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Abstract. In this paper, we introduce the general form of multiplicative metric spaces known as super multiplica-

tive metric spaces. First we prove an analogous of Banach contraction principle in the setting of super multiplica-

tive metric spaces and prove various results related to expansive mappings, φ weak contraction, weak compatible

maps, property (E.A) and any kind weakly compatible maps.
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1. PRELIMINARIES

In fixed point theory literature, a large number of results either coincides or deduced from

existing results in literature. To overcome these difficulties, Karapinar et al. [8] introduced the

notion of super metric spaces with the help of b-metric spaces [4] and generalized metric spaces

[17].

In 1989, Bakhtin [4] introduced the notion of b-metric as follows:

Let X be a non-empty set. A function b : X×X −→ [0,∞) satisfies the following conditions:

(1) for every x,y ∈ X , b(x,y)≥ 0 and b(x,y) = 0 iff x = y;
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(2) for every x,y ∈ X , b(x,y) = b(y,x);

(3) there exits s≥ 1 such that b(x,y)≤ s[b(x,z)+b(z,y)] for every x,y,z ∈ X .

Then (X ,b,s) is called a b−metric space.

In 1993, Czerwik [7] proved Banach contraction principle in the setting of b−metric space.

A decade ago, Jleli et al.[17] introduced the notion of generalized metric as follows: Let X 6= φ

be a non-empty set. A generalized metric D on X×X→ [0,∞) satisfies the following conditions:

(1) for every x,y ∈ X , D(x,y)≥ 0 and D(x,y) = 0 iff x = y;

(2) for every x,y ∈ X , we have D(x,y) = D(y,x);

(3) there exists C > 0 such that if x,y ∈ X , 〈xn〉 ∈C(D,X ,x), then

D(x,y)≤C lim
n→∞

supD(xn,y), where C(D,X ,x) = {{xn} ∈ X : lim
n→∞

D(xn,x) = 0}.

Then (X ,D) is called a generalized metric space.

Recently, Karapinar et al. [8] introduced the notion super-metric spaces as follows:

Definition 1.1. Let X be a non-empty set. A function m : X ×X → [0,∞) is a super-metric or

super metric if

(1) m(x,y)≥ 0 , if m(x,y) = 0, then x = y for all x,y ∈ X

(2) m(x,y) = m(y,x), for all x,y ∈ X

(3) there exists s ≥ 1 such that for all y ∈ X there exist distinct sequences (xn),(yn) ⊂ X ,

with m(xn,yn)−→ 0 as n−→ ∞ such that

lim
n→∞

sup m(yn,y)≤ s lim
n→∞

sup m(xn,y).

In 2008, Bashirov et al. [5] introduced the concept of multiplicative metric spaces as follows:

Definition 1.2. Let X be a non-empty set. A multiplicative metric is a mapping d∗ : X×X −→

[1,∞) satisfying conditions:

(1) d∗(x,y)≥ 1 for all x,y ∈ X and d∗(x,y) = 1 if and only if x = y;

(2) d∗(x,y) = d∗(y,x) for all x,y ∈ X ;

(3) d∗(x,y) ≤ d∗(x,z).d∗(z,y) for all x,y,z ∈ X . Then (X ,d∗) is known as multiplicative

metric spaces.
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Motivated by the notion of super metric and multiplicative metric spaces we introduce the

general notion of multiplicative metric spaces known as super multiplicative metric spaces.

Definition 1.3. Let X be a non-empty set. A function m∗ : X×X→ [1,∞) is a super multiplica-

tive metric if

(1) m∗(x,y)≥ 1, for all x,y ∈ X and m∗(x,y) = 1 then x = y for all x,y ∈ X ;

(2) m∗(x,y) = m∗(y,x) for all x,y ∈ X ;

(3) there exists s ≥ 1 such that for all y ∈ X there exist distinct sequences (xn),(yn) ⊂ X ,

with m∗(xn,yn)−→ 1 as n−→ ∞ and

lim
n→∞

sup m∗(yn,y)≤ lim
n→∞

sup m∗s(xn,y).

Then (X ,m∗) is called a super multiplicative metric space.

Definition 1.4. Let (X ,m∗) be a super multiplicative metric space, x ∈ X and ε > 1. Define a

set

Bε(x) = {y ∈ X |m∗(x,y)< ε},

which is called a super multiplicative open ball of radius ε with centre x. Similarly, one can

describe super multiplicative closed ball as

B̄ε(x) = {y ∈ X |m∗(x,y)≤ ε}.

Definition 1.5. Let (X ,m∗) be a super multiplicative metric space. A sequence 〈xn〉 in X is said

to be

(1) convergent to a point x, if lim
n→∞

m∗(xn,x) = 1.

(2) Cauchy sequence, if lim
n,m→∞

supm∗(xn,xm) = 1. In other words, for every ε > 0 there

exists n0 such that m∗(xn,xm)< ε for all n,m≥ n0.

Example 1.6. Let X = [1,∞) and define

m∗ : X×X −→ [0,∞) by

m∗(x,y) =

 e
|x−y|+|x|+|y|

2 if x 6= y 6= 0

1 if x = y = 0.
Then (X ,m∗) is a super multiplicative metric space.
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Proof. Clearly m∗(x,y)≥ 1

If m∗(x,y) = 1 , then e
|x−y|+|x|+|y|

2 = 1 , implies x = y.

But if x = y 6= 0, then m∗(x,x) = e
0+|x|+|x|

2 = e|x| 6= 1

Clearly m∗(x,y) = m∗(y,x)

Suppose for all y ∈ X and 〈xn〉 and 〈yn〉 be two distinct sequences in X such that m∗(xn,yn)→

1asn→ ∞, i.e,

lim
n→∞

e
|xn−yn|+|xn|+|yn|

2 → 1,

so lim
n→∞

xn = lim
n→∞

yn = 0.

