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Abstract. The aim of this paper is to prove common fixed point theorem for quadruple mappings in cone b-metric

spaces. Our result extends and improves some fixed point results in cone b-metric spaces. We illustrate our main

result by an example.
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1. INTRODUCTION

The concept of b-metric space was introducd by Bakhtin [2]. He proved the principal of

contraction mapping in b- metric spaces. Huang and Zhang [6] introduced the concept of cone

metric space as a generalisation of metric space. In addition, certain fixed point theorems have

been demonstrated for contractive mapping which extended the results of fixed point in metric

spaces. Hussain and Shah [7] introduced the cone b-metric spaces as a generalization of b-

metric spaces for KKM mappings. Sharma [9] used rational expression to prove fixed point
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theorem for contractive mapping without the assumption of normality in cone b-metric spaces.

Similar work has been done in [1,3,4,5].

2. PRELIMINARIES

We use the following definitions for our main result:

Let E be a real Banach space and P be a subset of E. We denote the zero element of E by θ and

the interior of P by intP. The subset P is called a cone iff :

(1) P is closed, nonempty, and P 6= θ

(2) a,b ∈ R, a, b≥ 0, x, y ∈ P implies ax+by ∈ P

(3) P∩ (−P) = θ .

Definition 2.1. [9] Let X be a nonempty set. Suppose that the mapping d : X×X → E satisfies:

(1) θ ≤ d(x,y) f or all x,y ∈ X with x 6= y and d(x,y) = θ i f f x = y;

(2) d(x,y) = d(y,x) f or all x,y ∈ X;

(3) d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X.

Then d is called a cone metric on X and (X ,d) is called a cone metric space.

Definition 2.2. [9] Let X be a nonempty set and s ≥1 be a given real number. A mapping

d : X ×X → E is said to be cone b-metric iff, for all x,y,z ∈ X, the following conditions are

satisfied:

(1) θ ≤ d(x,y) with x 6= y and d(x,y) = θ i f f x = y;

(2) d(x,y) = d(y,x) ;

(3) d(x,y)≤ s[d(x,z)+d(z,y)].

Then pair (X ,d) is called a cone b-metric spaces.

Definition 2.3. [9] Let (X ,d) be a cone b-metric space, x ∈ X and xn be a sequence in X. Then

(1) xn converges to x whenever, for every c ∈ E with θ < c, there is a natural number N

such that d(xn,x)< c for all n≥ N. We denote this by xn→ x as (n→ ∞).

(2) {xn} is a Cauchy sequence whenever, for every c ∈ E with θ < c, there is a natural

number N such that d(xn,xm)<c for all n, m ≥ N.

(3) (X ,d) is a complete cone b-metric space if every Cauchy sequence in X is convergent.
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Definition 2.4. [8] Let X be a nonempty set and k ≥ 1 a given real number. A function d :

X×X → R+ is a b-metric iff for each x,y,z ∈ X, following conditions are satisfied:

(1) d(x,y) = 0 i f f x = y,

(2) d(x,y) = d(y,x),

(3) d(x,z)≤ k[d(x,y)+d(y,z)].

Then the pair (X ,d) is called a b-metric space. It should be noted that the class of b-metric

spaces is effectively larger than that of metric spaces. Indeed, a b-metric is a metric iff k = 1.

Definition 2.5. [8] Let (X ,d) be a b-metric space. Then a sequence {xn} in X is called:

(a) convergent if and only if there exists x ∈ X such that d(xn,x)→ 0, as n→ ∞. In this case,

we write limn→∞ xn = x.

(b) Cauchy iff d(xn,xm)→ 0, as n,m→ ∞, where n,m≥ N ∈ N.

Lemma 2.1. [8] Let (X, d) be a b-metric space with k ≥ 1. Suppose that xn and yn

are b-convergent to x and y, respectively. Then, we have 1
k2 d(x,y) ≤ limn→∞ infd(xn,yn) ≤

limn→∞ supd(xn,yn)≤ k2d(x,y).

