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Abstract. In this research, we investigate the qualitative study of a fixed point for a feedback control problem of
Caputo-Via Riemann-Liouville fractional order differential equation, in two classes L; () and C(I) in a bounded
interval I = [0,7]. The main tool applied in this work is the technique Schauder fixed point Theorem. In both
cases we present a sufficient conditions for a unique solution and the continuous dependence on some functions.
Additionally, we delve into the study of Hyers-Ulam stability. Finally, some examples are provided to verify our
investigation.
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1. INTRODUCTION

Differential equations of fractional order have recently proved to be valuable tools in the
modeling of many phenomena in various fields of science and engineering. There has been a
significant development in the study of fractional differential equations and inclusions in recent
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years; see the monographs of Kilbas et al. [1], Lakshmikantham et al. [16], Podlubny [11] and
the survey by Agarwal et al. [15].

The feedback control have a wide range of practical applications across various disciplines,
including but not limited to: Viscoelasticity, electrochemistry, control systems, porous media,
electromagnetism, etc. (see [18, 14, 10, 11, 12]). These diverse applications highlight the im-
portance of constrained problems in accurately capturing and addressing real-world phenomena
across various scientific and engineering disciplines.

In this study, our focus is on examining of the fractional order differential equation,

(D) ED%(x(r) = n (1)) = f£(t,x(t)), 1 € 1, x(0) = n(0),

with the feedback control

@ () = 8(tx(). [ A, +(5))ds),

where D% is the refers to the fractional derivative of Riemann-Liouville of order o € (0, 1).
Our aim here is study the existence of solution x € L (1) and x € C(I) of the problem (1)-(2).
The main tools in our study is applying Schauder fixed point Theorem [11]. Furthermore, the
continuous dependence of the unique solution on the functions f and g will be proved. The

Hyers — Ulam stability of the problem (1)-(2) will be given.

2. SOLVABILITY IN L ()

Let L; = L (), be the class of Lebesgue integrable functions, with the standard norm

ol = [ ()i

Take into account the following assumptions:
(1) g:IxR — R is Carathéodory function [13] and there exist a bounded measurable

function a : I — R and nonnegative constant by such that

g(t,x)| < la(t)|+bilx| Vi €I, xER.
(i) f:I xR — R is Carathéodory function [13] and there exist a bounded measurable

function m : I — R and nonnegative constant b, such that

(2] < m(0)] + balx| ¥ 1 €1, x € R
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(i) h:I xR — R is Carathéodory function [13] and there exist a bounded measurable

function v : I — R and nonnegative constant b3 such that

|h(t,x)| < |v(t)|+b3lx| Vi€l xR
(iv) There exists a positive root r of the algebraic equation

byT?
INa+1)

T [lmlly

s Ma+1)

+ ba|vll) = 1) r+ +llalli = 0.

Now, we have the following lemma.

Lemma 1. The problem (1)-(2) is equivalent to the integral equation
t
3) (0) = gle,x(0) [ (s, 2(9))ds) + 1% f(0.x(0)), ¢ €1
0

Proof. Let x € L () be a solution of the problem (1)-(2), then we have

d | _
Ell (x(t)=m@) = f(t,x(t))

I~ ) = 1£(x0),
then from the properties of the fractional calculus and x(0) = 17(0), we obtain
1)~ (0) = 1% £(1,x(0))
x(O) =) = 1 fl,x(0)),
then
) x(t) = 0+ (x(0)),

substituting by (2) in (4), we obtain (3).

Conversely, let x € L;(I) be a solution of (3). Substituting by (2) in (3), we obtain

x() =) = I“f(t,x(1))

I'"%(x(t)=n(0) = 1" *%f(1,x(r)).

By differentiation, we get

d | 4 _ 4
EIl (x(t)—n@)) = Elf(t,x(l)),
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then

ED%(x(1) = (1)) = f(1.x(9(1)))-

Now, we have the following existences Theorem.

Theorem 1. Assume that (i) — (iv) be satisfied, then the integral equation (3) has at least one

solution x € L (I).

Proof. Let the set

Or={xeLi(l):[lx]y <r}.

Define the operator F by

t

Fx(t) = g(t,x(t)./o h(s, x(s))ds) +1%f(t,x(t)).

