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Abstract. This paper explores the existence and uniqueness of common fixed points for two pairs of selfmaps
satisfying a Geraghty-Berinde-Suzuki type contraction in complete b-metric spaces. We illustrate our findings
with examples and derive a few corollaries from our findings. The significance of L in our contraction condition is
also covered.
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1. INTRODUCTION

The expansion of contraction conditions in one direction or the expansion of the operator
under consideration’s ambient spaces in another direction forms the foundation for the develop-
ment of fixed point theory. The Banach contraction principle is one of the most helpful findings
in fixed point theory and is crucial for resolving nonlinear equations. In 1973, Geraghty [26] es-
tablished a fixed point theorem that expanded upon the Banach contraction principle and moved
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the field of contraction conditions toward generality. By extending contraction map to contrac-
tion map with rational expression, Dass and Gupta [23] proved the presence of fixed points in
complete metric spaces. Berinde [13] developed “weak contractions” as a generalization of con-
traction maps, continuing the extensions of contraction maps. In his subsequent work, Berinde
reclassified “weak contractions” as “almost contractions” [15].To read more about almost con-
tractions and their generalizations, see [2, 7, 8, 10, 11, 16]. A novel kind of generalization of the
Banach contraction principle and a characterization of the metric completeness were established
by Suzuki [39] in 2008. They proved two fixed point theorems.

The fundamental concept of b-metric originated from the writings of Bakhtin [12] and Bour-
baki [19]. Czerwik [21] introduced the concept of b-metric space, also referred to as metric
type space, as a generalization of metric space. Subsequently, a large number of authors inves-
tigated fixed point theorems in b-metric spaces for both single- and multi-valued mappings, see
[3,4,17, 18, 22, 31, 37, 38].

The concept of property (E.A) was initially introduced in 2002 by Aamari and Moutawakil
[1]. This concept was employed by a number of authors to show that common fixed points exist;
see [5, 6, 34, 35, 36].

The sets of all natural numbers, N, and Rt = [0,00) are denoted.

Definition 1.1. [21] Let § be a set that is not empty. If the following criteria are met, a function

0:§x§— RT is referred to be a b-metric: forany £,{,n € §
by) 0<9(&,8)and 0(E,8) =0ifand only if £ = ¢,

(b2) 9(5,8) =0(E,¢).
(b3) there exists s > 1 such that 3(§,n) < s[0(&,8)+0(&,n)].

A b-metric space with coefficient s is defined in this instance for the pair (§,0).

All metric spaces have s = 1 and are b-metric spaces. Generally speaking, not all b-metric

spaces are metric spaces.

Definition 1.2. [18] Assume that the b-metric space is (§,0).

(i) If there exists & € § such that 9(&,,&) — 0 as n — oo, then a sequence {&,} in § is

termed b-convergent. Here, we write lim &, = &.
n—yoo
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(i) In §, a sequence {&,} is considered b-Cauchy if 6(&,,&y) — 0 as n,m — oo.
It is not always the case that a b-metric is continuous.

Example 1.3. [28] For § = NU {}, let them be. The following is how we define a mapping

0:§x§—=R™:
)
0 if m=n,
L %\ if one of m,n is even and the other is even or oo,
o(m,n) =
5 if one of m,n is odd and the other is odd or oo,
| 2 otherwise.
Then (§,0) is a b-metric space with coefficient s = 3.

Definition 1.4. [29] When li_r}n 0(EAE,, AZE,) = 0, then a pair (A, E) of selfmaps on a metric
space (§,0) is considered compatible. Whenever {&,} is a sequence in §, such that, for some

1€ 8. JimAG = lin 36, =

Definition 1.5. [1] Given a sequence {&,} in § such that, for each n € &, lim A, = lim EE, =
n—oo n—oo

1N, a pair (A, E) of selfmaps on a metric space (§,0) is said to satisfy (E.A)-property.

Definition 1.6. [34] b-(E.A)-property is satisfied by a pair (A, E) of selfmaps on a b-metric
space (§,0) if there exists a sequence {&,} in § such that lim A, = lim E, = n for some
n—yoo n—yoo

nes.

Definition 1.7. [30] Weakly compatible selfmaps are pairs (A,Z) on a set § if and only if
AEE = EAE whenever AE = ZE for any & € §.

Geraghty [26] in 1973 introduced the family of functions as follows:
t={B:[0,00) = [0,1)/ lim B(t,) =1 = limt, = 0}.
n—oo n—oo

Theorem 1.8. [26] Assume that the metric space (§,0) is complete. Consider a selfmap Y :

§ — § that satisfies the following:For any &, { € §, there exists § € t such that

0(Ys,Y¢) < B(0(5,6))d(&,¢)

. Then there is a unique fixed point for Y.
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We denote g = {a : [0,0) — [O,%)/ 1211 o(ty) :% — lijn th =0}.
n—ro0 Nn—ro0

Theorem 1.8 was extended to the case of b-metric spaces by Dukic et al. [24] in 2011.

Theorem 1.9. [24] With coefficient s > 1, let (§,0) be a complete b-metric space. Let Y: § — §

be a selfmap of §. Assume that for every &, € §, there exists & € g such that

(Y5, Y¢) < a(d(&,£))0(S, 6)-

In §, there is a unique fixed point for Y.
The lemmas that follow are helpful in demonstrating our primary findings.

Lemma 1.10. [27] Let b-metric space (§,0) have coefficient s > 1. Assume that for every
n € N, where k € [0,1) is a constant, there exists a sequence {&,} in § such that 9(&,,&,+1) <

ko(&q—1,&). It follows that {&,} in § is a b-Cauchy sequence.

Lemma 1.11. [3] Consider a b-metric space with coefficient s > 1, denoted as (§,0). Assuming

that {&,} and {{,} are b-convergent to & and {, respectively, we obtain the following:

S0(E,€) <Nminfd(E,,G) < limsupd(§,,8,) < 0(E, ).

n—o0

Specifically, lgn 0(&y, 6y) = 0if & = ¢. Additionally, we have
n—soo

15(€,m) < Hminfd(&, 1) < limsupd(&,,m) < 3. 7).

n—oo

This is true for each n € §.

According to Latif et al. [32], it was established in b-metric spaces that fixed points of a

single selfmap meeting the Suzuki type contraction requirement exist and are unique.

Theorem 1.12. [32] Assume that (§,0) is the complete b-metric space and let f: § — §, « :
§ X § — [0,00) satisfying

(@) (5, 8) > 1 = a(f8,f8) = 1,

D) a(E,m) > 1,a(n,8) >1 = a(&,8) >1,&,8,n € §. Suppose that B € g such that

20(8,f8) <0(8, ) = sa(&,0)A(fE, fC) < BM(E,0))M(E,L) forall £, € §, where

~ BESEDES OB SOBESE) I(ESEDE SO+ SNELE)
M(8,8) = max{0(C, ), =T GE e IO
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Also, suppose that the following assertions hold:
(i) there exists & € § such that ot(&p, f&y) > 1;
(if) for any sequence {&,} in § with ot(&,,&,1) > 1 foralln € NU{0} such that
&y — & asn— oo, we have a(§,,&) > 1 forall n € NU{0}.

Then, f has a fixed point.

O#(&) denotes the set {&o, £&o, f>&o, &, - -}, which is known as an orbit of £ at the point
Eo [14].

Definition 1.13. [20] In a b-metric space §, every Cauchy sequence in O (&) that converges in

§, where f is a selfmapping on § and &) € §, is called f-orbitally complete.

Definition 1.14. [33] Assume that & : § X § — R and that § is any nonempty set. For each
&,C € § with € # (, there exists § € & such that a(§,m) > 1,a(8,n) > 1 and (7, fn) > 1.
This is known as a property (H) of a selfmap f: § — §.