Now there exists n0 > 0 such that for n≥ n0, we have

lim
n→∞

sup m∗(yn,y) = lim
n→∞

sup e
|yn−y|+|yn|+|y|

2

= e|y|

≤ es|y|

= lim
n→∞

sup es |xn−y|+|xn|+|y|
2

= lim
n→∞

sup m∗s(xn,y)

(1)

In case y = 0, the proof is straight forward. Hence, (X ,m∗) is a super multiplicative metric

space. It is worth-mentioning that it is not a multiplicative metric space as m∗(x,y) 6= 1 when

x = y 6= 0. �

2. RELATIONSHIP BETWEEN SUPER METRIC SPACES AND SUPER MULTIPLICATIVE

SPACES

We establish the relation between super metric spaces and super multiplicative metric spaces

as follows:

Let (X ,m∗) be a super multiplicative metric space. Define m : X×X −→ [0,∞) by

m(x,y) = ln(m∗(x,y))

Then (X ,m) is a super metric space. It follows from the properties of logarithms.

Moreover, if we have a super metric space (X ,m) then the corresponding super multiplicative
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metric space (X ,m∗) is given by

m∗(x,y) = em(x,y).

It follows from the properties of exponential functions. One can interchange and prove many

applications of super multiplicative spaces to super metric spaces and vice versa.

One can note that if (X ,m∗) is a complete super multiplicative metric space, then corresponding

super metric space (m,X) is also a complete super metric space i.e.,

m( f x1, f x2) = ln(m∗( f x1, f x2))≤ λ m(x1,x2),

m∗( f x1, f x2) = em( f x1, f x2) ≤ λ m∗(x1,x2).

3. FIXED POINT THEOREMS FOR VARIOUS CONTRACTIONS IN SUPER MULTIPLICA-

TIVE METRIC SPACES

We prove an analogue of the Banach contraction principle in the setting of super-

multiplicative metric spaces. The Banach contraction priciple in metric space states:

Let T be a self map on a complete metric space X 6= φ satisfying the following:

d(T x,Ty)≤ αd(x,y), 0≤ α < 1.

Then T has a unique fixed point. Before proving our main results, we need the following lemma.

Lemma 3.1. Let T be a self mapping on a complete super multiplicative metric space X satis-

fying

(2) m∗(T x,Ty)≤ m∗α(x,y), 0≤ α < 1.

Then 〈xn〉 is a Cauchy sequence in X .

Proof. Let x0 ∈ X and set x1 = T x0. For this x1 , there exists x2 such that x2 = T x1. Continuing

this way, one can define in general,

(3) xn+1 = T xn ∀n = 0,1,2, ... .

From (2), we have
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m∗(xn+1,xn) = m∗(T xn,T xn−1)≤ m∗α(xn,xn−1)

≤ m∗α
2
(xn−1,xn−2)

...

≤ m∗α
n
(x1,x0).

(4)

Proceeding limit as n→ ∞, we have lim
n→∞

m∗(xn,xn+1) = 1, since 0≤ α < 1.

Now by definition of super multiplicative metric spaces, for s ≥ 1 and for all xn+2 ∈ X there

exist distinct sequences 〈xn〉,〈xn+1〉 with lim
n→∞

m∗(xn,xn+1)→ 1 then

lim
n→∞

sup m∗(xn,xn+2)≤ lim
n→∞

sup m∗s(xn+1,xn+2).

Since lim
n→∞

m∗(xn,xn+1) = 1, therefore, lim
n→∞

sup m∗(xn,xn+2) = 1. Continuing in this way, for

s≥ 1 and for all xn+3 ∈ X there exist distinct sequences 〈xn〉,〈xn+2〉 with lim
n→∞

m∗(xn,xn+2)→ 1

such that

lim
n→∞

sup m∗(xn,xn+3)≤ lim
n→∞

sup m∗s(xn+2,xn+3).

i.e., lim
n→∞

sup m∗(xn,xn+3) = 1.

Inductively, one can conclude

lim
n→∞

sup m∗(xn,xm) = 1, for allm,n ∈ N m > n.

Thus 〈xn〉 is Cauchy sequence in X . �

Now we prove analogue of Banach contraction principle in the setting of super multiplicative

metric spaces.

Definition 3.2. Let (X ,m∗) be a super multiplicative metric space. A map T is said to be

contraction if m∗(T x,Ty)≤ m∗α(x,y) for all x,y ∈ X , 0≤ α < 1.

Theorem 3.3. Let (X ,m∗) be a complete super multiplicative metric space and T be a contrac-

tion mapping on (X ,m∗) i.e.,

m∗(T x,Ty)≤ m∗α(x,y) for all x,y ∈ X , 0≤ α < 1.(5)

Then T has a unique fixed point in X.
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Proof. By Lemma 3.1, the sequence 〈xn〉 defined by (3) is a Cauchy sequence in X . Since

(X ,m∗) is a complete super multiplicative metric space, therefore, the sequence 〈xn〉 converges

to a point say z ∈ X .

We claim that z be a fixed point of T . Now,

m∗(xn+1,T z) = m∗(T xn,T z)≤ m∗α(xn,z) for all n = 0,1,2,3.... .

Proceeding limit n→ ∞, we get T z = z.

This implies z is a fixed point of T.

Uniqueness:

Let w(6= z) be another fixed point of T .

m∗(w,z) = m∗(Tw,T z)≤ m∗α(w,z) , a contradiction, since 0≤ α < 1.

This implies z = w.

Hence T has a unique fixed point. �

In 1968, Kannan [10] gave this following contraction in metric space:

Let (X ,d) be a complete metric space and let T a self map such that there exists k < 1/2

satisfying

d(T x,Ty)≤ k[d(x,T x)+d(y,Ty)]

for all x,y ∈ X . Then T has a unique fixed point.

Now we prove this in the setting of super multiplicative metric space.

Theorem 3.4. Let (X ,m∗) be a complete super multiplicative metric space and T be a self map

on X satisfying Kannan contraction:

(6) m∗(T x,Ty)≤ {m∗(x,T x).m∗(y,Ty)}α

for all x,y ∈ X and 0 < α < 1/2. Then T has a fixed point in X .

Proof. Let x0 ∈ X and consider the iterate of sequence xn+1 = T xn.