Now, let x € O, then
|Fx(t)] = ‘g(t,x(t)./oth(s, x(s))ds)+laf(t,x(t))’

¢ 1 _Socfl
< ‘g(t,x(t)./o h(s, x(s))ds)—f—/o %JC(&X(S))QIS

)a—l

< ’a(t)‘_;_bl(]x(t)\./ot(’v(s)]+b3’x(s)’)ds>_|_/O’(f%

@) (Im(s)| + balx(s)|)ds,

then

[ iEwa < [ ladem (vl +os . [ ol

T t(t_s)oc—l
+ /0 /0 M) bale(s) s

T z(t_s)ocfl
< Jalli+by (Wl +bs r)r [ (m(s)|+bala(o)]) | s
0 o I(a)
> T Ta
< alli+b vl r+bsr +/ m(s)|+br|x(s)|) =——ds
<l b (ol b )+ [ (m) bl g
) o o
< b b1 b _ —b =
that is
) Ta o
F < b b1 b —_ —b =r
|1Fxl[y < [lalli+b1 |V r+b1b3r +F(a+1)||m||1+r(a+l) 27 =T
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Hence the operator F' maps the ball Q, into itself and the class of functions {Fx} is uniformly

bounded on Q,.

Now, let x € O, then

=l = [ IR~ (o)l

- L
J
)

t+h
/t (Fx(6))d6 — (Fx(s))|ds

VAN

(g(e’x(")'/otx(e)de)+I°‘f(e,x(e)) )
(o056 [/ 615 +115.(9) ) | aoas

Since F € L (1), then

i [ (etoxo). [ (@1a0) - elsxo. [ xt)a9) )

- (I“f(@,x(@)) —1%f(s,x(s)) ) ‘ d0ds — 0, ash — 0.

This means that Fx(z);, — (Fx) uniformly in L; (7). Thus the class of functions { Fx} is relatively

compact [11]. Hence F is compact operator.

Now, let {x,} C Q,, and x,, — x, then

t t(t—g a—1
Fxalt) = g(t,xa(0). /0 h(s, xa(s))ds) + /0 %f(s,xn(s))ds

and

t t(f—s o—1
lim Fx,(t) = lim g(t,xn(t)./o h(s,x,(s))ds)+ lim %f(s,xn(s))ds.

n—oo n—oo n—oeo J( (OC)

Applying Lebesgue dominated convergence Theorem [11], then from our assumptions we get

t

t _ Ja—1
’}EIEOFxn(t) = glt, ’}gl(}oxn(t) A ’}iilgoh(s,xn(s))ds)+/() %f(s, }}ggoxn(s))ds

t t(f—s a—1
— g(tx(0). /0 h(s, x(s))ds) + /0 % F(s,x(s))ds = Fx(t).
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This means that Fx,(r) — Fx(t). Hence the operator F is continuous. Now, by Schauder fixed
point Theorem [11] there exists at least one solution x € L (I) of (3). Consequently there exists

at least one solution x € L (I) of the problem (1)-(2).

2.1. Uniqueness of the solution. Now, replace the assumption (i) and (ii) by (i)* and (ii)* as
follows:

(i)* g:I1xR— Rismeasurableint € [ Vx € R and satisfies Lipschitz condition,

(5) ‘g<tax)_g(t7y)’§b1 ‘X—y‘VIE[, x,yER.

(ii)* f:IxR— Rismeasurableinz € I Vx € R and satisfies Lipschitz condition,

(6) |f<l',)€)—f(l7y)’§b2 |X—y|\V/l'€I, x:y€R~

(iii)* f:IxR— Rismeasurableint € I Vx € R and satisfies Lipschitz condition,
(7) |h(t,x) —h(t,y)| <bs |x—y|Vtel, x,y eR.
So, we have the following Lemma.
Lemma 2. The assumption (i)*, (ii)* and (iii)* implies the assumption (i), (ii) and (iii).
Proof. From (5), let y = 0, then we have
|8(#,2)] = |g(2,0)] < lg(z,x) — g(1,0)] < bulx],

lg(t,x)| < |g(t,0)| + b1 x|

and

80,1 < lale)|+bilal, where Ja(r)| = suplg(s,0)].
te

Also, from (6) and (7), we get
[f(£,2)] < [m(2)| + b2|x|, where |m(t)| = igl;lf(tao)|
[(# )] < [v(0)] + bslx], where [v(t)] = sup|£(t,0)]
Theorem 2. Let the assumptions (i)*, (ii)* and (iii)* be satisfied. If

byT%
b 2bib - 1
(o1 ol 20007 205 ) <1,

then the solution of the problem (1)-(2) is unique.
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Proof. Let x{, x be two solutions in Q, of (3), then

g(t,x(t /h s,%2(5))ds) +/
_s)afl

~ (). [ s x(s)ds) - [ (IFT

pa(t) =i ()] =

f(s,x2(s))ds

f(s,x1(s))ds

< Jglt0). [ AGsx2(5)ds) —g(tx1(0). [ s, )