Definition 1.15. [33] Suppose we have a b-metric space (§,0) and o : § x § — R. For any

&, € 8§, there exists a B € g such that f: § — § is called a generalized a-Suzuki-Geraghty

contraction, ;ﬁ(é,f&) <s0(&,8) = O(fE,fE) <BM(E,E))M(E, L),

where

M(E,¢) = max{D(E,$),D(E, £€),8(¢, £),D(f2E, FE),B(£2E, ), QLS L),

09(8,/E)+0(E./6) 9(&,./E)D(E./E)+0(E,./E)D(E./S) 0(S./E)D (€,f€)+5(éyfé) (Qfé)}
2s ’ 1+5[0(5,6)+0(/5./E)] ' 14+0(&,/6)+0(C.fS) '

Theorem 1.16. [33] With parameters > 1,@: § x§ — Rand f: § — §, let (§,0) be the complete

b-metric space. Assume the following requirements are met and § is f-orbitally complete:

(i) there exists & € § such that a(&y, f&) > 1;
(ii) fis a generalized a-Suzuki-Geraghty contraction and a triangular ¢t-orbital admissible;
(iii) either f is continuous or for any sequence {&,} in § with a(&,,&,4+1) > 1 such that

&, — & asn — oo we have a(&,,&) > 1 for alln € NU{0}.

Then, {f"&y} converges to 7, and f has a fixed point 1] in §. Furthermore, if the property

(H) is substituted for condition (i), then f has a unique fixed point.



6 BABU, CHANDER, KUMAR, PRASAD
In this work, we indicate
§={B:[0,0) —[0,1)/limsupB(t,) =1 = lim¢, =0}.
’ n—oo ' n—hoo
The following theorem was proved in 2019 by Faraji et al. [25].

Theorem 1.17. [25] Consider a complete b-metric space with parameter s > 1, denoted as

(§,0). Let Y,X : § — § be selfmaps on § that satisfy the following: there exists B € § such that

sO(YE,X8) < B(M(E,8))M(S.C)
forall &, € §, where M (&, ) = max{0(&,§),0(&,YE),0(E,20)}.

There exists a unique common fixed point for Y and X if any of them is continuous.

The Geraghty-Suzuki type contraction was introduced in b-metric spaces in 2020 by Babu
and Babu [9].

Definition 1.18. [9] Let (§,0) be a b-metric space, and let A,E,Xand Y be selfmaps of §. If

there exists B € § such that

2 min{d(28,AE),0(Y8,EC)} < max{0(2€,Y(),0(AE,E0)}
= s*O(AE,EL) < B(M(E,0))M(E,0)

where

M(E, ) = max{D(2€,YC),0(2&, AE),0(YE,EE), AE5EE) DIEAS)

0(SE AE)D(YLEL) 3(2E,.EQ)D(YEAE)
TT0(SE, YO 13(AE 20) TP Y0 roiac 2 o foralle, & e

then the pairs (A,X) and (E,Y) are Geraghty-Suzuki type contraction maps.

The following theorems are due to Babu and Babu [9].

Theorem 1.19. [9] Let A,E.X, and Y be selfmaps on the complete b-metric space (§,0) that
satisfy Geraghty-Suzuki type contraction maps and A(§) C Y(§) and E(§) C X(§). Should either
(i) (E,Y) is weakly compatible, A (or) X is b-continuous, and the pair (A,X) is compatible

or
(ii) E (or) Y is b-continuous, the pair (E,Y) is compatible, and the pair (A,X) is weakly

compatible

therefore there is a single common fixed point in § for A, =, %, and Y.
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Theorem 1.20. [9] Let s > 1 be a coefficient in a b-metric space (§,0). Allow A,E, X Y:§ — §
to be selfmaps of § that fulfill Geraghty-Suzuki type contraction maps and A(§) C Y(§) and
E(§) CZ(§). Assume that one of the subspaces A(§),E(§),Z(8§), and Y(§) is b-closed in § and
that one of the pairs (A,X) and (E,Y) fulfills the b-(E.A)-property. Then, there is a point of
coincidence in § between the pairs (A,X) and (E,Y). Furthermore, A, E,X and Y have a single

common fixed point in § if the pairs (A,X) and (E,Y) are weakly compatible.

In the second part of this paper, we prove the existence and uniqueness of common fixed
points for two pairs of selfmaps that satisfy a contraction condition of the Geraghty-Berinde-
Suzuki type: one pair is compatible and b-continous, while the other pair is weakly compatible
in complete b-metric spaces. Our work is motivated by the works of Babu and Babu [9]. Addi-
tionally, we demonstrate the same using various hypotheses on two pairs of selfmaps that meet
the b-(E.A)-property. We provide some instances and corollaries for our findings in Section 3.
The significance of L in our contracting situation is also covered. Some of the results in the
literature are extended to two pairs of self maps by our theorems. From our findings, we derive

a few corrollaries and offer evidence to back up our findings.

2. MAIN RESULTS

Given a b-metric space (§,0), let A,E, X, and Y be mappings from it into itself that fulfill
2.1 A(§) S Y(§) and E(§) € X(§).

According to (2.1), there exists &; € § such that {o = A&y = Y&, for every &, € §. Similarly, we
can select a point &, € § for this &; such that {} = E&; = X&; and so forth. Generally speaking,

we define
(2.2) Con = A&y = Y& and Gy = E&opy1 = Xéppia forn=0,1,2,....

Proposition 2.1. Assume that the b-metric space (§,0) has a coefficient s > 1. Assume that §

has selfmaps A, E,%, and Y that meet the following criteria: B € § exists such that

7 min{0(2&,A8),0(Y, EC)} < max{0(Z&, L), 0(AE,EL)}
= s'O(AE,EL) < B(M(E,0))M(E,8) +LN(E, )

2.3)
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where

M(E,§) = max{0(&,Y¢),0(2E,AE),0(YE, EL), AES=E) DUEAS)

0(X6,A8)0(Y¢,EC) 0(X5,2C)0(YE,AS) }
1+0(26,YC)+0(AG,EC)? 1454 [0(28,YE)+0(AS EC) 1

N(8, &) =min{0(X&,Y{),0(£8,AS),0(YC,EC),0(XE,EL),0(Y,A8)}.
forall € € §. Then we have the following:

(i) If A(§) C Y(8) and the pair (E,Y) is weakly compatible and if 1 is a common fixed
point of A and X then 1 is a common fixed point of A,Z,X and Y and it is unique.
(ii) If 2(§) C X(§) and the pair (A,X) is weakly compatible and if N is a common fixed

point of E and Y then 1 is a common fixed point of A,E,X and Y and it is unique.

Proof. First, we assume that (i) holds. Let 1 be a common fixed point of A and X.
Then An = Xn = 1. Since A(§) C Y(§), there exists u € § such that Yu = 7.
Therefore An =Xn =Yu=n.

We now prove that A1) = Bu. Suppose that A1) # Bu.

Since 5- min{0(Xn,An),d(Yu,Eu)} < max{d(En,Yu),5(An,Eu)}.

From the inequality (2.3), we have

(2.4) s*B(AN, Eu) < B(M(n,u))M(n,u) +LN(n,u)
where
M(n,1) = max{d(£n, Yu),d(En, An),d(Yu, Zu), 2EL=Y OTuAn)
3(zn,An)d(Yu,Eu) B(ZN,Zu)d(Yu,An) )
14+9(En, Yu)+0(AN,Zu) * 1+s*[0(Zn,Yu)+0(AN,Zu))

— max{0,0,3(An, Zu), L2024 0 0,0} = 5(An, Zu),
N(n,u) = min{0(Xn,Yu),0(Xn,An),0(Yu,Eu),0(Xn,Eu),0(Yu,An)} =
From the inequality (2.4), we have
(AN, Zu) < B(D(n,u))0(n,u) < LALEY g6 that (55 — 1)d(An, Zu) < 0.
Since (s° — 1) > 0, it follows that d(An, Zu) = 0.
Hence An = Zu. Therefore AN =Eu=Xn=Yu=rn.
Since the pair (£, Y) is weakly compatible and Eu = Yu, we have EYu = YEu. i.e., En =11.
Now we show that £ = 7.

If £ # n, then we have
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5 min{0(En,AN),0(Xn,Zn)} < max{0(£n,Yn),0(An,En)}
From the inequality (2.3), we have

(2.5) s*9(n,2n) = s*d(An,En) < B(M(n,n))M(n,n) +LN(n,1)

where

M(n,n) = max{d(Zn,Yn),5(Zn, An),d(Yn,En), 2LELED d0AD)
9(Zn,An)d(Yn,En) 9(Zn,En)d(Yn,An) }

1+0(Xn.Yn)+0(An,EN)* 1+s*[0(Zn,Yn)+0(An,En)]
= max{5(n,2n),0,0, 5, ALE 0, AL = 5(n, Zm)
N(n,n) =min{d(Xn,Yn),0(Xn,An),0(Yn,En),8(Xn,En),0(Yn,An)} =0
From the inequality (2.5), we have
s*0(n,En) < BM(n,n)M(n,n) = B(B(n,EN))3(n,En) < 2= 50 that
(s> =1)d(n,Zn) <0.