From (6), we have
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m∗(x1,x2) = m∗(T x0,T x1)≤ {m∗(x0,T x0).m∗(x1,T x1)}α

≤ {m∗(x0,x1).m∗(x1,x2)}α

m∗(x1,x2)≤ m∗
α

1−α (x0,x1)

i.e,m∗(x1,x2)≤ m∗β (x0,x1)

where β =
α

1−α
< 1

Continuing, this way we get

m∗(xn,xn+1)≤ m∗β
n
(x0,x1)

(7)

Proceeding limit as n→ ∞, we have lim
n→∞

m∗(xn,xn+1) = 1 as 0≤ α < 1.

Now by definition of super metric space, for s ≥ 1 and for all xn+2 ∈ X , there exist distinct

sequences 〈xn〉,〈xn+1〉 with m∗(xn,xn+1)→ 1 such that

lim
n→∞

sup m∗(xn,xn+2)≤ lim
n→∞

sup m∗s(xn+1,xn+2).

Since lim
n→∞

m∗(xn,xn+1) = 1, therefore lim
n→∞

sup m∗(xn,xn+2) = 1. Further,for s ≥ 1 and for all

xn+3 ∈ X there exist distinct sequences 〈xn〉,〈xn+2〉 with m∗(xn,xn+2)→ 1 such that

lim
n→∞

sup m∗(xn,xn+3)≤ lim
n−→∞

sup m∗s(xn+2,xn+3).

This implies lim
n→∞

sup m∗(xn,xn+3) = 1.

Inductively, one can conclude that

lim
n→∞

sup m∗(xn,xm) = 1 ,m > nand m,n ∈ N.

Thus 〈xn〉 is Cauchy sequence in X . Since (X ,m∗) is a complete super metric space, therefore,

the sequence 〈xn〉 converges to a point, say z ∈ X .

We claim that z be a fixed point of T .

From (6), we have

m∗(xn+1,T z) = m∗(T xn,T z)≤ {m∗(xn,T xn).m∗(z,T z)}α

Proceeding as n→ ∞

m∗(T z,z)≤ {m∗(z,T z).m∗(z,T z)}α
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= m∗2α(z,T z)

m∗(1−2α)(z,T z)≤ 1 since 0≤ α < 1/2
(8)

i.e, T z = z.

Therefore z is a fixed point for T . �

Reich [22] in 1971 gave the following contraction for complete metric space:

Let (X ,d) be a complete metric space and T be a self map with property:

d(T x,Ty)≤ ad(x,T x)+bd(y,Ty)+ cd(x,y),

for all x,y ∈ X , where a,b,c are non-negative and satisfy a+ b+ c < 1. Then T has a unique

fixed point. Next we prove Reich type contraction [22] in setting of super multiplicative metric

spaces.

Theorem 3.5. Let (X ,m∗) be a complete super multiplicative metric space and T be a Reich

type contraction map on X ,and there exits non-negative numbers a,b,c with a+b+c < 1 such

that

(9) m∗(T x,Ty)≤ m∗a(x,y).m∗b(x,T (x)).m∗c(y,T (y)).

Then T has a fixed point.

Proof. Let x0 ∈ X and consider the iterate of sequence xn+1 = T xn.

From (9),

m∗(x1,x2) = m∗(T x0,T x1)≤ m∗a(x0,x1).m∗b(x0,T x0).m∗c(x1,T x1)

= m∗a(x0,x1).m∗b(x0,x1).m∗c(x1,x2)

m∗(1−c)(x1,x2)≤ m∗(a+b)(x0,x1)

m∗(x1,x2)≤ m∗
a+b
1−c (x0,x1)

m∗(x1,x2)≤ m∗β (x0,x1), where β =
a+b
1− c

.

Continuing this, way we get

m∗(xn,xn+1)≤ m∗β
n
(x0,x1), where β < 1
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Proceeding limit as n→ ∞, we have lim
n→∞

m∗(xn,xn+1) = 1 as 0≤ α < 1.

Now by definition of super metric space, for s ≥ 1 and for all xn+2 ∈ X there exist distinct

sequences 〈xn〉,〈xn+1〉 with m∗(xn,xn+1)→ 1 such that

lim
n→∞

sup m∗(xn,xn+2)≤ lim
n→∞

sup m∗s(xn+1,xn+2).

Since lim
n→∞

m∗(xn,xn+1) = 1. Therefore , lim
n→∞

sup m∗(xn,xn+2) = 1.Similarly we have for s ≥ 1

and for all xn+3 ∈ X there exist distinct sequences 〈xn〉,〈xn+2〉 with m∗(xn,xn+2)→ 1 such that

lim
n→∞

sup m∗(xn,xn+3)≤ lim
n−→∞

sup m∗s(xn+2,xn+3).

i.e., lim
n→∞

sup m∗(xn,xn+3) = 1.

Inductively, one can conclude

lim
n→∞

sup m∗(xn,xm) = 1 ,m > nand m,n ∈ N.

Thus 〈xn〉 is Cauchy sequence in X . Since (X ,m∗) is a complete super metric space, therefore,

the sequence 〈xn〉 converges to a point say z ∈ X .

We claim that z be a fixed point of T .

From(9) , we have,

m∗(xn+1,T z) = m∗(T xn,T z)≤ m∗a(xn,z).m∗b(xn,T xn).m∗c(z,T z),

letting as n→ ∞ , we have

m∗(z,T z)≤ m∗b(z,T z).m∗c(z,T z)

m∗(z,T z)≤ m∗(b+c)(z,T z)

m∗(1−(b+c))(z,T z)≤ 1

(10)

since, b+ c < 1 we get ,T z = z.

So we have z is a fixed point for T . �

In 1977, Jaggi [12] proved the following contraction for metric space:

Let T be a continous self map defined on a complete metric space (X ,d). Suppose that T

satisfies the following contraction condition:

d(T x,Ty)≤ α

[
d(x,T x)d(y,Ty)

d(x,y)

]
+βd(x,y)
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for all x,y ∈ X , x 6= y and for some α,β ∈ [0,1) with α +β < 1. Then T has a unique fixed

point in X .

Now, we prove this contraction in the setting of super multiplicative metric space as follows:

Theorem 3.6. Let f be a continuous self map defined on a complete super-multiplicative metric

space (X ,m∗). Suppose that f satisfies the following contractive condition:

(11) m∗( f x, f y)≤ m∗α(x, f x)m∗α(y, f y)
m∗α(x,y)

m∗β (x,y)

for all x,y∈ X , x 6= y and for some α,β ∈ [0,1) with α +β ≤ 1. Then f has a unique fixed point

in X .