+ gt (0). [ ho,a(6))ds) — glem o). [ hsy ()

. ;(;)1 Fs.52(9) ~ F(s.31(5) s

< bilod) |/|hsx2 lds + b1 b3 x (1) |/|x2 \(s)|ds

t —s o—1
+ b2/0 %hz(s)—xl(sﬂds

by|xa(t) —x1(t)|-([V|l1 + b3 ) + by b3 [x1(2)|[]x2 —x1][1

t _Safl
b [ (o) - n()lds

IN

T T
) —n@lar < b (||v||1+b3r)/ 2 (1) — x1 (1) |di by b ||x2—x1||1/0 1 (1) dr

ol

|xz —x1(s)|ds

< by (|Vll1 +b3 r)\|x2—x1|\1+b1 b3 [|xa —x1 |1 7
T z(t_s)a—l
+ b/ x2(8)—x1(s / dtds
2 (Jx2(s) —x1(s)]) 0 (o)
< by (Vlli+b37) |2 —x1][1 +b1b3 [Jx2 —x1 |1 7
T TOC
+ b/ xX(8) —x1(8)| =——=ds
2 | [x2(s) 1()!F(a+1)
< by (||vll1 + b3 r)|Jx2 = x1||1 + D153 ||x2 —x1 |1 7
TO!
by — lxy —
+ b F(oc—i-l)sz x|,

Hence

b, T*
— 1— 2 <
[|x2 lel( (bl IvIli+2bibs r+ F(a+1))) < 0,
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then x; = x; and the solution of (3) is unique. Consequently the problem (1)-(2) is unique.

2.2. Continuous dependence.

Theorem 3. Let the assumptions of Theorem 2 be satisfied for f, f*, g and g*. Then the unique

solution x € Ly (I) depends continuously on the functions f and g in the sense that

Ve >0, 3 6(¢) such that

max{|[g(2,x(t)) — & (t,x(1)) |1, [|f(2;x(t)) = f*(t,x(0)) 11} < &,then [lx—x"[|; <e.

where x* be a solution of

‘(1 —s)o]

I'a)

X (1) = g (1,5 (1). /0 (s, (s))ds) + /O (5,2 (5))ds.

t t — o—1
50 -x 0 = Jsteto). [ ntsxtas) + [ LI rGstona

(=5

— (X0 /Oth(s,x*(s))ds)— /Ot Ry (6 (5)ds

< |glt,x(0). /0 s x(s))ds) — g (t,x(2). /0 (s x(s))ds)

+ et (x(o). /0 s, x(s))ds) — g (1.2 (1), /O s, x(s))ds)

+ et ). /O s, x(s))ds) — g (1.2 (t). /0 (s, x* (5))ds)

(1 —s)!
), I(a)

l(t_s o—1
4 / Yo
o I(a)
then

[ w0l < [

T T
£ by (Wlhibs ) [l = @)lde by ballx =) [ b 0)las

ds

f(s,x(s)) = " (s,x(s))

S (s, x(s)) = f*(s,x7(s)) |ds,

2(1,x(1). /O (s, x(s))ds) — g (t,x(1). /0 (s, x(s))ds) | di
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T z(t_s)a—l
o I(a)
T ,t —s a—1
+ /0 /0 ‘ r(gc) =7 (s,x(s)) — f*(5,x7(s))
< 8+by (|v]|i+b3r) [|x—x*||1 + b1 b3 r||x—x*||;

5 T N by T?
Na+1) TI'(x+1)

O+ﬁ%ﬁ)5
<

1-— (bl HVH1—|—2b1b3 r+ Fl()(zx—Tl)>

F(s,x(s)) — f*(s,x(s))|dsdt

dsdt

Hence

[l = X"y = .

2.3. Hyers-Ulam stability.

Definition 1. Let the solution x € Li(I) of the problem (1)-(2) be exists, then the problem (1)-(2)

is Hyers - Ulam stable if Ve > 0, 3 6(€) such that for any 8 — approximate solution x; satisfies,

®) ED%(xs(t) = ms(1)) = f(t,x5(1)) | < 8,
implies ||x —x||1 < €.