Since (s> — 1) > 0, it follows that 8(n,En) = 0.

Hence &n = n. Therefore An =En =Xn=1n=mn.
Since A, Z,X and Y all have common fixed points, 1 is one of them. Analogously, the proposi-
tion’s conclusion flows from (ii) assumption.

The inequality (2.3) implies uniqueness. U

Remark 2.2. Geraghty-Berinde-Suzuki type contraction maps on § are defined as selfmaps

A,E X and Y of a b-metric space § that fulfill (2.3).

Proposition 2.3. Let A,E X and Y be selfmaps that fulfill (2.1) and Geraghty-Berinde-Suzuki
type contraction maps of a b-metric space (§,0). Then, the sequence {{,} described by (2.2) is
b-Cauchy in § for every & € §.

Proof. Given that {{,} is defined by (2.2), let &y € §. Let us assume that for a given n, §, = 1.
Case(i): n even. Given some m € N, we write n = 2m. 9(&,11, §,+2) > 0 is assumed. Since
5 min{0(Z&xm 12, Aéom42), (X Eamt1, Eoms1) } < max{0(E&ams2, Yamt1),

8(A€Zm+2; EéZm—H ) }
The inequality (2.3) gives us
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S46(Cn+l ,Cnt2) = 546(C2m+1, Com+2)
= S45(sz+z, Com+1)
= 5*0(A&m+2,EEm1)
< BM(&am+25Eom+1) )M (Eom+25 Som+1) + LN (Eom+25 Som+1)

(2.6)

where

M (Eoms2,Eomr1) = max{0(Z&rm12, Yom+1),0(EEom+2, Abomi2),
0(Yéomt1,Z28m+1), OB o2 Bbme1) S(T&omt)Aopm+2)

2s ’ 2s ’
(Z8m+2,A8m12)0(Xomt1,EE2m1 1)
1+0 (Z§2m+2 7Y§2m+l ) +6(A§2m+27352m+1 ) !
0(XEom12,ZEm+1)0(XEomt1,A80m42)
1+S4 [6(E§2m+27T§2m+l )+6(A‘§2m+2 5352m+l )}

= max{0,9(u+1,nt2),0,0, %{'”)»070} = 0(8ut1,Gnr2),
N(&om+2,Sam+1) = min{0(E&am+2, Y Som+1), 0(E&m+2, ASam+2),
O(Yom+1,EEm+1),0(Eam+2, E&om+1), 0 (Y Som+1,ASom+2) }
= min{0,0({ut1, Gn+2),0,0,0(8n, Gut2) } = 0.
We obtain the inequality (2.6) from it
s*0(Gu15 Gu2) < BM (Eam+2, Gam+1))M (Eam1, Eam+1)

< BO(ur1,6r2)0(Gnrt, Gpra) < Wonsliboa)
which implies that (s5 —1)3(&us1,Crsn) <0.

Since (s° — 1) > 0, we have 3(,41, {ui2) < 0.

Cno = Cur1 = &y, as aresult. Generally speaking, for k =0,1,2,..., we obtain §,; = &,.
Case (ii): n odd.
n =2m+ 1 is written for a given m € N.

3 min{d(E&um+2, Aéomr2),0(Yomi3, Eamr3) } < max{0(Z&umi2, Yomr3),0(Alomi2, E&om+3) },

the inequality (2.3) gives us

S46(Cn+1 Cnt2) = S45(sz+2, Com+3)
(2.7) = 0(Abam12,EEmy3)
< BM(Eoms2,&om+3))M (Eomr25 Eomt3) LN (Eomt25 Eome3)
where

M(Exni2, Eom+3) = max{0(ZEmt2, Yéom+3),0(Zéamt2, Abomi2),
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3(YEamss, Eomss), 0(ZEom12,EEm13) (X Eomi3,A8m12)

2s ) 2s ’
5(252,”4,_2 7A€2m+2)5(Y€2m+3 3552m+3)
1+0 (Z§2m+2 7T§2m+3 ) +5(A52m+212€2m+3 ) ’
O(ZEam12,28m13)0(X Eam13,A8m12) }
1+5*[0(ZEmt2, Y Eoms3) +HO(Aomi2,EE0m+3)]

= max{0,0,8(Gus1, Gr2), 25222,0,0,0} = (Gt o),
N(&m+2,Eam+3) = min{0(EEam+2, Y Eam+3), 0(X&om+2, ASam+2),
0(Yam+3,EEam+3),0(Zam+2, E&om+3), 0 (Y Eam+3, Abom+2) }
=min{0,0,0(&,+1,8n42),0(&, §ui2),0} = 0.
From the inequality (2.7), we have
s*0(Cnr1s Cur2) < BM (Eamsa, Eoms3) )M (Eomr2, Eom3)

< BO(Gu+1,814+2))0(8nt1,Cnr2) < M
which implies that (s° — 1)3(&,1 1, &up2) < 0.

Since (s> —1) > 0, we have ({41, §ui2) <O.

Asaresult, G2 = 1 = G

Fork=0,1,2,..., we generally obtain {, ; = ,.

Coik = Ey forall k =0,1,2,... follows from Cases (i) and (ii). Due to the fact that {{,.} is a
constant sequence, {{,} is Cauchy.

For every n € N, we now suppose that §, | # {,. Forallm € N, n =2m+ 1 if n is odd.

Since

3 min{d(E&um+2, Aomr2), 0(Xamr1, Eamr1) } < max{0(Z&ms2, Yomr1),0(Aéomi2, E&oms1)}

From the inequality (2.3), we have

508, Gur1) = 570(Come 15 Gome2)
= S45(sz+2, Com+1)
= 5*0(A&om12,Eom 1)
< BM(Sam+2: Eom+1) )M (Eom+25 Som+1) + LN (Sam+2, om+1)

(2.8)

where

M(€2m+27 €2m+1) = max{5(2§2m+2,T§2m+1 ), 6(Z§2m+27/\€2m+2),
8(T§2M+1 ) Eme—H )7 5(Z§2m+273§2m+1) 6(T£2m+1 7A§2m+2)

2s ) 2s )
O(Zom12.880m42)0(XEomi1,ZEm11)
14+0(ZE0m42, X &y 1) FO(ALoim12,EEomt 1)
5(>:’§2m—0—275:52m+1 )5(Y§2m+l aA52m+2) }
1+54[0(Z&mt2, Y Eoms 1) +0(Aomr2,EE0m+1)]




12 BABU, CHANDER, KUMAR, PRASAD

<max{0(&u_1,81),0(us Gur1),0(Lut, o), 0, Lner) H0nCrt)

(Cn7Cn+l) (Cn l&:n }
1+6(Cn 1, Cn)'i‘a Cn §n+1

< max{0(Cn—1,Gn),0(Cn, Gnr1)
N(&om+2, Eom+1) = min{0(E&m-+2, Yom+1), 0(ZSom+2, Alom-+2),
O(YEm+1,E8m+1), 0(Z8om+2, ESom+1),0(Yom+1, Alom+2) }
= min{0({n—1,8n),0(Cn, Gn+1),0(8n-1,8n), 0,0(Gn—1,Gnr1)} = 0.
Suppose M (Eam+2, Eom+1) = 0(Cns Cuv1)-
Then from the inequality (2.8), we have
s*0(8, Gur1) < BM (Exm+2,Eom+1))M (Eomy2, Eom 1)

< B(0(&n, Cnt1))0(Gn, Cni1) < C"’C"“)
which implies that (s° — 1)3(&,, &y 1) < 0.

Since (s> —1) > 0, we have 8({,, §,41) <O.