In particular, if x = y, then we have limn→∞ d(xn,yn) = 0. Moreover for each z ∈ X we have
1
k d(x,z)≤ limn→∞ infd(xn,z)≤ limn→∞ supd(xn,z)≤ kd(x,z).

Lemma 2.2. [8] Let (X, d) be a b-metric space. If there exist two sequences {xn} and {yn} such

that limn→∞ d(xn,yn) = 0 , whenever {xn} is a sequence in X such that limn→∞ xn = t for some

t ∈ X then limn→∞ yn = t.

In this section, we present common fixed point theorem for contractive mapping in the setting

of cone b-metric spaces:

3. MAIN RESULTS

Theorem 3.1. Let (X ,d) be a complete cone b-metric space with the coefficient k ≥1. Suppose

the mappings A,B,S,T : X → X satisfy the following conditions:

(1) AX ⊆ T X , BX ⊆ SX;

(2) The pair (A,T ) and (B,S) are compatible;

(3) S and T are continuous; for all x,y ∈ X , k ≥1.
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(4) d(Ax,By)≤ q
k4 max{d(Sx,Ty), d(Ax,Sx)+d(By,Ty)

2 , d(Sx,By)+d(Ax,Ty)
2 }

Then S,T,A and B have a unique common fixed point in X.

Proof. Since (X ,d) is a complete cone b-metric space with the coefficient k ≥1,

Suppose mapping A,B,S, T : X → X satisfy all above four conditions.

d(Ax,By)≤ q
k4 max{d(Sx,Ty),

d(Ax,Sx)+d(By,Ty)
2

,

d(Sx,By)+d(Ax,Ty)
2

}.
(3.1)

Since AX ⊆ T X implies Ax0 = T x1 = y1 (say), BX ⊆ SX implies Bx1 = Sx2 = y2 (say)

Ax2n = T x2n+1 = y2n+1 and Bx2n+1 = Sx2n+2 = y2n+2 for n = 0,1,2,....

putting x = x2n, y = y2n+1 and let q
k4 = β (say)

d(Ax2n,Bx2n+1)≤ β max{d(Sx2n,T x2n+1),
d(Ax2n,Sx2n)+d(Bx2n+1,T x2n+1)

2
,

d(Sx2n,Bx2n+1)+d(Ax2n,T x2n+1)

2
}

d(y2n+1,y2n+2)≤ β max{d(y2n,y2n+1),
d(y2n+1,y2n)+d(y2n+2,y2n+1)

2
,

d(y2n,y2n+2)+d(y2n+1,y2n+1)

2
}

= β max{d(y2n,y2n+1),
d(y2n,y2n+1)+d(y2n+1,y2n+2)

2
,

d(y2n,y2n+2)+0
2

}

= β max{d(y2n,y2n+1),
d(y2n,y2n+1)+d(y2n+1,y2n+2)

2
,

d(y2n,y2n+2)

2
}.

Case 1: If max{d(y2n,y2n+1),
d(y2n,y2n+1)+d(y2n+1,y2n+2)

2 , d(y2n,y2n+2)
2 }= d(y2n,y2n+1),

then

(3.2) d(y2n+1,y2n+2)≤ βd(y2n,y2n+1).

Case 2: If max{d(y2n,y2n+1),
d(y2n,y2n+1)+d(y2n+1,y2n+2)

2 , d(y2n,y2n+2)
2 }= d(y2n,y2n+1)+d(y2n+1,y2n+2)

2 ,

then

d(y2n+1,y2n+2)≤ β{d(y2n,y2n+1)+d(y2n+1,y2n+2)

2
}
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or d(y2n+1,y2n+2)

[
1− β

2

]
≤ β

2
d(y2n,y2n+1)

or d(y2n+1,y2n+2)≤
β

2

[1− β

2 ]
d(y2n,y2n+1)

≤ k{d(y2n,y2n+1)}, where k =
β

2

1− β

2

.(3.3)

Case 3: If max{d(y2n,y2n+1),
d(y2n,y2n+1)+d(y2n+1,y2n+2)

2 , d(y2n,y2n+2)
2 }= d(y2n,y2n+2)