Theorem 4. Let the assumptions of Theorem 2 be satisfied, then the problem (1)-(2) is Hyers -

Ulam stable.

Proof. From (8), we have
=& < FD(xs(t) = ns(0)) = f(1,x5(1)) < &
—8"= —01% < x(t)—m(t) 17 (t,x5(t) <6 1% ="

=8 < x(t)— (g(t,xs(t)./olh(s,xs(s))ds)-I—Iaf(t,xs(t))) < o™

t t —5 o—1
(1) —x(1)] = ’g(r,x(r). /0 h(s, x(s))ds) + /0 % F(s,x(s))ds —x,(t)

¢ t(f_ )01
< ‘g(l,x(t). /0 h(s,x(s))ds) + /0 %f(s,x(s»ds
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t t(f—g)a-1
— altx(0). /O h(s, x,(s))ds) — /0 %f(s,xs(s))ds

xs(t) — (g(2,x5(1). / s,x5(s))ds) +/ f(s,x5(5))ds))

< Jetat0). [ hGsxto)as) - 0M)AM x(s))ds)

t

+ ’g(t,xs(t)./Oth(s,x(s))ds)—g(t,xs(t)./o h(s,xs(s))dS)

t(t—s)%!
+ /0 oy f(e:x(s) = F(s.(5) s

t z(t_s)oc—l
+ -—mmm/%mmmm+/—77<mewm
< by (I +bs P)x(e) —xilt |/yx s+ by by |xs(t |/|x (s)|ds

t —s o—1
4 b /0 %|x(s)—xs(s)|ds+6*,

then

T
/|x x(Oldt < b (Hleerg»r)/ (1) = xs(1)|dt + b1 b3 Hx—stl/O (1) |ds

( —g)® 1 T
+ bz/—|x(s)—xs(s)]ds+ 5*/ dt
o T 0

(a)

then

| v < bu(lvlli+bsr) |1+ b1b3 7| [+ b1 I 1+ 06"T

X—X v r)x—x rilx—x —lx—x

sl > 1 1 3 s 193 s F((X—{—l) sl
Hence
o*T
[x—xslt < —¢.

(bl Hle +2bibyr+ ((x+1))

3. SOLVABILITY IN C(])

Let C = C(I), be the class of continuous functions with the standard norm

1]l = sup |x(r)].
tel

Take into account the following assumptions:
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(itv) There exists a positive root r of the algebraic equation

byT* T ||m||

bibsT >+ (b T +——"—-— _
103 r +( l”vH +F((X+1) )I" r(a_|_1)

+ |la]] = 0.

Now, we have the following existences theorem.

Theorem 5. Assume that (i)*, (ii), (iii) and (iiv) be satisfied, then the integral equation (3) has

at least one solution x € C(I).
Proof. Let the set
Or ={xeC():[lx[ <r}
and define the operator F' by

Fx(t) = g(t,x(1). /Oth(s,x(s))ds) +1%f(t,x(1)).

Now, let x € O, then

t t(f_g)o—1
|Fx(t)] = ‘g(t,x(t)./oh(s,x(s))ds)—l—/o %f(s,x(s))ds

t t(t—g oa—1
< lal+o1b0). | Alsa(osi+ [ L (o) bla(s) s

||m||T* by T*

< lall+alll. [ (v + bsbx(o)as +

INo+1) +F(a+1) Ll
[lm||T* byT*
< b T+byrT —
< llalltbrr(WIT+bsr 1)+ po iy Y Farny " =
then
T* by T
IFx|| < lall+by V| T r+by b3 T r* + ] L

INa+1) T(a+1)
Hence the operator F maps the ball O, into itself and the class of functions {Fx} is uniformly

bounded on Q,.
Now, let x € Q, and t1, t, € [ such thatt; <1, [r — ;| < 6 and defined 6,(0) [11, 5] as

0,(0) = sup {|g(t2,x(t)) —g(t1,x(1))| : ti,2 €1, 11 <tp, |t2—11| <O, ||x]| <7}, then we have

XEQ,

)(X—l

Fx(t2) — Fx(n))] = ‘g(,z,x(tz)_ /0 (s, x(s))ds) + /0 @%

a)

f(s,x(s))ds
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131

t —g)e-l
= (). [ hox(o)ds) - [ %

15} 1

< g(t2,x(r). A h(s,x(s))ds) — g(t1,x(t1)- A h(s,x(s))ds)|

£ (1 —5)@! n (1) — )o@
/O e GO /0 ey (s x(s)ds

f(s,x(s))ds

15}

< gty x(n). A h(s,x(s))ds)—g(tl,x(tz)./Otzh(s,x(s))dsﬂ

15) 15}

+ lg(n,x(na). | h(s,x(s))ds) = gltn,x(nr). | h(s,x(s))ds)]