Consequently, 9(&y—1, ) = M(Ems2, Eomr1)-
We obtain the inequality (2.8) from it

(G Cnit) < BM(Enmsr, Exmit ) )M (Enmsn, Eomst)
< BO(Gu1,60))0(Gr1,§) < Mo,

Furthermore, it is evident that (2.9) holds when 7 is even. Thus, for every n € N, we obtain

(CnaCrﬁl) = SS (Cn lvcn)

The sequence {,} is a b-Cauchy sequence in §, according to Lemma 1.10. O

(2.9

The principal outcome of this paper is as follows.

Theorem 2.4. Let (2.1) and Geraghty-Berinde-Suzuki type contractive maps be satisfied by
A E,S and Y selfmaps on a complete b-metric space (§,0). Should either
(i) the pair (E,Y) is weakly compatible, A (or) ¥ is b-continuous, and the pair (A,X) is
compatible
or
(ii) E (or) Y is b-continuous, the pair (E,Y) is compatible, and the pair (A, L) is weakly
compatible

then A,E X and Y have a unique common fixed point in §.
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Proof. The sequence {{,} is b-Cauchy in § according to Proposition 2.3. Given that § is b-
complete, lim §, = n for every n € §. Thus
n—soo
lim Con = r}i_{{}o/\ﬁzn = ’}i_ngéan =1 and

(2.10)
lim Cont1 = lim Bt = r}i_rgzﬁznjuz =1.

Let us assume that (7).

It implies that ¥ is b-continuous. So, nl1_r>r°1° Y0 = X1, ,}E‘}o YAE, =X0.

By the b-triangle inequality, we have O(AXEy,, Xn) < s[0(AXEy,,XAEy,) + 0(EAE,,Xn)].

Since the pair (A,X) is compatible, r}l_r}l;lo O(AXEy,, EAEy,) = 0.

Limit superior taken as n — oo gives us

limsup 0(AXEy,, 1) < s[limsupd(AXEy,, A&y, ) + limsup 3(XAEy,, Xn)] = 0.

S?r?c: ,}glgo AXE, =Xn, thisn ?ooilows. "

The proof of ¥n = n is now given.

Let X1 # n be the case. Since

3 min{0(ZX&m12, ALEum+2), (Y1, E&om+1)} < max{O(ZZ&mr2, Yomr1),

O(AZ&m+2,E8m+1)}
The inequality (2.3) gives us

2.11) s*0(AZErn12,Em11) < BM(ZEani2,Eni1) )M (ZEani2, Eoni1) + LN (Z2n12, Eoni 1)

where
M(Z&n12,8n11) = max{O(ZXEn12, Y ant1), 0(ZXEon12, AL+ s),
0(YEan+1,E8n+1), 5(22'52”5?352”1) 0011, AZE0n12)

28 ’
0(ZX8n12,8282012)0(Y 801 1,500 1 1)
140(2X80n12, Y 20 1) FO(AZE2n 42,2 001 1)
O(ZZ8242,28001 1)0(X 204 1,AZE2012) }
1+54[0(ZXE42, Y0+ 1) +0(AZErn12,EE0n41)] I

N(Z&mi2,Eoms1) = min{O(ZXEr 12, Yomt1),0(XLEm+2, ALEpm12),

O(Yom+1,EEm+1),0(ELEm+2, ESam+1), 0(XEom+1, ALEom+2) }-
Using Lemma 1.11 and assuming limit superior as n — oo on

M(Z&2n+2,80n+1),N(EEam+2,Eam+1), We obtain

*0(Zn,n) s°0(En,n) o s*O(En,n))
: < 2 S ) ) )
hiri)sololpM(Z§2n+2a§2n+l) = max{s 8(2‘”7”)5070’ 2 ) 2 y Uy 1+2S46(ETI7TI)

}=5"0(Zn,n),

limsupN(2&242, Enr1) < min{s*d(Z1,7),0,0,5°3(En,n),s*d(Zn, 1)} = 0.

n—oo
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Therefore

(2.12)
S0(En,n) < lim inf M (Zant2,Eont1) < limsupM (€12, Eont1) < s70(E0, 1) and

n—yoo
limsupN(X&2,42,82n11) = 0.

n—oo
Using Lemma 1.11 and the inequality (2.11), where the limit superior is n — oo, we obtain

st %23(211 ,N) < s*limsupd(AZEri2, 204 1)

n—oo

= limsups*0(AZExn12, 220 +11)

n—o0

< limsup[B(M (X212, E2n+1))M (212, Eanv1) + LN (ZE2n+2, Eont1)]

n—o0

= limsup B(M(Z&x12,Eon+1)) limsup M (Xénp42, Ent1)

n—yoo n—oo

+ LlimsupN(X&42, Eont1)

n—yoo

< limsup B (M (£&2+12,&2nr1))s*0(EN, 7).

n—soo
Therefore

1<i< 1irrLsupﬁ(M(2§2n+2, Exn+1)) < 1 which implies that
n—oo

limsup B (M (28212, 82011)) = §-

Itni;;ﬁows that r}gr.}o M(X&142,Em+1) = 0since f € §.

Thus, using the inequality (2.12), we may obtain

S0(En,n) < lim M(X&y,12,E2,41) = 0 which implies that 3(Xn,n) <O0.
Consequently, X1 = 1. Now, we demonstrate that An) = 1. Assume An # 1.

Since

% mln{ﬁ(znvAn)v 8(TgZWH-l ) 3527”—0-1)} < max{ﬁ(zn ) Y&Zm-i—l)? 8(/\77 ) Eme—H)}
From the inequality (2.3), we have

(213) s46(AnaE§2n+l) < ﬁ(M(TL&ZnJrl))M(naanJrl) +LN(TI7§2YZ+1)

where

M, &nt1) = max{0(XN,YEr11),0(EN,AN),0(Y 011, EEn11),

6(217 7E§2n+1 ) 6(Y€2n+1 7/\77) 6(27] 7An)6(Y€2n+l 7352n+1 )
2s ’ 2s » 1+0(Xn T§2n+1)+6(/\7],3§2n+1) ’

0(Xn,=80n+1)0(YEn+1,AN) }
1+S4[ (EU T§2n+l)+6 ATI ‘-’éZnJrl ]

N(na§2m+l) = min{6(2n7Y§2m+l)v (ZT],AT]), (T§2m+173§2m+1))6(2naE§2m+1)a6(T§2m+17An)}'

With Lemma 1.11 and limit superior taken as n — o0 on M(1,&x,41),N(N, Exnr1), we obtain
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limsup (1], 1) < max{s23(An. 1),0,0, “FEM UGN, 0, LELLIIES
= 5*0(An,m),

limsupM(n, &z, v1) < min{s>d(An,1n),0,0,0,s*°3(An,n)} = 0.

Till:ro;fore

£0(AT,m) < liminfM (1, &on 1) < limsupM (1, &ans1) < s?0(An, 1) and
(2.14) " n—oo

limsupN(n, &2n1) = 0.

n—o0

Lemma 1.11, (2.14), and the inequality (2.13) are used to obtain the limit superior, which is
n— oo

s*50(An, 1) < s*limsupd(An, E&11)
n—yoo
= limsups*0(An, 2+ 1)

n—soo

< limsup[B (M(1, &n-1))M (1, Eani1) + LN (1, San 1)
= limsup B(M(n,E+1)) lifln SEPM(TI ,&2nt1) + LlimsupN(n, Ean1)

n—oo n—oo

-
< limsup B(M(n, &2ns1))s*D(AN, 7).
n—roo
Hence

1L <1 <limsupB(M(n,&n+1)) < 1 which implies that

n—oo

limsup B(M(n,&n11)) = +.

n—soo

It follows that ILm M(n,&y1) =0since B € F. Thus, based on the inequality (2.14), we obtain
n—oo
L0(An,n) < lim M (1), &1) = 0 which implies that 5(An, 1) <0.
An =Xn =n as aresult. We now know that 7 is a unique common fixed point of A, Z, X and Y
according to Proposition 2.1. Assuming b-continuous A, it follows that
lim AAEy, = A, lim AXGyi2 = AT.
The b-triangle inequality gives us
§(2A52n7/\n) < 5[6(2A52n»A252n) + 6(/\262117 /\77)]
Since the pair (A, X) is compatible, lim 0(AXEy,, LAEy,) = 0.
n—oo
Limit superior taken as n — oo gives us
limsupd(XAEy,, An) < s[limsupd(XAEy,, AXEy,) + limsupI(AXEy,, An)] = 0.
n—yoo n—oo n—oo
Therefore lim A&y, = An.
n—oo
We now establish A = 1. Assume that An # 1.