2

then

d(y2n+1,y2n+2)≤
β

2
d(y2n,y2n+2)

≤ β

2
{d(y2n,y2n+1)+d(y2n+1,y2n+2)}

or d(y2n+1,y2n+2)

[
1− β

2

]
≤ β

2
d(y2n,y2n+1)

or d(y2n+1,y2n+2)≤
β

2

[1− β

2 ]
d(y2n,y2n+1)

≤ k{d(y2n,y2n+1)}, where k =
β

2

1− β

2

.(3.4)

Using equation (3.2), (3.3) and (3.4), we get d(y2n+1,y2n+2)≤ kd(y2n,y2n+1)

Since AX ⊆ T X implies that Ax0 = T x1 = y1 (say) BX ⊆ SX implies that Bx1 = Sx2 = y2 (say).

Ax2n = T x2n+1 = y2n+1 Bx2n+1 = Sx2n+2 = y2n+2 putting x = x2n+2,y = x2n+1

d(Ax2n+2,Bx2n+1)≤ β max{d(Sx2n+2,T x2n+1),

d(Ax2n+2,Sx2n+2)+d(Bx2n+1,T x2n+1)

2
,

d(Sx2n+2,Bx2n+1)+d(Ax2n+2,T x2n+1)

2
}

or d(y2n+3,y2n+2)≤ β max{d(y2n+2,y2n+1),

d(y2n+3,y2n+2)+d(y2n+2,y2n+1)

2
,

d(y2n+2,y2n+2)+d(y2n+3,y2n+1)

2
}

≤ β max{d(y2n+2,y2n+1),
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d(y2n+3,y2n+2)+d(y2n+2,y2n+1)

2
,

d(y2n+3,y2n+1)

2
}.

Case1: If max{d(y2n+2,y2n+1),
d(y2n+3,y2n+2)+d(y2n+2,y2n+1)

2 , d(y2n+1,y2n+3)
2 }= d(y2n+2,y2n+1),

then

(3.5) d(y2n+2,y2n+3)≤ β{d(y2n+1,y2n+2)}.

Case2: If max{d(y2n,y2n+1),
d(y2n,y2n+1)+d(y2n+1,y2n+2)

2 , d(y2n,y2n+2)
2 }= d(y2n,y2n+1)+d(y2n+1,y2n+2)

2 ,

then

d(y2n+2,y2n+3)≤ β{d(y2n+3,y2n+2)+d(y2n+2,y2n+1)

2
}

or d(y2n+2,y2n+3)

[
1− β

2

]
≤ β

2
d(y2n+1,y2n+2)

or d(y2n+2,y2n+3)≤
β

2

[1− β

2 ]
d(y2n+1,y2n+2)

≤ k{d(y2n+1,y2n+2)}, where k =
β

2

1− β

2

.(3.6)

Case3: If max{d(y2n+2,y2n+1),
d(y2n+3,y2n+2)+d(y2n+2,y2n+1)

2 , d(y2n+1,y2n+3)
2 }= d(y2n+1,y2n+3),

then

d(y2n+2,y2n+3)≤
β

2
[d(y2n+1,y2n+2)+d(y2n+2,y2n+3)]

or d(y2n+2,y2n+3)

[
1− β

2

]
≤ β

2
d(y2n+1,y2n+2)

or d(y2n+2,y2n+3)≤
β

2[
1− β

2

]d(y2n+1,y2n+2)

≤ k{d(y2n+1,y2n+2)}, where k =
β

2

1− β

2

.(3.7)

Using equation (3.5), (3.6) and (3.7), we get

d(y2n+2,y2n+3)≤ kd(y2n+1,y2n+2). Hence {yn} is Cauchy sequence.

Since X is complete cone b-metric space, so there exists some y in X, such that,

(3.8) lim
n→∞

Ax2n = lim
n→∞

T x2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = y (say).
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We will show that y is a common fixed point in A, T, B and S.

Since S is continuous. Therefore

(3.9) limn→∞S2x2n+2 = Sy and lim
n→∞

SAx2n = Sy.