131

+ \g(tl,x(tl)./Olzh(s,x(s))ds)—g(tl,x(tl). A h(s,x(s))ds)]

f _g)a-l 0 (ty — )1

+ /0 %f(s,x(s))ds—l- A %f(s,x(s))ds
4 (tl _S)(Xfl

— /0 Wf(s,x(s))ds

< 6,(8)+bils() —x(n)]. [ Ihls,x(5)lds + o) / " Ih(s,x(s))\ds

1 (tz—s)lfa—(tl _s)lftx
o T(a)(ti—s)!"%(t—s)!"
1) 1

), T el sl

+ |/ (s,x(s))lds

This means that the class of functions {Fx} is equicontinuous on Q, and by Arzela-Ascoli
Theorem [11] the class of functions {Fx} is relatively compact, then the operator F' is compact.
Now, let {x,} C O, and x,, — x, then

1 (t s)"‘_1

lim Fx,(t) = lim g(t,xn(t)./Oth(s,xn(s))ds) + lim (F—f(s,xn(s))ds.

n—oo n—oo n—eo J( (OC )
Applying Lebesgue dominated convergence Theorem [11], then from our assumptions we get

t t(f—s a—1
lim Fx,(t) = g(¢, limx,(¢). [ lim h(s,xn(s))ds)+/() uf(s, }}ggoxn(s))ds

n—yoo n—yoo 0 n—oo F((X)
t t(t—s a—1
= g(t,x(t)./o h(s,x(s))ds)—k/0 %f(s,x(s))ds = Fx(t).

This means that Fx,(r) — Fx(t). Hence the operator F is continuous. Now, by Schauder fixed
point Theorem [11] there exists at least one solution x € C(I) of (3). Consequently there exists

at least one solution x € C(I) of the problem (1)-(2).
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3.1. Uniqueness of the solution.

Theorem 6. Let the assumptions (i)*, (ii)* and (iii)* be satisfied. If
by T
b TH+2bib3rTH —— 1
(b bl T+ 2000 e 2 <

then the solution of the problem (1)-(2) is unique.

Proof. Let x1, x be two solutions in Q, of (3), then

t t(f—g)o-1
o) a0 = 'gu,xz(z). [ s, xa(sas) + | %ﬂs,xz(s»ds
t t —s o—1
— etx(0). /O h(s, x1(s))ds) — /O %f(s,xl(s))ds
< b]”Xg-X]H (HV” T + bs rT)+b1 I’(bg, HX2—X1|| T)+b2 ”i—j—n

Hence

oo —=xi||[ (1= D1 |W| T+2by b3 r T+ —— < 0
X2 —X v
: ! 1o Ma+1) ’

13

202 —x1 ]

then x; = x; and the solution of (3) is unique. Consequently the problem (1)-(2) is unique.

3.2. Continuous dependence.

Theorem 7. Let the assumptions of Theorem 6 be satisfied for f, *, g and g*. Then the unique

solution x € C(I) depends continuously on the functions f and g in the sense that
Ve >0, 3 8(¢) such that

max{|g(,x(t)) — g"(1,x(1))], |f(t,x(t)) — f*(t,x(2))|} < 8,

then ||x —x*|| < €.

where x* is the solution of

t t(f—g)o-1
0 =850, [ st 6)as) + [ %f*@,x*(s))ds.
Proof.
t t —s o—1
() —x*()] = ‘go,x(r)- [ nts.x(sas)+ [ %f(s,x(s))ds



14 AHMED M. A. EL-SAYED, MALAK M. S. BA-ALI, EMAN M. A. HAMDALLAH

— g(tx / h(s,x"(s))ds) / %f*(s,x*(s))ds

< S4b1 =x" [ (VI T+b3rT) +b1 by r|x—x|| T
T? by T?
5 )
INa+1) T(o+1)

(2+ ((x+1)> 6

1— <meT+2mbyJW—§£$>

[l = x7].

