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Abstract. This work investigates the (m,m0)−strict uniform stability of Caputo fractional dynamic systems on

time scales, leveraging the Caputo fractional derivative’s ability to model memory and hereditary effects for a more

accurate representation of real-world dynamics. Traditional stability concepts, such as Lyapunov and asymptotic

stability, often lack the granularity to fully capture complex system behaviors. To address this, we focus on

(m,m0)−strict uniform stability, which provides a stringent and comprehensive framework for analyzing system

robustness and convergence rates. Using vector Lyapunov functions, we enable component-wise stability analysis,

offering a detailed understanding of multi-dimensional dynamics, particularly in high-dimensional systems with

interdependent variables. We also demonstrate the practical relevance of our approach through a comprehensive

example.
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1. INTRODUCTION

The analysis of stability in dynamic systems [5] has long been a foundational aspect of

mathematical research, with profound implications across diverse fields such as engineer-

ing and biology. This encompasses both integer-order [27, 28, 30, 31] and fractional (non-

integer) [26, 29, 33] stability concepts. Traditional stability concepts, such as Lyapunov sta-

bility and asymptotic stability, have provided valuable tools for understanding system behavior

[12, 16, 17, 18]. However, these notions often fall short in capturing the intricate dynamics of

complex systems, particularly those that exhibit both continuous and discrete behaviors or pos-

sess memory and hereditary properties. This limitation has spurred the development of more

refined stability concepts, such as strict stability and strict uniform stability, which offer a deeper

and more comprehensive understanding of system dynamics.

In this work, we delve into the strict stability of Caputo fractional dynamic equations on

time scales, a framework that unifies the analysis of continuous and discrete systems. The Ca-

puto fractional derivative, known for its ability to model systems with memory and hereditary

effects, provides a more accurate representation of real-world dynamics compared to integer-

order derivatives [6, 8]. This is particularly advantageous in systems where past states signif-

icantly influence present and future behavior, a feature that integer-order models often fail to

capture. By leveraging the fractional derivative, we aim to provide a more robust and versatile

framework for analyzing dynamic systems [19, 20, 22].

Our focus is on (m,m0)-strict uniform stability, a concept that offers significant advantages

over other stability notions. While Lyapunov stability and asymptotic stability provide useful

insights, they often lack the granularity needed to fully capture the rate of convergence or the

robustness of the system under perturbations. Strict uniform stability addresses these limitations

by providing a more stringent and comprehensive framework for analyzing system behavior.

This is particularly important in applications where predictability and robustness are critical,

such as in control systems, where even small deviations from equilibrium can have significant

consequences.
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To achieve our objective, we employ vector Lyapunov functions (LFs), a powerful tool that

allows for a more granular and flexible analysis of system stability [7, 9, 10, 11, 12]. Un-

like scalar LFs, which provide a general view of stability, vector LFs enable component-wise

analysis, offering a more detailed understanding of multi-dimensional dynamics. This is espe-

cially beneficial in high-dimensional systems, where the interactions between variables can be

complex and interdependent. By using vector LFs, we can capture the individual behaviors of

system components and their contributions to overall stability, providing a more comprehensive

understanding of system dynamics. The use of vector LFs in our examination of (m,m0)−strict

uniform stability offers several advantages including allowing us to analyze the stability of each

component of the system independently, providing insights into how individual variables con-

tribute to the overall system behavior. This is particularly useful in systems with interdependent

variables, where the stability of one component can significantly influence the stability of oth-

ers.

One of the key motivations for this work is the need to address the limitations of existing

stability concepts in the literature. While previous studies have explored various forms of sta-

bility, they often rely on comparison theorems or focus on uniform stability, which may not fully

capture the intricacies of system behavior. By focusing exclusively on (m,m0)−strict uniform

stability and employing vector LFs, we aim to provide a more refined and rigorous framework

for analyzing dynamic systems. This approach not only enhances our understanding of system

behavior but also provides a foundation for future research in areas such as variational Lyapunov

stability and other related fields.

Consider the Caputo fractional dynamic system of order α with 0 < α < 1,

(1)

C
∆

α
υ = Ξ(t,υ), t ∈ T,

υ(t0) = υ0, t0 ≥ 0,

where Ξ ∈ Crd[T×RN ,RN ], Ξ(t,0) ≡ 0 and C∆αυ is the Caputo Fr∆D of υ ∈ RN of order α

with respect to t ∈ T. Let υ(t) = υ(t, t0,υ0) ∈ Cα
rd[T,R

N ] (the fractional derivative of order

alpha of υ(t) exist and it is rd-continuous) be a solution of (1) and assume the solution exists

and is unique (results on existence and uniqueness of (1) are contained in [4, 14, 15, 19, 22, 23,

24, 25, 34], this work aims to investigate the (m,m0)-strict uniform stability of the system (1).
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The study begins in the next section by outlining foundational definitions. Then, in Section 3,

we develop the (m,m0)-strict uniform stability criteria for the Caputo fractional dynamic system

(1). Next, in Section 4, we provide a comprehensive example demonstrating the significance

and practical relevance of our results and finally in Section 6, we give a concluding remark.