Since
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3 min{0(ZA&, AAE), 0(Y i1, EEons1)} < max{O(ZA&y, Yrni1),0(AAE, EEni1)}
From the inequality (2.3), we have

(2.15) S*O(ANE, EEani1) < B(M(Aéan, Eani1))M (Ao, Eani1) + LN (Abop, Eani1)

where

M (A&, Eont1) = max{O(EAEr,, YErnt1),0(ZAE00, ANE2,), 0(YErp11,EE0n 1),

5(EA52n7352n+1 ) 6(T52n+1 7AA§2n) E5(2/\5211 7AA§2n)5(T§2n+l 7E§2n+1 )
2s ’ 2s 7 14+0(2A&82, Y 1) +0(AAE2n E o0 11)

6(ZA§2n:E§2n+l )6(T§2n+1 7AA§2n) }
1+5*0(ZAE2, Y00 11) FO(AAE2 EE2n 1)) 7

N(A&2n, &ony1) = min{O(XAE2,, YE2n 1), 0(EAE2,, AAE,),
0(Y&2n+1,Z8n+1),0(2AE2, Eéppt1),0(Yon1,AN ) }.

Taking the limit superior as n — oo on M (A&, Exnt1), N(Aéon, Ernt1) and applying Lemma

1.11, we obtain

§2 52 st 2
lim sup M (Ao, Ean+1) < max{s*3(An,1),0,0, =500, SOEAN) o L BELE )
n—oo
= s?0(An, ),

limsup N (A&, &ant1) < min{s*3(An,n),0,0,5°3(An,n),s*0(n,An)} = 0.
n—oo
Therefore

#0(AN, M) < liminfM (A&, &ons1) < lim sup M (Aéan,&2n11) < s°0(An, M) and
(2.16) e
limsupN (A4, Eont1) = 0.

n—oo

Using (2.16), Lemma 1.11, and the inequality (2.15), where the limit superior is n — oo, we
obtain
s'50(An, M) <s* 1iilf£p5(M52na E&on+1)

= limsups*d(AAE2, EE2n11)

n—oo

< 1i£rLS£P[ﬁ (M(A&on, Eans1))M(AEan, Eany1) + LN (Abon, E2ns1)]

= limsup B(M (A&, Exny1)) lim SOI:PM (A&an, Eont1)
:—ZTiersgpN (ASan, ont1) "

< 1i£lrl>soljp BAM (A&an, Eani1))s*0(AN,M).

Thus
1 <1 <limsupB(M(A&u,Exn1)) < 1+ which implies that

n—yoo

limsup B(M(Aan, Ernr1)) = 1.

n—yoo
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Given that 8 € 3, r}glgo M(A&y,,Ern 1) = 0 follows. Consequently, based on the inequality
(2.16), we have
slzﬁ(An,n) < ’}gigoM(Aézn, Exnr1) = 0 which implies that (An,n) <0
Therefore An = 1.
Since A(&) CY(§), there exists u € § such that n = Yu.
We now show that Zu = 7. Suppose that Zu # 1.
Since
- min{d(X&y, Aé2y), 0(Yu, Zu) } < max{0(X&y, Yu),0(A&y, Zu)}

From the inequality (2.3), we have

(2.17) sYO(AEr, Bu) < B(M(Expyu) )M (Enpyut) + LN (Eappyut)
where
M(Ean, 1) = max{D(EEan, Yuu), D(EErn, Abay),O(Yut, Zur), WEuE0) ATUAGs)
(2€r,,AE0,)0(Yu,Eu) 9(2&,,Zu)0(Yu,Aby,) }
14+0(XE,, Yu) +0(Ap,,Eu) 14540 (Z§2n7Yu)+5 A&y, Eu)]

N(gzn,u) = min{ﬁ(Eészu),5(Z§2n,A§2n),5(Tu,_u), (Zézn,_u), (Yuﬂ\ézﬁ}.

Using Lemma 1.11 and interpreting limit superior as n — oo on M(&;,,,u),N (&, u), we arrive

at
. - 23(n,Zu) s*9(n,=u 4B(n,Zu))?
limsup M (Eanyu) < max{s23(n, Zu),0,0, 2 Q= =2 11[%(2%(,,@”)}
= 5?0(An,n),
limsupN(&y,,u) < min{s*0(1,Eu),0,0,5*0(n, Zu),s*d(n, Zu)}.
n—voo
Therefore
sizﬁ(n,Eu) < lir{ging(ézn,u) < limsupM (&, u) < s*0(n,Zu) and
(2.18) n—ree
<limsupN(&y,,u) =0
n—so0

Using (2.18) and Lemma 1.11, we obtain the limit superior, which we take to be n — oo in the
inequality (2.17)
s‘%ﬁ(n,iu) < s*limsupd(A&a,, Zu)

n—oo
= limsups*3(A&y,, Zu)

n—soo

< liﬂnjﬁp[ﬁ (M (&, u) )M (Exnyu) + LN (Exn,y )]
= limsup B (M (&, u)) limsup M &y, u) + Llimsup N (&, 1)

n—soo n—soo n—soo
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< limsup B(M (&, u))s>d(n,Zu).
n—yoo
Therefore
1<i< lianupﬁ(M(ﬁzn,u)) <1 which implies that limjupﬁ(M(’g'zn,u)) =1
It follows that lgn M (&yp,u) = 0 since B € §. Thus, based on the inequality (2.18), we can
n—oco
obtain
S%fﬁ(n,Eu) < r}i_r)rgoM(ﬁzn,u) = 0. implies that d(n,Zu) <O0.
Therefore Eu = Yu = 7. Since the pair (E,Y) is weakly compatible and Zu = Yu, we have
EYu=1YEu.ie.,En=10n.
Now we demonstrate that £ = 7. Let us assume En # 1.

As %min{ﬁ(Egzn»Aﬁz,,),6(1‘17,317)} < max{0(Z&,,Yn),0(Aéy, EN)}.

From the inequality (2.3), we have

(2.19) s*O(AExn, EN) < B(M(Exn,))M (E2n, ) + LN (E2ny M)

where

M(Exn,1) = max{D(E&s, Y1), 0(EEan, Any), D(Y7, En), 2E2E0) OOMAL)
9(2&,,A8,)0(YN,EN) 0(Z20,En)0(YNn,Ady,) },

14+0(282,, Y1) +0(A82n,EN) > 145%0(2E2,, Y1) +0(AE,,EN)
N(€2m 77) = min{6(2€2naYn)a6<Z€2H>A§2n)76(YnaEn)a 6(262717 3")75(T77,A§2n)}

Utilizing Lemma 1.11 and defining limit superior as n — oo on M(&,,M),N (&, M), We arrive

at
i ™ 28 73 28 73 66 ,E 2
limsup M (&, 1) < max{s?0(n,n),0,0, QEn) S0En) o, SRS — 28(An, ),

limsupN (&, 1) < min{s?d(n,En),0,0,s°d(n,En),s*d(n,En)} =0.

n—yoo

Therefore
50(n,En) <liminfM (&, n) < limsupM(&y,,n) < s*6(n,En) and
s n—oo o
(2.20) n—
limsup N (&,,1) = 0.
n—roo

Lemma 1.11 and the inequality (2.19) allow us to obtain the limit superior as n — oo.

s*53(n,En) < s*lim supd(A&yn, En)
n—yoo
= limsups*d(A&,,,EN)

n—soo

< limsup| (M (G2, 1))M (E2n, M) + LN (820, M)]

n—yoo

= limsup (M (&2, 1)) limsupM (&, 1) + Llimsup N (&2, 1)

n—soo n—soo n—eo
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< limsup (M (&, 1))s*0(n, EN).

n—oo
Therefore

L < 1 <limsup B (M(a,,)) < 4 which implies that limsup B (M (Zas, ) = L.

It follows that r}1_r>r°1° M(Eyp,m) =0 since B € F. Thus, based on the inequality (2.20), we can
obtain

50(n,2n) < lim M (&, 1) = 0. implies that 3(n,En) < 0.

Hence =n = 7.

Therefore En =Yn =n.

A common fixed point of A and X is hence 7).

We now see that, in accordance with Proposition 2.1, 1 is a unique common fixed point of
AE X and Y.