Proof. Let x0 ∈ X and consider the iterate of sequence f xn = xn+1.

From (11), we have

m∗(x1,x2) = m∗( f x0, f x1)≤
m∗α(x0, f x0)m∗α(x1, f x1)

m∗α(x0,x1)
m∗β (x0,x1)

=
m∗α(x0,x1)m∗α(x1,x2)

m∗α(x0,x1)
m∗β (x0,x1)

m∗(1−α)(x1,x2)≤ m∗β (x0,x1)

m∗(x1,x2)≤ m∗(
β

1−α
)(x0,x1)

(12)

Continuing n times we have

m∗(xn,xn+1)≤ m∗(
β

1−α
)n
(x0,x1)

Taking limit as n→ ∞ we get m∗(xn,xn+1) = 1

Now by definition of super multiplicative metric space, for s ≥ 1 and for all xn+2 ∈ X , there

exist distinct sequences 〈xn〉 , 〈xn+1〉 with m∗(xn,xn+1)→ 1 such that

lim
n→∞

supm∗(x2n−1,x2n+1)≤ lim
n→∞

supm∗s(x2n,x2n−1).

Since lim
n→∞

m∗(xn,xn+1) = 1, therefore lim
n→∞

sup m∗(xn,xn+2) = 1. Further,for s ≥ 1 and for all

xn+3 ∈ X there exist distinct sequences 〈xn〉,〈xn+2〉 with m∗(xn,xn+2)→ 1 such that

lim
n→∞

sup m∗(xn,xn+3)≤ lim
n−→∞

sup m∗s(xn+2,xn+3).
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This implies lim
n→∞

sup m∗(xn,xn+3) = 1.

Inductively, one can conclude that

lim
n→∞

sup m∗(xn,xm) = 1 ,m > nand m,n ∈ N.

Thus 〈xn〉 is Cauchy sequence in X . Since (X ,m∗) is a complete super metric space, therefore,

the sequence 〈xn〉 converges to a point, say z ∈ X .

We claim that z be a fixed point of f .

From (11), we have

m∗(xn+1, f z)≤ m∗α(xn, f xn)m∗α(z, f z)
m∗α(xn,z)

m∗β (xn,z)

Proceeding limit as n→ ∞

m∗(z, f z)≤ m∗α(z, f z)

m∗(1−α(z, f z)≤ 1

implies f z = z as α < 1. Hence f has a fixed point in X . �

4. FIXED POINT THEOREMS FOR PAIR OF MAPPINGS

G. Jungck [13] proved an interesting result for commutative mapping in metric spaces as

follows:

Let (X ,d) be a complete metric space and f be a continuous self mapping of (X ,d), if there

exists a mapping g : X → X and a constant 0≤ α < 1 such that

(1) f gx = g f x for every x ∈ X .

(2) g(X)⊂ f (X)

(3) d(gx,gy)≤ αd( f x, f y) for every x,y ∈ X .

Then f and g have a unique common fixed point.

Now we prove the Jungck fixed point theorem in the setting of super-multiplicative metric

spaces as follows:

Theorem 4.1. Let (X ,m∗) be a complete super multiplicative metric spaces and f be a con-

tinuous self mapping of super multiplicative metric space (X ,m∗). If there exists a mapping

g : X → X and a constant 0≤ α < 1 such that
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(1) f gx = g f x for every x ∈ X ,

(2) g(X)⊂ f (X),

(3) m∗(gx,gy)≤ m∗α( f x, f y) for every x,y ∈ X .

Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X and x1 ∈ X be such that gx0 = f x1. Then, by induction, a sequence 〈yn〉 in X

as follows:

(13) f xn = gxn−1 = yn(say), n = 0,1,2,3, ....

From (3) , we have

m∗(yn+1,yn) = m∗( f xn+1, f xn) = m∗(gxn,gn−1)≤ m∗α( f xn, f xn−1) = m∗α(yn,yn−1)

≤ m∗α
2
(yn−1,yn−2)

...

≤ m∗α
n
(y1,y0).

(14)

Proceeding from the limit as n→ ∞, we have lim
n→∞

m∗(yn+1,yn) = 1, since 0 ≤ α < 1. Now by

Lemma 3.1 we get 〈yn〉, i.e., 〈 f xn〉 is a Cauchy sequence in X . But X is complete so lim
n→∞

f xn = t.

Now from (13) lim
n→∞

gxn = t. Since f is continuous, so by (3), f and g both are continuous.

Therefore f gxn→ f t and g f xn→ gt. But f and g commute for all x ∈ X , so g f xn = f gxn ∀n,

i.e., gt = f t. Consequently f ( f t) = f (gt) = g(gt).

m∗(gt,ggt)≤ m∗α( f t, f gt) = m∗α(gt,ggt)

m∗(1−α)(gt,ggt)≤ 1.

This implies gt = ggt, since 0≤ α < 1. Therefore, gt = g(gt) = f (gt), i.e., gt is common fixed

point of f and g.

Uniqueness

Let x = f x = gx and y = gy = f y

Now m∗(x,y) = m∗(gx,gy)≤ m∗α( f x, f y) = m∗α(x,y), implies x = y, as 0≤ α < 1. �

In 1998, Jungck and Rhoades [16] introduced the notion of weakly compatible as follows:
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Definition 4.2. Two maps f and g are said to be weakly compatible if the maps commute at

their coincidence points i.e., f x = gx implies f gx = g f x for x ∈ X .

Example 4.3. Let X = [0,3]. Define self maps f and g on X by f x = x
2 and gx = x, then

f (0) = g(0) and f g(0) = g f (0). Hence f and g are weakly compatible maps.

Now we prove a fixed point theorem in the setting of super multiplicative metric space for a

pair of weakly compatible maps.

Theorem 4.4. Let (X ,m∗) be a complete super multiplicative-metric space and f and g be self

maps of X satisfying conditions:

(15) m∗( f x, f y)≤ m∗α(gx,gy),

where 0≤α < 1 and f (X)⊆ g(X). If one of the subspaces f (X) or g(X) is a complete subspace

in X, then f and g have a unique common fixed point, provided f and g are weakly compatible

maps.