2. PRELIMINARIES, DEFINITIONS, AND NOTATIONS

Definition 2.1 ([2]). For t ∈ T, the forward jump operator σ : T→ T is defined as

σ(t) = inf{s ∈ T : s > t},

while the backward jump operator ρ : T→ T is defined as

ρ(t) = sup{s ∈ T : s < t}.

(i) if σ(t)> t, t is right scattered,

(ii) if ρ(t)< t, t is left scattered,

(iii) if t < maxT and σ(t) = t, then t is called right dense,

(iv) if t > minT and ρ(t) = t, then t is called left dense.

Definition 2.2 ([2]). The graininess function µ : T→ [0,∞) for t ∈ T is defined as

µ(t) = σ(t)− t.

Definition 2.3 ([2]). A function ψ : T→ R is called right-dense continuous if it is continuous

at all right-dense points of T, and if it has finite left-sided limits at left-dense points of T. The

set of all such right-dense continuous functions is denoted by

Crd =Crd(T).

Definition 2.4 ([2]). A function φ : [0,r]→ [0,∞) is of class K if it is continuous, and strictly

increasing on [0,r] with φ(0) = 0.

Definition 2.5. [8] We define the Caputo Fr∆DiD of the Lyapunov function,

L (t,υ) ∈Crd[T×RN ,RN
+] (which is locally Lipschitz with respect to its second argument and
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satisfies L (t,0)≡ 0) along the trajectories of solutions of the system (1) as:

C
∆

α
+L (t,υ) = limsup

µ→0+

1
µα

[ [ t−t0
µ

]
∑
r=0

(−1)r (αCr)
[
L (σ(t)− rµ,υ(σ(t))−µ

α
Ξ(t,υ(t))

−L (t0,υ0)
]]
,(2)

and can be expanded as

C
∆

α
+L (t,υ) = limsup

µ→0+

1
µα

{
L (σ(t),υ(σ(t))−L (t0,υ0)(3)

−

[
t−t0

µ

]
∑
r=1

(−1)r+1 (αCr)
[
L (σ(t)− rµ,υ(σ(t))−µ

α
Ξ(t,υ(t))−L (t0,υ0)

]}
,

where t ∈ T, υ ,υ0 ∈ RN , µ = σ(t)− t, and υ(σ(t))−µαΞ(t,υ) ∈ RN .

Applying (9) to (3), we obtain

C
∆

α
+L (t,υ) = limsup

µ→0+

1
µα

{
L (σ(t),υ(σ(t))(4)

+

[
t−t0

µ

]
∑
r=1

(−1)r (αCr) [L (σ(t)− rµ,υ(σ(t))−µ
α

Ξ(t,υ(t))]
}

−L (t0,υ0)(t− t0)−α

Γ(1−α)
.(5)

If T is discrete and L (t,υ(t)) is continuous at t, the Caputo Fr∆DiD of the LF in discrete times

is given by:

C
∆

α
+L (t,υ) =

1
µα

[ [ t−t0
µ

]
∑
r=0

(−1)r (αCr)(L (σ(t),υ(σ(t)))−L (t0,υ0))

]
(6)

and if T is continuous, i.e., T= R, and L (t,υ(t)) is continuous at t, we have that

C
∆

α
+L (t,υ) = limsup

d→0+

1
dα

{
L (t,υ(t))−L (t0,υ0)(7)

−

[
t−t0

d

]
∑
r=1

(−1)r+1 (αCr)
[
L (t− rd,υ(t))−dα

Ξ(t,υ(t))−L (t0,υ0)
]}

,

for d > 0.
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From [13], we state the following:

(8) lim
µ→0+

[
(t−t0)

µ
]

∑
r=1

(−1)rαCr =−1,

and

(9) CTDα
+ψ

∆(t) = limsup
µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr =
RLT Dα(1) =

(t− t0)−α

Γ(1−α)
, t ≥ t0.

Definition 2.6. The zero solution of (1) is said to be (m0,m)−strictly uniformly stable if given

ε1 > 0 and t0 ∈ T, there exists a δ1 = δ1(ε1) > 0 such that for any υ0 ∈ RN , the inequality

|m(t0,υ(t0))| < δ1 implies |m(tυ(t)‖ < ε1, t ≥ t0 and given δ2 ∈ (0,δ1], we can also find ε2 ∈

(0,δ2) such that δ2 < |m(t0,x(t0))| implies ε2 < |m(t,υ(t))|, t ≥ t0.