Since pair (A, S) is compatible. Therefore limn→∞ d(ASx2n,SAx2n) = 0. So,

limn→∞ ASx2n = limn→∞ SAx2n and limn→∞ ASx2n = Sy.

Now, put Sx2n = x and x2n+1 = y in the inequality (3.1), we have

d(ASx2n,Bx2n+1)≤ β{max{d(S2x2n,T x2n+1),

d(ASx2n,S2x2n)+d(Bx2n+1,T x2n+1)

2
,

[d(S2x2n,Bx2n+1)+d(ASx2n,T x2n+1)]

2
}

(3.10)

Taking upper limit limn→∞, by Lemma 2.6

d(Sy,y)
k2 ≤ q

k2{max lim
n→∞

sup{d(S2x2n,T x2n+1),

limn→∞ supd(ASx2n,S2x2n)+ limn→∞ supd(Bx2n+1,T x2n+1)

2
,

limn→∞ supd(ASx2n,S2x2n)+ limn→∞ supd(Bx2n+1,T x2n+1)

2

≤ q
k4{max{k2d(Sy,y),0,

k2

2
[d(Sy,y)+d(Sy,y)]}, which implies

(3.11)

d(Sy,y) ≤ q
k2{d(Sy,y)} < d(sy,y), a contradiction. Therefore Sy = y, because 0 < q < 1.

Similarly, Ay = y and finally Sy = Ty = Ay = By = y. So, A, B, S and T have common fixed

point.

Uniqueness of fixed point:

Let A, B, S and T have another fixed point x(say). So,

d(x,y) = d(Ax,By)

≤ q
k4 max{d(Sx,Ty),

d(Ax,Sx)+d(By,Ty)
2

,

d(Sx,By)+d(Ax,Ty)
2

}

≤ q
k4 max{d(x,y), d(x,x)+d(y,y)

2
,
d(x,y)+d(x,y)

2
}

≤ q
k4 max{d(x,y)}
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x = y because 0 < q < 1. Fixed point is unique. This completes the proof.

We illustrate our theorem by the following example. �

Example: Let E = R2, p = {(x,y) ∈ E : (x,y)≥ 0} ⊂ E. X =[0,1] and d : X×X → E,

such that d(x,y) = (α|x− y|2, |x− y|2), where α ≥ 0 Then (X ,d) is a cone b-metric space.

Now define A, B, S, T : X ×X →Y such that, A(x) = ( x
4)

12, B(x) = ( x
4)

8, S(x) = ( x
4)

8, T (x) =

( x
4)

4

here (i) AX ⊆ T X , BX ⊆ SX ;

(ii) The pair (A,T ) and (B,S) are compatible;

(iii) S and T are continuous;

(iv)d(Ax,By) = (α|Ax−By|2, |Ax−By|2)

= (α|(x
4
)12− (

x
4
)8|2, |(x

4
)12− (

x
4
)8|2)

= (α|(x
4
)4{(x

4
)8− (

x
4
)4}|2, |(x

4
)4{(x

4
)8− (

x
4
)4}|2)

= (
x
4
)8(α|(x

4
)8− (

x
4
)4|2, |(x

4
)8− (

x
4
)4|2)

= |(x
4
)8|d(Sx,Ty)

≤ (
1
4
)8d(Sx,Ty)

≤ (
1
4
)8max{d(Sx,Ty),

d(Ax,Sx)+d(By,Ty)
2

,

d(Sx,By)+d(Ax,Ty)
2

}

≤
(1

4)
4

44 max{d(Sx,Ty),
d(Ax,Sx)+d(By,Ty)

2
,

d(Sx,By)+d(Ax,Ty)
2

}

≤ (
q
k4 )max{d(Sx,Ty),

d(Ax,Sx)+d(By,Ty)
2

,

d(Sx,By)+d(Ax,Ty)
2

},

where (1
4)

4 ≤ q < 1 for k = 4. We obseerve that x = 0 is the unique common fixed point of A,

B, S, T. This validates Theorem 3.1.
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