Proof. Let us define a sequence 〈yn〉 in X by

yn = gxn+1 = f xn, n = 0,1,2, ..., where x0 ∈ X .

Therefore, from (15),we have

m∗(yn,yn+1) = m∗( f xn, f xn+1)≤ m∗α(gxn,gxn+1)

= m∗α(yn−1,yn)

...

≤ m∗α
n
(y0,y1).

(16)

Taking limit as n→ ∞, we have

m∗(yn,yn+1) = 1.

From Lemma 3.1, sequence 〈yn〉 is Cauchy sequence in X and (X ,m∗) is complete super multi-

plicative metric space, so it converges to a point say z in X i.e.,

lim
n→∞

yn = lim
n→∞

f xn = lim
n→∞

gxn+1 = z.
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Without loss of generality, one can assume, g(X) be complete subspace of X , so there exists

p ∈ X such that gp = z.

From (15), we have

m∗( f p, f xn)≤ m∗α(gp,gxn) = m∗α(z,yn−1).

Taking limit as n→ ∞, we get f p = z.

Since f and g are weakly compatible, so f gp = g f p, implies f z = gz. Now it remains to show

that z is a common fixed point of f and g. Now from (15), we have,

m∗( f z, f xn)≤ m∗α(gz,gxn)

m∗( f z,z)≤ m∗α( f z,z),

implies, f z = z as α < 1. Therefore, f z = gz = z. Hence z is a common fixed point of f and g.

Uniqueness follows easily. �

Now we prove Theorem 4.4 with minor modifications as follows:

Theorem 4.5. Let (X ,m∗) be a complete super multiplicative metric space and f and g be self

maps of X such that

(17) m∗( f x, f y)≤ m∗α(gx,gy) x,y ∈ X ,0≤ α < 1,

and f (X) ⊆ g(X), such that one of f (X) and g(X) is closed subset of X . Then f and g have a

unique common fixed point in X, provided f and g are weakly compatible maps.

Proof. Let us define a sequence 〈yn〉 in X by

yn = gxn+1 = f xn, n = 0,1,2, ..., where x0 ∈ X .

From the proof of Theorem 4.4, we conclude that 〈yn〉 is a Cauchy sequence in X . Since either

f (X) or g(X) is closed, for definiteness assume that g(X) is closed subset of X , so it has a limit

point in g(X), call it z. Therefore for some p ∈ X we have gp = z. Now we show that f p = z.

From (17), we have,

m∗( f xn, f p)≤ m∗α(gxn,gp)

m∗( f xn, f p)≤ m∗α(yn−1,z).

Letting limit n→ ∞, we get f p = z. Rest part of the proof follows from Theorem 4.4 . �
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Theorem 4.6. Let (X ,m∗) be a complete super multiplicative metric space and f and g be

self maps of X. Assume there exists a right continuous function φ : [1,∞) −→ [1,∞) such that

φ(t)< t, if t > 1 and φ(t) = 1 if and only if t = 1 satisfying following conditions:

(18) m∗( f x, f y)≤ φ(m∗(gx,gy)) for all x,y ∈ X .

f (X) ⊆ g(X) and one of f (X) and g(X) is a complete subspace of X . Then f and g have a

unique common fixed point in X, provide f and g are weakly compatible maps.

Proof. Let x0 ∈ X . Since f (X)⊆ g(X), therefore choose x1 ∈ X such that gx1 = f x0. In general,

define xn+1 such that,

f xn = gxn+1 = yn (say), n = 0,1,2, ... .

Put αn = m∗(yn,yn−1).

From (18),we have

(19) m∗(yn,yn−1) = m∗( f xn, f xn−1)≤ φ(m∗(gxn,gxn−1)) = φ(m∗(yn−1,yn−2)),

i.e., αn ≤ φ(αn−1) < αn−1. Thus 〈αn〉 is a decreasing sequence of reals , so converges in R+,

say to a limit L. i.e., lim
n→∞

m∗(yn,yn−1) = L. We claim that L = 1 as if L 6= 1, L ≤ φ(L) < L, a

contradiction, therefore, L = 1. Hence lim
n→∞

m∗(yn,yn−1) = 1. From Lemma 3.1, 〈yn〉 is Cauchy

sequence. Since (X ,m∗) is a complete super multiplicative metric space, so it converges to a

point say z ∈ X . Then lim
n→∞

yn = lim
n→∞

f xn = lim
n→∞

gxn+1 = z.

Without loss of generality, assume g(X) be complete subspace of X , therefore, there exists

p ∈ X such that gp = z.

Using (18), we have

m∗( f p, f xn)≤ φ(m∗(gp,gxn)) = φ(m∗(z,yn−1)).

Proceeding limit n→ ∞,we have f p = z. Therefore f p = gp = z.

Since f and g are weakly compatible we have f gp = g f p, which implies f z = gz.

Now again using (18), we have

m∗( f z, f xn)≤ φ(m∗(gz,gxn)) = φ(m∗( f z,gxn)).
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Taking limit n→ ∞,

m∗( f z,z)≤ φ(m∗( f z,z)),

we get f z = z. So f z = gz = z.

Hence z is a common fixed point of f and g.

Uniqueness:

Let w(6= z) be another common fixed point of f and g.

Using (18), we have ,

m∗(z,w) = m∗( f z, f w)≤ φ(m∗(gz,gw)) = φ(m∗(z,w)),

a contradiction, thus w = z. Hence f and g have a unique common fixed point. �

Theorem 4.7. Let (X ,m∗) be a complete super multiplicative metric space and f ,g be self

mapping on X, satisfying,

(20) m∗( f x,gy)≤ m∗α(x,y).[m∗(x, f x).m∗(y,gy)]β

with α,β > 0 , α +2β < 1, and for all x,y ∈ X . Then f and g have a fixed point in X .

Proof. Let x0 be an arbitrary point in X . Consider sequence of iterate,

x2n−1 = f x2n−2 , xn = gx2n−1.