3. MAIN RESULTS

In this section, we will obtain sufficient conditions for (m0,m)−strict uniform stability of the

fractional dynamic system (1) for α = (0,1). Also, inequalities between vectors are taken to be

component-wise inequalities.

Theorem 3.1 ((m0,m)−Strict Uniform Stability). Let L (t,υ(t))∈Crd[T×RN ,RN
+] and m∈Λ

be such that

(i) L is locally Lipschitzian in υ with L (t,0)≡ 0;

(ii) for positive numbers ψ,ζ were ψ ∈ (0,ζ ), we have that when |m(t,υ(t))≥ ψ and

(10) b1(|m(t,υ(t))|)≤L0ψ
(t,υ)≤ a1(|m(t,υ(t))|),

then the inequality

(11) C
∆

α
+L0ψ(t,υ(t))≤ 0,

holds, a1,b1 ∈K , L0(t,υ) = ∑
N
i=1 Li(t,υ(t));

(iii) for any points t, t0 ≥ 0 and positive numbers φ ,ζ , were φ ∈ (0,ζ ), we have that when

|h(t,υ(t))| ≤ φ and

(12) b2(|m(t,υ(t))|)≤L0φ (t,υ)≤ a2(|m(t,υ(t))|),
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the inequality

(13) C
∆

α
+L0φ (t,υ(t))≥ 0,

holds, were a2,b2 ∈K and υ ∈ RN .

Then the zero solution of the FrDE (1) is (m0,m)−strictly uniformly stable.

Proof. We shall make this proof in two phases.

Phase 1

Let ε ∈ (0,ζ ) and t0 ∈ T be given. Set δ1 = δ1(ε1)> 0 such that

(14) a1(δ1)< b1(ε1),

then we assert that,

(15) |m0(t0,υ(t0))|< δ1 =⇒ |m(t,υ(t))|< ε1 for t ≥ t0

If the assertion is false, then there would exist some time t1 > t0 were for any solution υ(t),

h0(t0,υ0)< δ1 would imply

(16) |m(t,υ(t1))|= ε1

and

|m(t,υ(t))|< ε1

for t ∈ [t0, t1).

Combining (10), (14), and (16) at t = t1, we obtain

b1(ε1) = b1(|m(t1,υ(t1))|)≤L0ψ
(t1,υ)≤ a1(|m(t1,υ(t1))|)≤ a1(δ1)< b1(ε),

which is clearly a contradiction, implying that (15) is true.

Phase 2

Let ε2 > 0 be given, we can pick δ2 ∈ (0,δ1] and if we set |m0(t0,υ(t0))|< δ2 < δ1 such that

(17) a2(ε2)< b2(δ2),

we could now make the assertion that

(18) δ2 < |m0(t0,υ0(t0))|< δ1 =⇒ ε2 < |m(t,υ(t))|< ε1, t = t0.
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If this assertion is false, then by the validity of (15), there exist a solution υ(t) = υ(t; t0,x0) of

(1) and a time t1 > t2 > t0 such that δ2 < |m0(t0,υ(t0))|< δ1 implies

(19) |m(t1,υ(t1))|= ε2, and m(t,υ(t))≤ δ2, for t ∈ [t2, t1].

Set φ = δ2, then from (12), we obtain

a2(ε2) = a2(|m(t1,υ(t1))|)≥L0φ (t1,υ(t1))≥L0φ (t2,υ(t2))≥ b2(|m(t2,υ(t2))|),

contradicting (17), implying (18) holds. Phase 1 and Phase 2 satisfies Definition 2.6 so that we

conclude that the zero solution of (1) is (m0,m)−strictly uniformly stable. �

4. APPLICATION

Consider the Caputo fractional dynamic system

C
∆

α
υ1(t) = 3υ1−6

υ2
3

υ1

C
∆

α
υ2(t) = −2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

C
∆

α
υ3(t) = −

υ2
1 +υ2

υ3
+5υ3,

(20)

for t ≥ t0, with initial conditions

υ1(t0) = υ10, υ2(t0) = υ20, and υ3(t0) = υ30,

where υ = (υ1,υ2,υ3), and Ξ = (Ξ1,Ξ2,Ξ3).