Similarly, the theorem’s conclusion holds with the assumption (ii). O

Theorem 2.5. Assume that the b-metric space (§,0) has a coefficient s > 1. Assume that the
selfmaps A,E. X, Y : § — § satisfy both Geraghty-Berinde-Suzuki type contractive maps and
(2.1) for §. Assume that one of the subspaces A(8),E(8§),2(8) and Y(§) is b-closed in § and
that one of the pairs (A, X) and (E,Y) fulfills the b-(E.A)-property. Then, there is a point of
coincidence in § between the pairs (A,X) and (E,Y). Furthermore, A,Z,X and Y have a unique

common fixed point in § if the pairs (A, X) and (E,Y) are weakly compatible.

Proof. First, we suppose that the b-(E.A)-property is satisfied by the pair (A,X). Thus, in §,

there is a series {&,} such that

2.21) lim A&, = limX&, = ¢
n—oo

n—oo

for some g € &.

There is a sequence {,} in § such that A&, = T'{, since A(§) C T(§). Consequently,

(2.22) lim T&, = q.

n—oo

We now demonstrate that lim £¢, = q.
n—o0

Since 5. min{3(X&,, A&,),0(Y 8, EC,) } < max{0(X&,, Y E,), 0(AE, EC) ).
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The inequality (2.3) gives us

(2.23) s*O(AEw, EE) < B(M (80, 6))M (&, G) + LN (8, G0)

where

M(Ey, &) = max{D(E&,, YE,), (&0, Ay), D(X G, 2L, ), UEepEon) ITEAG)

S(EénvAgn)ﬁ(Yé’mECn) 6(£§n:£€n)6(YCn7A€n) }
14+0(XE,.Y8)+0(AELES,) 7 1+540(ZEn, Y 8 ) +O(AELES)] T

N(&n, §n) = min{O(XE,, YE,), (285, AE,), 0(Y 8, ECy), 0(EEn, £, ), 0(Y s AGy) }-
Limit superior on M (&, &,),N(&,, §,) is taken as n — o. Using (2.21) and (2.22), we obtain

/ limsupd(A&,,EE,)
limsupM(&,, §,) = max{0,0,limsupd(AE,,EE,), *=“———,0,0,0}
n—yoo n—oo
(2.24) = limsupd(A&,, EE,) and
n—soo
limsupN(&,,8,) =0
\

n—soo

Using (2.24) and considering limit superior as n — oo in (2.23), we obtain
s*lim supO(A&,, EG,) = limsup[B (M (&, §u))M (8, Gn) + LN (En, Gn)]
n—oo n—oo
= limsup B (M (&, ) limsup M (&, )
n—oo

n—o0

+ LlimsupN(&,, &)

n—soo

— limsup B(M(&,, ) limsupB(AE,, EG,).

n—oo n—oo
Therefore

+ <1 <limsupB(M(&:, ) < 5 < 1 which implies that

n—roo
limjupﬁ(M(gn, Cn)) = %
Given that B € §, we have 1i_r>n M(&E,,8,) =0. ie., limsupd(AE,,EE,) =0.
n—o0 n—oo
Therefore
(2.25) lim 3(A&, £6,) =0.
We have
(2.26) 9(q,E8,) < 5[0(q,A&,) +0(AE,,EC)]-

Using (2.21) and (2.25) and assuming limits as n — oo in (2.26), we obtain
lim 0(¢,5¢,) < s[lim 3(g,A&) + lim B(AE,, £¢,)] = 0.
Therefore 1i_r>n 0(q,28,) =0.
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Case (i): Suppose that § has a b-closed subset, which is Y(X). We can select r € § in this
instance, g € Y(§), so that Yr = g. Now, we establish that Er = g. Assume 9(Er,q) > 0.
Since 5 min{3(X&,, AE,),0(Yr,Er)} < max{d(Z&,, Yr),0(A&,, Er)}

From the inequality (2.3), we have

(2.27) sYO(AELEr) < BM(Ey,r))M(Ey,r) +LN(E,, 1)

where

M(E,,r) = max{D(2&,, Yr), (L&, AL,), B(Yr, Er), UEGuEr) SUTAS)
O(X&,,AE,)O(YrEr) O(X&,,Er)0(Yr,AE,) } :

TF0(XE, Y7) FO(AEEr) * 115 [0(E,, Y1) - O(Aln,Er)]
N(&y,r) = min{0(X&,,Yr),0(XE,,AE,),0(Xr,Er),0(XE,,Er),0(Xr,AE,) }.
Using M(&,,r),N(&,,r) and n — oo as the limit superior, along with (2.21), (2.22), and Lemma
1.11, we obtain
limsupM (&,,r) < max{0,0,0(q,Er), M,0,0,0} = 0(q,Zr) and
(2.28) n—yeo
limsupN(&,,r) =0.

n—soo

We have
0(&r,q) < s[0(Er,ZG,) +0(X&,q)]
= 2522 4 5(3E, , g) < 25°M (&, 1) +50(2n ).
When we consider limit inferior as n — oo, we obtain
Therefore 2—125(31, q) < lirtlgicng(én, r).
By utilizing (2.28) and Lemma 1.11 and taking limit superior as n — oo in (2.27), we have
s4(%5(q, Er)) < s*limsup3(AE,, Er)

n—oo

= limsup[B(M(&,r))M(&y,r) + LN (&, 7))

n—oo

= limsup B(M(&,,r)) limsupM(&,,r) + LlimsupN(&,, r)
n—oo n—oo n—roo

< limsup (M (&,,r))0(q, Er).
n—soo

Therefore

% <limsupB(M(&,,r)) < % which implies that limsup B (M (&,,r)) = %

r}glgo]\/;(zj, r) = 0 is the result of 8 € §. Conseque’;?l;, ﬁES(Er, q) < r}glgoM(én, r)=0.
Consequently, &r = q.

As aresult, Zr = Yr = g, meaning that ¢ is the E and Y coincidence point.
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There exists 1 € § such that X1 = ¢ = Er since E(§) C X(§), and we have g € £(8§).
We now demonstrate that AN = q.

Assume that An # gq.

Since

2-min{d(Xn,An),0(Yr,Er)} < max{d(En,Yr),d(An,Er)}

As a result of the inequality (2.3), we get

(2.29) s*9(An,q) = s*d(An, Er) < B(M(n,r))M(n,r) +LN(n,r)
where
M(n,r) = max{3(£n,Yr),8(n, An),d(Yr,Er), 2ELED 00,
0(Xn,An)0(Yr,Er) o(Xn,=r)0(Yr,An) }
1+0(Xn,Yr)+0(An,Er) * 14s%[0(Zn,Yr)+0(An,Er)]

— max{0,3(g,A1),0,0, 2% 0 0} — 5(¢,An),
N(n,r) = min{0(Xn,Yr),0(Xn,An),0(Yr,Er),0(En,Er),0(Yr,AN)} =
From the inequality (2.29), we have
s*0(An,q) < B(B(AN,q)(AN,q)) < B(An,q),
a contradiction.
So, 1 is a coincidence point of A and X since An =Xn =gq.
We have Ag = £q and Eq = Yq because the pairs (A,X) and (E,Y) are weakly compatible.
As aresult, g also serves as a coincidence point for the (E,Y) and (A, X) pairs.
Specifically, we demonstrate that ¢ is a common fixed point of A,Z,¥ and Y.
Suppose Ag # q.
Since 5. min{d(Xq,Aq),d(Yr,Er)} < max{d(Zq,Yr),0(Aq,Er)},

according to the inequality (2.3), we have

(2.30) s*0(Aq,q) = s*0(Aq,Er) < B(M(q,7))M(q,7) +LN(q.r)
where
— 0(Xq,Er) 0(Yr,A
M(q,r) = max{0(Zq, Yr),0(Zq,Aq),d(Yr, Er), 22L=) 0rhd),
0(2q,Aq)0(Yr,Er) 0(2q,Er)0(Yr,Aq) }

14+0(Xq,Yr)+0(Aq,Zr) > 1+5*[0(Zq,Yr)+0(Aq,Zr)]
= max{d(Aq,q),0,0, (Aq q), (Aqq ,0,0}

