∣∣∣
ϕ(t0)+

∫ t

t0
f (s,wn(s),wn(s− τ))ds

−ϕ(t0)−
∫ t

t0
f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣∣
= (1−βn)‖xn− x∗‖∞ +βn max

t∈[t0−τ,b]

∣∣∣∣∣∣∣∣
∫ t

t0
f (s,wn(s),wn(s− τ))ds

−
∫ t

t0
f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣∣
≤ (1−βn)‖xn− x∗‖∞ +βn max

t∈[t0−τ,b]

∫ t

t0

∣∣∣∣∣∣∣
f (s,wn(s),wn(s− τ))ds

− f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣
≤ (1−βn)‖xn− x∗‖∞

+βn max
t∈[t0−τ,b]

∫ t

t0
L f
(
|wn(s)− x∗(s)|+ |wn(s− τ)− x∗(s− τ)|

)
ds

≤ (1−βn)‖xn− x∗‖∞ +βn

∫ t

t0
L f

 max
t∈[t0−τ,b]

|wn(s)− x∗(s)|

+ max
t∈[t0−τ,b]

|wn(s− τ)− x∗(s− τ)|

ds

≤ (1−βn)‖xn− x∗‖∞ +βn

∫ t

t0
L f
(
‖wn− x∗‖∞ +‖wn− x∗‖∞

)
ds

≤ (1−βn)‖xn− x∗‖∞ +2βnL f (t− t0)‖wn− x∗‖∞

≤ (1−βn)‖xn− x∗‖∞ +2βnL f (b− t0)[1− γn
(
1−2L f (b− t0)

)
]‖xn− x∗‖∞(6.8)

Using condition (C5), that is 2L f (b− t0)< 1 in (6.8), we have

‖zn− x∗‖∞ ≤ (1−βn)‖xn− x∗‖∞ +βn[1− γn
(
1−2L f (b− t0)

)
]‖xn− x∗‖∞

= [1−βnγn
(
1−2L f (b− t0)

)
]‖xn− x∗‖∞(6.9)

‖yn− x∗‖∞ = ‖(1−αn)zn +αnTwn− x∗‖∞

≤ (1−αn)‖zn− x∗‖∞ +αn‖Twn−T x∗‖∞
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≤ (1−αn)‖zn− x∗‖∞ +αn max
t∈[t0−τ,b]

∣∣Twn(t)−T x∗(t)
∣∣

= (1−αn)‖zn− x∗‖∞ +αn max
t∈[t0−τ,b]

∣∣∣∣∣∣∣∣
ϕ(t0)+

∫ t

t0
f (s,wn(s),wn(s− τ))ds

−ϕ(t0)−
∫ t

t0
f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣∣
= (1−αn)‖zn− x∗‖∞ +αn max

t∈[t0−τ,b]

∣∣∣∣∣∣∣∣
∫ t

t0
f (s,wn(s),wn(s− τ))ds

−
∫ t

t0
f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣∣
≤ (1−αn)‖zn− x∗‖∞ +αn max

t∈[t0−τ,b]

∫ t

t0

∣∣∣∣∣∣∣
f (s,wn(s),wn(s− τ))ds

− f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣∣∣∣
≤ (1−αn)‖zn− x∗‖∞

+αn max
t∈[t0−τ,b]

∫ t

t0
L f
(
|wn(s)− x∗(s)|+ |wn(s− τ)− x∗(s− τ)|

)
ds

≤ (1−αn)‖zn− x∗‖∞ +αn

∫ t

t0
L f

 max
t∈[t0−τ,b]

|wn(s)− x∗(s)|

+ max
t∈[t0−τ,b]

|wn(s− τ)− x∗(s− τ)|

ds

≤ (1−αn)‖zn− x∗‖∞ +αn

∫ t

t0
L f
(
‖wn− x∗‖∞ +‖wn− x∗‖∞

)
ds

≤ (1−αn)‖zn− x∗‖∞ +2αnL f (t− t0)‖wn− x∗‖∞

≤ (1−αn)[1−βnγn
(
1−2L f (b− t0)

)
]‖xn− x∗‖∞

+2αnL f (b− t0)[1− γn
(
1−2L f (b− t0)

)
]‖xn− x∗‖∞

≤ (1−αn)[1−βnγn
(
1−2L f (b− t0)

)
]‖xn− x∗‖∞

+αn[1− γn
(
1−2L f (b− t0)

)
]‖xn− x∗‖∞

=

1−βnγn
(
1−2L f (b− t0)

)
+αnβnγn

(
1−2L f (b− t0)

)
−αnγn

(
1−2L f (b− t0)

)
‖xn− x∗‖∞

≤

1−αnβnγn
(
1−2L f (b− t0)

)
+αnβnγn

(
1−2L f (b− t0)

)
−αnβnγn

(
1−2L f (b− t0)

)
‖xn− x∗‖∞
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=
[
1−αnβnγn

(
1−2L f (b− t0)

)]
‖xn− x∗‖∞(6.10)

‖xn+1− x∗‖∞ = ‖Tyn−T x∗‖∞

= max
t∈[t0−τ,b]

∣∣∣∣∫ t

t0
f (s,yn(s),yn(s− τ))ds−

∫ t

t0
f (s,x∗(s),x∗(s− τ))ds

∣∣∣∣
≤ max

t∈[t0−τ,b]

∫ t

t0

∣∣ f (s,yn(s),yn(s− τ))ds− f (s,x∗(s),x∗(s− τ))
∣∣ds

≤ max
t∈[t0−τ,b]

∫ t

t0
L f
(
|yn(s)− x∗(s)|+ |yn(s− τ)− x∗(s− τ)|

)
ds

≤ 2L f (b− t0)‖yn− x∗‖∞

≤ 2L f (b− t0)
[
1−αnβnγn

(
1−2L f (b− t0)

)]
‖xn− x∗‖∞(6.11)

Using condition (C5), that is 2L f (b− t0)< 1 in (6.11), we have

(6.12) ‖xn+1− x∗‖∞ ≤
[
1−αnβnγn

(
1−2L f (b− t0)

)]
‖xn− x∗‖∞

Now, take µn = αnβnγn
(
1−2L f (b− t0)

)
< 1 and kn = ‖xn− x∗‖∞.

By Lemma 2.1, we get lim
n→∞
‖xn− x∗‖∞ = 0.

Hecne the proof. �

7. CONCLUSION

We are able to demonstrate from the results above that the P-A iteration converges more

quickly than the Abbas iteration. Example (5.1) demonstrates our point. Additionally, the P-

A iteration is stable, and a data dependence result is obtained for the P-A iteration. On the

application side, we were able to employ the P-A iteration to find solution of delay differential

equations. It’s interesting to observe that the convergence rate appears to improve when well-

known iterative techniques are combined to create a hybrid. This actually creates a pathway for

more study in this area.
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