From (20) , on putting x = x2n−2 and y = x2n−1, we have on simplification

m∗(x2n−1,x2n)=m∗( f x2n−2,gx2n−1)≤m∗α(x2n−2,x2n−1).[m∗(x2n−2, f x2n−2).m∗(x2n−1,gx2n−1)]
β .

or

m∗(x2n−1,x2n)≤ m∗α(x2n−2,x2n−1).[m∗(x2n−2,x2n−1).m∗(x2n−1,x2n)]
β

m∗(1−β )(x2n−1,x2n)≤ m∗(α+β )(x2n−2,x2n−1)

m∗(x2n−1,x2n)≤ m∗
(

α+β

1−β

)
(x2n−2,x2n−1)

i.e, m∗(x2n−1,x2n)≤ m∗γ(x2n−2,x2n), where γ =
α +β

1−β

continuing in the same way

m∗(x2n−1,x2n)≤ m∗γ
2n
(x0,x1)

(21)
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proceeding limn→ ∞ , we get lim
n→∞

m∗(x2n−1,x2n) = 1.

By definition of super metric space , for 〈x2n−1〉 ,〈x2n〉 in X there exists x2n+1 ∈ X such that

lim
n→∞

supm∗(x2n−1,x2n+1)≤ lim
n→∞

supm∗s(x2n,x2n−1)

then by definition of super multiplicative metric, we have lim
n→∞

supm∗(x2n−1,x2n+1) = 1.

Again for 〈x2n+1〉 and 〈x2n−1〉 there exists x2n+2 ∈ X such that

lim
n→∞

supm∗(x2n−1,x2n+2)≤ lim
n→∞

supm∗s(x2n+2,x2n+1)

i.e., lim
n→∞

supm∗(x2n−1,x2n+2) = 1.

Proceeding in this way, we get

lim
n→∞

supm∗(xn,xm) = 1 m > n and m,n ∈ N. Therefore {xn} is Cauchy. Since (X ,m∗) is com-

plete, the sequence 〈xn〉 converges to a point say u ∈ X .

On putting x = x2n−2 and y = u in (20), we have

m∗(x2n−1,gu) = m∗( f x2n−2,gu)≤ m∗α(x2n−1,u).[m∗(x2n−2, f x2n−2).m∗(u,gu)]β

m∗(x2n−1,gu)≤ m∗α(x2n−1,u).[m∗(x2n−2, f x2n−2).m∗(u,gu)]β .

Proceeding limn→ ∞ we get

m∗(u,gu)≤ m∗β (u,gu) m∗(1−β )(u,gu)≤ 0 if 1−β ≤ 0 then β ≥ 1 but α +2β ≤ 1 and α > 0

hence m∗(u,gu) = 1 i.e. gu = u similarly we can show that f u = u.

Hence f and g have a fixed point in X . �

5. EXPANSIVE MAPPINGS

In 1984, Wang, Li, Gao and Iséki [25] and Rhoades [20] proved some fixed point theorems

for expansive mappings that corresponds to some contractive mappings in metric spaces. Now

we introduce expansive mappings in the setting of super multiplicative metric spaces that cor-

responds to some contractive mappings in metric spaces and multiplicative metric spaces.

Let f be a mapping of a super multiplicative metric space (X ,m∗) into itself. Then f is said to

be expansive mapping if there exists a constant α > 1 such that for all x,y ∈ X , we have

m∗( f x, f y)≥ m∗α(x,y).

Now we prove a result related to expansive mapping in super multiplicative metric spaces.
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Theorem 5.1. Let (X ,m∗) be a complete super multiplicative metric space and T : X −→ X be

a surjective mapping. Suppose that α > 1 such that

(22) m∗(T x,Ty)≥ m∗α(x,y), for all x,y ∈ X .

Then T has a unique fixed point.

Proof. Let x0 ∈ X . Since T is surjective then ∃ an element x1 such that x1 ∈ T−1x0. Continuing

this way, we get a sequence 〈xn〉 such that xn ∈ T−1xn−1. If xn = xn−1 for some n, then xn is a

fixed point of T. Assume that xn 6= xn−1 for every n ∈ N.

Then from inequality (22), we have

m∗(xn+1,xn) = m∗(T xn+2,T xn+1)≥ m∗α(xn+2,xn+1)

m∗
1
α (T xn+2,T xn+1)≥ m∗(xn+2,xn+1)

m∗
1
α (xn+1,xn)≥ m∗(xn+2,xn+1)

m∗(xn+2,xn+1)≤ m∗
1
α (xn+1,xn)

≤ m∗
1

α2 (xn,xn−1)

≤ m∗
1

α3 (xn−1,xn−2)

...

≤ m∗
1

αn+1 (x1,x0), α > 1.

(23)

By Lemma 3.1, the sequence 〈xn〉 is Cauchy sequence. Since (X ,m∗) is a complete super

multiplicative metric space, therefore , the sequence 〈xn〉 converges to a point say z ∈ X . We

show that z is a fixed point of T.

Now we show that T z = z. Let p ∈ T−1z, for n such that xn 6= z, we have

m∗(xn,z) = m∗(T xn+1,T p)≥ m∗(xn+1, p).

Taking limit as n→ ∞ m∗(z, p)≤ 1 i.e., z = p i.e., T z = z.

Hence z is the fixed point of T.

Uniqueness:
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Let w(6= z) be another fixed point for T.

Since

m∗(w,z)≤ m∗
1
α (Tw,T z) =m∗

1
α (w,z)

m∗(1−
1
α
)(w,z)≤ 1

(24)

a contradiction since α > 1.

This implies z = w,

Hence T has a unique fixed point in X . �

We generalize Theorem 5.1 for a pair of maps.

Theorem 5.2. Let f be a continuous self map of a complete super multiplicative metric space

(X ,m∗). If there exists a mapping g : X → X and constant 0≤ α < 1 such that

(1) f gx = g f x for every x ∈ X ,

(2) g(X)⊂ f (X),

(3) m∗( f x, f y)≥ m∗α(gx,gy) for every x,y ∈ X .

Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X . Since g(X) ⊆ f (X), choose x1 ∈ X such that f x1 = gx0. In general choose

xn+1 such that

f xn+1 = gxn = yn (say)

Then from (3),

(25) m∗(yn,yn+1) = m∗(gxn,gn+1)≤ m∗
1
α ( f xn, f xn+1) = m∗

1
α (yn−1,yn).