=0(Aq,q),
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N(g,r) = min{d(Xq,Yr),0(Xq,Aq),0(Xr,Er),0(Xq,Er),0(Yr,Aq)} = 0.
We now have a contradiction:
s*9(Aq,q) < B(9(Aq,q)d(Aq,q)) < d(Aq,q), derived from the inequality (2.30).
To ensure that g is a common fixed point of A and X, Aqg = Xq = gq.
q is a unique common fixed point of A, =,¥ and Y, according to Proposition 2.1.
Case (ii): Assume that A(§) is b-closed.Since A(§) C Y(§) in this instance, we select r € § such
that ¢ = Yr. The evidence is presented as it was in Case (1).
Case (iii): Assume that }(§) is b-closed. We draw a conclusion by following the reasoning in
a manner similar to Case (i).
Case (iv): It is assumed that Z(§) is b-closed. We receive the conclusion, just like in Case (ii).
The argument for the situation when (E,Y) satisfies the b-(E.A)-property is the same as the

one used when (A, X) satisfies the b-(E.A)-property. O

3. COROLLARIES AND EXAMPLES

We derive a few corollaries from our primary findings in this part, along with supporting
data.
If weselect A=% = fand X =Y = g, we derive Corollary 3.1 and Corollary 3.2, respectively,

from Theorem 2.4 and Theorem 2.5.

Corollary 3.1. Let f and g be selfmaps of §, and let (§,0) be a b-metric space. Let us assume

that B € § exists and that

2 min{9(/&,¢),0(/.¢8)} < max{0(g&.£8),0(f&, FO)}
= s*0(fE, f0) < BM(E,8))M(E, ) +LN(E,0)

3.1)

where

M(E,§) = max{0(g€,84), (g€, ££),0(g¢, £§), 26508 DNegE) L O IE0E Lo

0(g€.f8)0(8C.f&) }
1+5*[0(g€.¢)+0(E.fO)] D

N(&,¢) =min{0(g&,8C),0(gS, fS),0(8C, ), 0(g8, £C),0(gC, fE)}
forall £,§ €§. When f(8§) C g(§), f or g is b-continuous, and f and g has a single common

fixed point in §, the pair (f,g) is compatible.



24 BABU, CHANDER, KUMAR, PRASAD

Corollary 3.2. Assume that the b-metric space (§,0) has a coefficient s > 1. Let f,g: § — § be
selfmaps of § that meet the inequality (3.1) and f(§) C g(8). Assume that one of the subspaces
f(8) and g(8) is b-closed in §, and that the pair (f,g) fulfills the b-(E.A)-property. Then, in §,
there is a point of coincidence for the pairings (f,g). Furthermore, in §, f and g have a single

shared fixed point if the pair (f,g) is weakly compatible.
The following is an example in support of Theorem 2.4.

Example 3.3. Let § =[0,1] and let 9 : § X § — R™ defined by

aep= O fe=t
E+0P i ELL

Then clearly (§,0) is a complete b-metric space with coefficient s = 2.

We define A,Z,X,Y:§ — § by

AE) = 3 if £€[0,4] ) 3 if £€0,5]
if e (4,1), B if Ee (b1,
1,6 1 _E i 1
5 (E) = iT3 'fé [12] and Y(£) 155 féE[(l)yz]
¢ if Ee(3,1] 3 if §e(5,1]
Clearly A(§) C Y(§) and E(§) C X(§)

Here A is b-continuous.

We choose a sequence {&,} with {§,} = 1 — 4-.n > 1, we have
ASE, = A(L+25%) = L and TAE, =L = L.

Consequently, r}grgo O0(AXE,, XAE,) = 0, indicating the compatibility of the pair (A,X), whereas
the pair (E,Y) is evidently weakly compatible.

B(t) = %e’t is how we define f : [0,00) — [0, %) Thus, B € § is what we have.

Case (i): £,¢ €[0,1].

O(AE,EE) = 1,0(ZE,Y8) = (5+5 - 0)%.0(Y¢,80) = 3 - )%

B¢ AE) = (3+5)%.0(AE,10) = (3 - ¢)%,8(26,50) = 3+ §)2

M(E,L) = max{0(ZE,Y{),0(2E,AE), (Y, EE), AEEE) DIEAS)
A(XE,AE)B(YEEL) 9(XE,E8)0 (YCM)
1+0(XE,YE)+0(AEEL)? 1+s4[ (X&, Y§)+E§(§A§7EC3)] .
—max{(3+5 -0 G+ 52 G-, Bk G200
(3+$23-02  (3+$23-¢7? )
24(34+5-0)2 T 1+16[1+(3+5-0)
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= (% + %)zand

N(S,¢) = min{d(X5,YE),0(28,A6),0(YE,EE),0(2E,28),0(YE,AG)}

2 2

o
=min{(§+5-02G+$2G-026+9%G -0 =G-02

Since

L min{0(2&,A€),0(Y¢,20)} = tmin{ 3+ 52,3 - )%

<max{(3+5 )21}
= max{0(&,Y¢),0(AE,E0)}.

Now we consider

SO(AE, c>—16< GG+

Case (ii): £ € [,Z]Ce(%,l]
O(AE,EC) = (H4)2,0(2E,Y0) = (1 + 5+ 5)2,0008,20) = (5 +5)?
O(ZE,AE) = (3+5)%,0 <A&,Tc>—< §)2,0(2,8¢) = <4 +$)2

2
M(E,L) = max{D(ZE,YC),0(2E, AE),0(YE, EC), AEGE) AEnad)

B(ZE.AE)B(YE.EL) 3(2E,58)3 (YCAé) )
TFO(ZE.T0)+O(AL E) T [O(ZE, TC)+O(AE EQ)]

<%+%)2,<%+%ﬂ@«%+%>2>,<%><%+%>2,

N+ =

N(&,8) = min{B(X&,Y¢),0(X&,AG),0(Y¢, EE),0(X6,EE),0(YE,AG)}

—min{(1+5+5%C+5% 5+ 9004523 +5H =B+

[\S1Ta)

Since

£ min{d(28,A8), 80, E0)} = bmin{(G+§ )%, (F5+ %)
=(HG+3)
< max{(§+5+ 3% (1))

= max{0(Xg,1¢),0(AS, EC)}

Now, we consider

- (9. ¢
SO(AE,EQ) = (16)(1)? < Lo (o3 (24 5)2 +36(12 + 5)?

)%

25
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Case (iii): ¢ € [0,1].& € (3,1].

(AL, EC) = (3)%,0(E,Y0) = (1+& - 0)20(YL,E) = (3 - 0%,
O(ZE,AE) = (1+&)%,0(AE,YE) = (2 §)%,8(2E,EC) = (5 +&)7.
M(E,0) = max{0(SE,Y0),8(5E, AE),0(1¢, BC), 1E5:20) O0EAS),

0(2&,A5)0(X¢.EE) 0(X&,2¢)0(Y¢, Aé) }
TH0(ZE.YE)+O(AE D) T+57(ZE,YT)+0(AE ED))]

1) { )
—max{(1+& — OP, (1487, G - ¢, BifE, 02 e
(3+2C-0?  y _ >
1+16[2(1+§—§)2+(%)2]} = (1 +§) and

N(E.€) = min{3(ZE,Y¢),8(28. A8),B(XC. E0). B(XE,5). (1L, AL}
= min{(1+& P, (1482 G- 0% 3+ &% 2= 0% = (1 +)°

Since
2 min{0(28,A8),0(Y8,EC)} = gmin{(1+&)%, (3 - £)*}
- (G-
<max{(1+&-¢)%(3)%}
= max{09(X§,Y¢),0(AS, EC)}-
Now, we consider
SYO(AE,EE) = 16(3)% < Je U+ (14 £)2 4+ 36(3 + &)?
=BM(E,5)M(5,8) +LN(E,E).
Case (iv): £,¢ € (3,1].
B(AE,ZE) = (15)%,8(26,10) = (£ +5)%,0(X8,E0) = (5 + 5%,

o+
O(EE,AE) = (1+&)%,B(AE, YE) = (1+5)%, (26, EL) = (5 +&)2,
M(&,8) = max{0(X&,Y{),0(XE,AE),0(YE,E0), 25 E) (Yg;/\é)

B(2E AE)B(TLEC) 3(2e 20D (rm) )
TFO(SE,Y0) +O(AE.E0) " T+ [0(ZE YC)+O(AE.E0)]