Hence

lx—xf| < =€

3.3. Hyers-Ulam stability.

Definition 2. [6, 9, 7] Let the solution x € C(I) of the problem (1)-(2) be exists, then the problem
(1)-(2) is Hyers - Ulam stable if Ve > 0, 3 8(€) such that for any 8 — approximate solution x

satisfies,
©) D% (xy(1) = my(1)) — f (1. x5(1)) | < 8,
implies ||x — x;|| < €.

Theorem 8. Let the assumptions of Theorem 6 be satisfied, then the problem (1)-(2) is Hyers -

Ulam stable.

Proof. From (9), we have
-6 < RDa(xs(Z) - ns(o)) _f(t»xs(t)) <9
—8" = —61% < xi(t)—ng(0) —I%f(t,x5(2)) < 8 I* = &*

-6 < xs(t)—<g(t,xs(t). h(s,xs(s))ds)—i—I“f(t,xs(t)))§5*.

t

0

(1 —s)2!

H0)-x0] = Je(tl0). [ sa(o)as)+ | Tf(s,X(S))ds—xs(t)

< ’ t,x(t /hsx ds+/ (S) f(s,x(s))ds

g)o—1
- 8 Xs(l‘)/oh(s x(5))ds) — /(f )

A Ta)f(s,xs(s))ds
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g(t,xy(t /hsxs ds+/

2(t.x(1). /0 h(s, x(s))ds) — g(t,x,(1). /0 h(s, x(s))ds)

_|_

f(s,x5(5))ds))

(050 [ h5,3(5))ds) — e (o). [ hGs,x(5))ds)

t(r— S)(x—l *
o ) g o s o

< bilx(t) = x,(0). /0 (s, x(s)\ds+ by balxs(0)]. /0 Le(s) — xy(5)|ds

t _s(xfl
+ bz/o (t F(Zc) |x(s) —x5(s)|ds + 07,

then
| I < b | (VI T+b3rT) +by b3 | rT + Ll | |+ &7
X—X X—X Y r X—Xs|| ¥ —x—Xx .
s >~ 1 s 3 193 s F((X—|—1) s
Hence
6*
||x—xs|| < =€.

1— (bl W T+2b1b3rT+ rl(j )>
4. EXAMPLES

Example 1.

Consider the following

10 D) - m(0) = g+ 2] €0 =m(0), € [0.]]
where
(an 10 =+ 52 [+ s
Set
Fle0) = 155 + 510
) = £+ 50 [0+
h(t,x) = %+ ?

15
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Putting
lall = il = g b= b=t = D7)
=5 bs=73
and r satisfied
by by T r*+(by |lv|| T +r,(l?;—]::‘1)—l)r+%+||a\| = 0.

r = 0.303606193,

then the problem (10)-(11) has at least one solution x € C|0, %]
and we can find that

byT*

— = —=0.4282091191 < 1
T(a+1) ’

by ”VH T+2byb3rT+

then the problem (10)-(11) has a unique solution.

Example 2.

Taking into account the equation

1 1
(12) ED%(x(t) = (1)) = £+§IX(I)!, x(0)=n(0), r € [0, 3],
where
_toox(t) [ts o x(s)
(13) n(t)—§+1—/0(§+—)ds
Set
t 1
£lt.3) = 5+ gl(0)
ot ox(@) s x(s)
g(t7x)—§+ﬁ‘/0(§+7)ds
_ L0
h(t,x) = 5+
Putting
1 1 1 1 1 1
lall = 5 Il = 3. b= 5. =g, a= 3. T=3
1 1



QUALITATIVE STUDY OF A FIXED POINT FOR A FEEDBACK CONTROL PROBLEM 17

and r satisfied

byT* T ||m||

by b3 r2+((m+ byv[l1) —1) r+m

+ HaH1 = 0.

r = 0.400700060,

then the problem (12)-(13) has at least one solution x € L;[0, %]

and we can find that

b, T?

2L (.1055467186 < 1
[(o+ 1) b

by ||V||1 +2bibs r+

then the problem (12)-(13) has a unique solution.

5. CONCLUSIONS

In this investigation, the qualitative study of a fixed point for a feedback control problem of
Caputo-Via Riemann-Liouville fractional order differential equation. We discussed two cases:
In the first case, we studied the existence of solution for the constraint problem (1)-(2) in the
class Ly (I), then we studied the existence of solution in the class C(I). In two cases, we proved
the continuous dependence of the unique solution on the functions f and g . Moreover, we
thoroughly investigated the Hyers—Ulam stability of our problem. Finally, we given an examples

are provided to illustrate our results.
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