From Lemma 3.1, the sequence 〈yn〉 is a Cauchy sequence. Since (X ,m∗) is complete, so

〈yn〉 converges to a point, say z ∈ X .

Then lim
n→∞

yn = lim
n→∞

f xn+1 = lim
n→∞

gxn = z.

Since f is continuous so by (3), f and g both are continuous.

Therefore f gxn→ gt and g f xn→ f t. But f and g commute for all x ∈ X , so g f xn = f gxn ∀n.

So gt = f t. Consequently f ( f t) = f (gt) = g(gt)

m∗(gt,ggt) = m∗( f t,ggt)≤ m∗
1
α ( f t, f gt) = m∗

1
α (gt,ggt)
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m∗(1−
1
α
)(gt,ggt)≤ 1.

This implies gt = ggt, since 0≤ α < 1. gt = g(gt) = f (gt) i.e., gt is a common fixed point of f

and g.

Uniqueness:

x = f x = gx and y = gy = f y

Now m∗(x,y) = m∗(gx,gy)≤ m∗
1
α ( f x, f y) = m∗

1
α (x,y), implies x = y. �

6. Φ−WEAK CONTRACTION

In 1997, Alber and Guerre-Delabriere [24] presented the notion of φ−weak contraction in

Hilbert spaces. In 2001 Rhoades [19], extended the notion of φ−weak contraction in setting of

complete metric spaces as follows: there exists a function φ : [0,∞)−→ [0,∞) with φ(t)> 0 for

all t > 0 and φ(0) = 0 such that

d( f x, f y)≤ d(x,y)−φ(x,y).

Analogously, we define the concept of φ−weak contraction in the setting of super multiplicative

metric spaces as follows:

Definition 6.1. Let φ : [1,∞)−→ [1,∞) with φ(t)> 1 for t > 1 and φ(1) = 1 such that

m∗(( f x, f y)≤ m∗(x,y)
φ(m∗(x,y))

.

Now we prove the following theorem in super-multiplicative metric spaces.

Theorem 6.2. Let (X ,m∗) be a complete super-multiplicative metric space and T : X −→ X be

a mapping such that

(26) m∗(T x,Ty)≤ m∗(x,y)
φ(m∗(x,y))

for all x,y ∈ X , where φ : [1,∞) −→ [1,∞) is continuous function with φ(t) = 1 if and only if

t = 1 and φ(t)> 1 for all t > 1. Then T has a unique fixed point.

Proof. Let us define a sequence 〈xn〉 in X by

xn = T xn+1, for n = 0,1,2... where x0 ∈ X .
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If x0 = x1, then x1 is a fixed point of T and the proof is completed. Suppose x0 6= x1, thus

m∗(x0,x1)> 1. Without loss of generality, one can assume, xn 6= xn+1, so m∗((xn,xn+1)> 1 for

all n = 0,1,2... .

Put αn = m∗(xn,xn+1).

Therefore, from (26), we have

(27) m∗(xn,xn+1) = m∗(T xn−1,T xn)≤
m∗(xn−1,xn)

φ(m∗(xn−1,xn))
.

On simplification, we have m∗(xn,xn+1)≤ m∗(xn−1,xn), i.e.,αn ≤ αn−1.

The sequence αn is non-increasing sequence of reals, so it converges in R+, consequently, there

exists L ≥ 1 such that lim
n→∞

αn = L , i.e., lim
n→∞

m∗(xn,xn+1) = L. We claim that L = 1, if L 6= 1,

then L > 1 and by using continuity of φ and inequality (27), we get,

L≤ L
φ(L)

, since, φ(t)> 1 for all t > 1,

a contradiction, so , φ(L) = 1, i.e., L = 1. Hence lim
n→∞

m∗(xn,xn+1) = 1. By Lemma 3.1, 〈xn〉

is Cauchy sequence. Since (X ,m∗) is a complete super multiplicative metric space so 〈xn〉

converges to a point say z ∈ X . We show that z is fixed point of T.

From (26), we have,

m∗(T z,xn+1) = m∗(T z,T xn)≤
m∗(z,xn)

φ(m∗(z,xn))
,

Proceeding limit n→∞, implies we have m∗(T z,z)≤ 1, implies T z = z. Hence z is a fixed point

of T.

Uniqueness:

Let w(6= z) be another fixed point of T .

m∗(z,w) = m∗(T z,Tw)≤ m∗(z,w)
φ(m∗(z,w))

,

implies, w = z, as φ(t)> 1 for all t > 1. �

Now we generalize Theorem 6.2 for a pair of weakly compatible mappings in setting of super

multiplicative metric spaces.
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Theorem 6.3. Let (X ,m∗) be a complete super multiplicative metric space. Let f and g be

self-mappings satisfying the following:

(28) m∗( f x, f y)≤ m∗(gx,gy)
φ(m∗(gx,gy))

where φ : [1,∞) −→ [1,∞) is a continuous function with φ(t) > 1 for all t > 1 and φ(t) = 1 if

and only if t = 1. Further, f (X)⊆ g(X) and g(X) or f (X) are complete subspace of X . Then f

and g have a unique common fixed point, provided f and g are weakly compatible maps.

Proof. Let x0 ∈ X . Since f (X)⊆ g(X). Choose x0 ∈ X such that f x1 = gx0. In general, choose

xn+1 such that

f xn = gxn+1 = yn (say) ,n = 0,1,2... .

Put αn = m∗(yn,yn+1)

From (28), we have,

m∗(yn,yn+1) = m∗( f xn, f xn+1)≤
m∗(gxn,gxn+1)

φ(m∗(gxn,gxn+1))

=
m∗(yn−1,yn)

φ((m∗(yn−1,yn))
.

(29)

On simplification, we have αn ≤ αn−1
φ(αn−1)

, implies αn is non-increasing sequence, so it converges

in R+.

Consequently, there exists L≥ 1 such that lim
n→∞

m∗(yn,yn+1) = L. We claim that L = 1. If L≥ 1,

then by using definition of φ and inequality (28), we get,

L≤ L
φ(L)

since, φ(t)> 1 for all t > 1,

implies L = 1. Hence lim
n→∞

m∗(yn,yn+1) = 1. By Lemma 3.1, 〈yn〉 is a Cauchy sequence in X and

(X ,m∗) is a complete super multiplicative metric space, so it converges to a point say z ∈ X .

lim
n→∞

yn = lim
n→∞

f xn = lim
n→∞

gxn+1 = z.