_ ¢ o Crp (B4ER (1457 (1+ER(5+5)
=max{(§ +3)%,(1+&)*, (5 +3)° g —F ’1+(<§+%)120+(2i%)2’

)

<%+§>< +5) )
1+16[(E+5)2+(13)?]
= (14+&)? and
N(&,¢) =min{d(X8,YC),0(X5,A8),0(YE, &), 0(28,EC),0(YE,AS)}
= min{(§+5)% (148 (5 + 57 (f5 +£)%(1+ )7}
= (5+3)°

Since
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2 min{0(28.A), 0018, E0)} = ymin{(1+£)2 (15 +5)%}
= (@) +5)
< max{(§ +5). (1)}
=max{0(X&,Y{),0(AE,EQ)}.
Now, we consider
SO(AE,EE) = 16(19)2 < Lo~ (187 (1 4 £)2 4 36( % + §)?
=BM(E,8))M(S,8)+LN(E,E).
A,E Y and Y are contraction maps of the Geraghty-Berinde-Suzuki type from each of the four
situations mentioned above. Consequently, all of the assumptions of Theorem 2.4 are satisfied
by A,E,X and Y, and % is their unique common fixed point.
Here, we note that the inequality (2.3) is not true if L = 0.
For, using { = 1 and £ = 0, we have
L min{B(2E,AE),5(YC.E0)} = Lmin{(3)2 (1)2)
=HE)?
< max{(3)*, (15)*}
=max{9(X&,Y{),0(AS,EC)}
implies that

s*O(A,EL) =16(13)* £ B((19)*)(15)* = BM(&,£))M(E,{) for any B € §.
An example supporting Theorem 2.5 is as follows.

Example 3.4. Let § =[0,1] and let 0 : § x § — R™ defined by
0 if £=2¢,
9(8,8) =

&+ if E#¢.
We define A,EZ,X,Y:§ — § by

L it Eelo,2
A®)=3if EDILEE) =] 7, ‘56[2 3)
1_7 lfée[gvl]v
. ) 1 X
5(§) = 45 1f§€[(2)7§) and T(E) — 4;1 1f.§e[(2),§)
& if Ec[d], s it e,
Clearly A(§) CY(§) and E(§) C X(§). {2} is b-closed

A§) =
We choose a sequence {&,} with {&,} = 3 + 5-,n > 2 with
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r}glgo A&, = hm Zén = hence the pair (A, X) satisfies the b-(E.A)-property.

Clearly the pairs (A, Z) and (Z,Y) are weakly compatible.

B(t) = 2e~" is how we define B : [0,0) — [0, %) Thus, B € § is what we have.

Case (i): £,{ € [0,3).

0(AE,2) = (§)%.0(28.Y0) = (& +4

0(Z&.AE) = (& +3)%,0(A8,YE) = ()%, 0(28,EC) = (£ +3)°
),3(Y¢,E0), Eé EQ) O(XEAS)

M(E,¢) = max{d(XG,Y¢),0(X6, A& Tt

9(X6,A8)0(X¢,EC) 0(X8,EC)d(YE, Aé) }
14+0(26,YE)+0(AG,EC) 14540 (Zé YE)+0(AG C)}

_ 2 (6+3)* () (E+3*G)?
- max{(é +z ) (é +3 : ) ( ) ) 4 ) 1421 ) 1+(€+ )21(%)
(E+3)%(4)) )2}}

1H16[(E+)7+(5
=(&+3)%
N(&, ) =min{d(X&,Y{),0(£8,AE),0(YE,EC),0(EE,EL),0(YE,A8)}
=min{(§ +3)* (§+3)% (3% (E+2)% (1))
=(E+1)2if & < Land
N(E.O)=(3)7E>3

Since

L min{d(Z€,AE),0(Y¢,E0)} = tmin{(£+2)%,(3)}

)7, 0(Y8,EC) = (3)%,
1

<max{(§+3%)% (1)}
= max{3(Z&,Y{),0(AE,EO)}.
Now, we consider
SO(AE,EE) = 16(3)% < Je™ T3 (£ +2)2 4 350(8 + §)?
=BM(&.8))M(E,8)+LN(E,{).
Case (ii): &, € [3,1].
O(AE,EC) = (3-5)20(ZE 1) = (1-E = §)20(r8.50) = (§ - 3%)°,
O(ZE,AE) = (2—&)2,B(AE, YY) = (2— 0)%,0(2E,58) = (- & — 5%
A

3
M(E,8) = max{0(&,YE),0(2E, AE),0(YE,EE), AE5=6) JMEAS)

0(X6,A)0(Y¢,EC) 0(X6,26)d(YE, Aé) }
14+0(26,YE)+0(AS,EC) 1450 (25 YC)+5(A~’§ £0)]

= max{(1 - ¢~ %, (2 - §)% (- 32, 5 eg?

(98]




GERAGHTY-BERINDE-SUZUKI TYPE CONTRACTION

29
2-6)2(]-%)? (J-¢-5)%2-¢)? )
IH(1-E-0)24+(3-5)2" 14+16[(1-E 82 +(5-5)2)
:(%—3€) and

N(£.8) = min{B(2¢, Y0).0(28,AL).D(TL, B0).5(28,50). 0(1L.AL)}
=min{(1-§ 02 2= (-3 (G-E-9% 207
=(1-E- ¢

Since

L min{d(Z&,AE),8(Y¢,EC)} = min{(2 - &)2 (1 - 35)2)
=(3)(2-¢)°
<max{(1-§—-¢)% (53— £H\2)

2
= max{9(X§,Y¢),0(A5, EC)}-

Now, we consider

SOAE EL) = 16(3 - §)2 < Le G512 - 382 3501 — £ —¢)?

=BM(S,8))M(E,8) +LN(S,E).

Case (iii): { €[0,3),& € [3,1].

O(AE,EC) = (D)20(RE,XE) = (1 - &)2.0(x¢,20) = (3)2,
O(EE,AE) = (2 &)2,0(AE,YE) = (1)2,8(2E,E¢) = (L - &),
M(E,{) = max{0(&,Y¢),5(2E,AE),0(x¢,EL), AEe=0) AAEAS)

) 25 ’
0(X8,A5)0(YE EE) 0(£&,E¢)0(Y¢, Aé) }
1H0(26,TE)+0(AS ) 145¥0(ZE,YE)+0(AS,ES))

1 g2 (1132
—max{(13—&)2,(2-¢&)2,(3)2, g )
(2-8)%(3)? (L-g)2(11)?

w\\l

-3

1+(13-8)2+(§)" 14+16[(13~ )Z(%)Z]}
= (2—&)?and
N(G,6) = min{d(X&,YE),0(X6,AE),0(YE, EE),0(2E,EC),0(1E,AS)}
= min{( )%, (2-8)%(3)% (5 — 8% () =)
Since
7 min{d(28,A8),8(Y8,EC)} = ymin{(2 - £)*,(3)°}

< max{(j3 - )% (§)*}
— max{3(Z&, Y¢),0(AE, EC)}.

Now, we consider
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SB(AE,EC) = 16(2) < Le= (87 (2 - £)2 4 350(3)2
= B(M(E,0))M(E,{) +LN(E,L).
A,E, Y and Y are contraction maps of the Geraghty-Berinde-Suzuki type from each of the four
cases mentioned above. Consequently, all of the assumptions of Theorem 2.5 are satisfied by
A,E X and Y, and % is their unique common fixed point.
Here, we note that the inequality (2.3) is not true if L = 0.
For, selecting { =0 and £ = 1, we have
L min{d(2€,AE),3(Y,E0)} = Lmin{1, (3)}
=G’
< max{({3)% (§)*}
=max{0(X&,Y{),0(AE,E)} implies that
s*O(AE,EQ) = (16)(5)” £ B(1)1 = B(M(E,8))M(E,{) forany B € 3.

Remark 3.5. Theorem 1.19 and Theorem 1.20 follows as corollaries to Theorem 2.4 and The-
orem 2.5 respectively by choosing L = 0. Hence Example 3.3 and Example 3.4 suggests that
Theorem 2.4 and Theorem 2.5 are generalizations of Theorem 1.19 and Theorem 1.20 respec-

tively.
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