Since g(X) is complete subspace of X , there exists p ∈ g(X) such that gp = z.

From (28), we have,

m∗( f p, f xn)≤
m∗(gp,gxn)

φ(m∗(gp,gxn))
=

m∗(z,yn−1)

φ(m∗(z,yn−1)
.
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Proceeding limit n→ ∞, we get

lim
n→∞

m∗( f p,z) = 1, i.e., f p = z.

Thus f p = gp. Since f and g are weakly compatible, so f gp = g f p, which implies f z = gz.

From (28), we have

m∗( f z, f xn)≤
m∗(gz,gxn)

φ(m∗(gz,gxn)
=

m∗( f z,gxn)

φ(m∗( f z,gxn)
.

Taking limit n→ ∞, we have,

m∗( f z,z)≤ m∗( f z,z)
φ(m∗( f z,z))

,

implies f z = gz = z. Hence z is the common fixed point of f and g.

Uniqueness:

Let w(6= z) be another fixed point of f and g. From (28), we have,

m∗(z,w) = m∗( f z, f w)≤ m∗(gz,gw)
φ(m∗(gz,gw))

=
m∗(z,w)

φ(m∗(z,w))
≤ 1.

Thus w = z.

Hence z is the unique common fixed point of f and g. �

7. WEAKLY COMPATIBLE MAPS AND PROPERTY(E.A)

In 2002, Amari and Moutawakil [1] introduced the notion of property (E.A) as follows:

Definition 7.1. Let f and g be two self-maps of a metric space (X ,d). The pair (f,g) is said to

satisfy property (E.A), if there exists a sequence 〈xn〉 in X such that lim
n→∞

f xn = lim
n→∞

gxn = t for

some t ∈ X .

The notion of property (E.A) is used in a multiplicative space in the same way as it is used in

metric spaces.

Example 7.2. Let X = [0,1]. Define f ,g : X −→X by f x= x
2 and gx= 3x

4 for all x∈X . Consider

sequence xn =
1
n . Clearly lim

n→∞
f xn = lim

n→∞
gxn = 0. Then f and g satisfy property (E.A).

The importance of property (E.A) is that it relaxes the continuity requirement of maps com-

pletely, weakens the completeness requirement of spaces and property (E.A) buys containment
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of range spaces without any continuity requirement.

Now we prove a theorem for a pair of weakly compatible maps along property (E.A) in the

setting of super multiplicative metric spaces.

Theorem 7.3. Let (X ,m∗) be a super multiplicative metric space and f and g be self maps of

X satisfying conditions:

(30) m∗(gx,gy)≤ m∗α( f x, f y),

where 0 ≤ α < 1 and f and g satisfying property (E.A) and f (X) is a closed subspace of X .

Then f and g have a unique common fixed point, provided f and g are weakly compatible.

Proof. Since f and g satisfy property (E.A), there exists a sequence 〈xn〉 in X such that

lim
n→∞

f xn = lim
n→∞

gxn=z ∈ X . Since f (X) is a closed subspace of X , so z = f p ∈ f (X) for some

p ∈ X . Now we show that f p = gp. From (30), we have

m∗(gp,gxn)≤ m∗α( f p, f xn)

m∗(gp,gxn)≤ m∗α(z,yn).

Proceeding limit n→ ∞, we have, f p = gp = z.

Rest of the proof follows from Theorem 4.4 . �

8. ANY KIND OF WEAKLY COMPATIBLE MAPS

In 2010, Murthy et al. [11] introduced the notion of any kind of weakly compatible maps in

fuzzy metric spaces as follows:

Definition 8.1. Let X 6= 0 be a non-empty set. A pair of self mappings ( f ,g) on non-empty set

X is said to be any kind of weakly compatible maps if and only if there is a sequence 〈xn〉 in X

satisfying lim
n→∞

f xn = lim
n→∞

gxn = t for some t ∈ X and f gt = g f t.

Example 8.2. Define f ,g : [0,2] −→ [0,2] by f x = 2 if x ∈ [0,1] and f x = x
2 if x ∈ (1,2] and

gx = 2 if x ∈ [0,1] and x+3
5 if x ∈ (1,2]. Consider the sequence 〈xn〉= (2− 1

2n). Clearly

f xn = (1− 1
4n

),gxn = (1− 1
10n

).
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Proceeding limit n−→ ∞

f xn→ 1,gxn→ 1.

Moreover, f g(1) = g f (1) = 1. Therefore, we can say f and g are any kind of weakly compatible

maps.

Now we prove a theorem for weakly compatible maps along with notion of any kind of

weakly compatible maps defined by Murthy et al. [11].

Theorem 8.3. Let (X ,m∗) be a complete super multiplicative metric space and f and g be self

maps of X satisfying conditions:

(31) m∗( f x, f y)≤ m∗α(gx,gy),

where 0 ≤ α < 1 and f (X) ⊂ g(X), one of the spaces f (X) or g(X) is a closed subset of X .

Further f and g are any kind of weakly compatible maps. Then maps f and g have a unique

common fixed point, provided f and g are weakly compatible maps.

Proof. Let us define a sequence 〈yn〉 in X by

yn = gxn+1 = f xn, n = 0,1,2, ..., where x0 ∈ X .

Since f and g are any kind of weakly compatible maps, therefore, there exists a sequence

〈xn〉 ∈ X such that lim
n→∞

f xn = lim
n→∞

gxn = z ∈ X . Let g(X) be a closet subset of X , then for

sequence 〈xn〉 in g(X), there is a limit in g(X). Call it be z such that z= gp. Therefore, lim
n→∞

f xn =

z = gp = lim
n→∞

gxn. This implies z = gp ∈ g(X). Now we have to show z = f p = gp. Using (31),

we have,

m∗( f p, f xn)≤ m∗α(gp,gxn) = m∗(z,yn−1)

Proceeding limit n→ ∞, gives f p = z. Rest of the proof follows from Theorem 4.4.

�
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