Consider a vector V = (L1,L2,L3)
T , where L1 = υ2

1 , L2 = υ2
2 and L3 = υ2

3 , for t ∈ T

and (υ1,υ2,υ3) ∈ R3. Then condition 2(ii) of Theorem 3.1 is satisfied, for φ = 1
2r, and θ = r2

where φ ,θ ∈K , so that the associated norm ‖υ‖=
√

υ2
1 +υ2

2 +υ2
3 .

and

L0(υ1,υ2,υ3) =
2

∑
i=1

Li(υ1,υ2,υ3) = υ
2
1 +υ

2
2 +υ

2
3 ,

then φ(‖ψ‖)≤L (ψ1,ψ2,ψ3)≤ θ(‖υ‖). From (3), we compute the Caputo Fr∆DiD for L1 =

υ2
1 as follows:

C
∆

α
+L1
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= limsup
µ→0+

1
µα

{[
(υ1(σ(t)))2]− [(υ10)

2]

+

[
t−t0

µ

]
∑
r=1

(−1)r (αCr) [(υ1(σ(t))−µ
α

Ξ1(t,υ))2]− [((υ10)
2]

}
= limsup

µ→0+

1
µα

{[
(υ1(σ(t)))2]− [(υ10)

2]

+

[
t−t0

µ

]
∑
r=1

(−1)r (αCr) [(υ1(σ(t)))2−2υ1(σ(t))µα
Ξ1(t,υ1,υ2,υ3)

+µ
2α(Ξ1(t,υ1,υ2,υ3))

2]−
[
(υ10)

2]}

= − limsup
µ→0+

1
µα


[

t−t0
µ

]
∑
r=0

(−1)r (αCr)
[
(υ10)

2]


+ limsup
µ→0+

1
µα


[

t−t0
µ

]
∑
r=0

(−1)r (αCr)
[
(υ1(σ(t)))2]


− limsup

µ→0+

{ [ t−t0
µ

]
∑
r=1

(−1)r (αCr) [2υ1(σ(t))µα
Ξ1(t,υ1,υ2,υ3)]

}
.

Applying (8) and (9) we obtain

C
∆

α
+L1 ≤

(t− t0)−α

Γ(1−α)

[
(υ1(σ(t)))2]− [2υ1(σ(t))Ξ1(t,υ1,υ2,υ3)].

As t→ ∞, (t−t0)−α

Γ(1−α)

[
(υ1(σ(t)))2]→ 0, which is

C
∆

α
+L1 ≤ −2[υ1(σ(t))Ξ1(t,υ1,υ2,υ3)].

applying υ(σ(t))≤ µC∆αυ(t)+υ(t)

C
∆

α
+L1 = −2

[
µ(t)Ξ2

1(t,υ1,υ2,υ3)+υ1(t)Ξ1(t,υ1,υ2,υ3)

]

= −2
[

µ(t)
(

3υ1−6
υ2

3
υ1

)2

+υ1

(
3υ1−6

υ2
3

υ1

)]

= −2µ(t)

[(
3υ1−6

υ2
3

υ1

)2]
−2υ1

[
3υ1−6

υ2
3

υ1

]
.(21)
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If T= R we have that µ = 0, so that (21) becomes:

C
∆

α
+L1(υ1,υ2,υ3) = −2υ1

[
3υ1−6

υ2
3

υ1

]
= −6υ

2
1 +0υ

2
2 +12υ

2
3

= (−6 0 12) · (L1 L2 L3)
T .(22)

If T= N0, we have that µ = 1, so that (21) becomes:

C
∆

α
+L1(υ1,υ2,υ3) = −2

[(
3υ1−6

υ2
3

υ1

)2]
−2υ1

[
3υ1−

6υ2
3

υ1

]

≤ −2υ1

[
3υ1−6

υ2
3

υ1

]
,

leading to the same conclusion as (22). Clearly, this also works for any other discrete time.

Similarly, compute the Caputo Fr∆DiD for L2(υ) = υ2
2 as follows:

C
∆

α
+L2(υ)

= limsup
µ→0+

1
µα

{[
(υ2(σ(t)))2]− [(υ20)

2]

+

[
t−t0

µ

]
∑
r=1

(−1)r (αCr) [(υ2(σ(t))−µ
α

Ξ2(t,υ))2]− [((υ20)
2]

}
= limsup

µ→0+

1
µα

{[
(υ2(σ(t)))2]− [(υ20)

2]

+

[
t−t0

µ

]
∑
r=1

(−1)r (αCr) [(υ2(σ(t)))2−2υ2(σ(t))µα
Ξ2(t,υ1,υ2,υ3)

+µ
2α(Ξ2(t,υ1,υ2,υ3))

2]−
[
(υ20)

2]}

= − limsup
µ→0+

1
µα


[

t−t0
µ

]
∑
r=0

(−1)r (αCr)
[
(υ20)

2]


+ limsup
µ→0+

1
µα


[

t−t0
µ

]
∑
r=0

(−1)r (αCr)
[
(υ2(σ(t)))2]
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− limsup
µ→0+

{ [ t−t0
µ

]
∑
r=1

(−1)r (αCr) [2υ2(σ(t))µα
Ξ2(t,υ1,υ2,υ3)]

}
.

Applying (8) and (9) we obtain

C
∆

α
+L2(υ) ≤

(t− t0)−α

Γ(1−α)

[
(υ2(σ(t)))2]− [2υ2(σ(t))Ξ2(t,υ1,υ2,υ3)].

As t→ ∞, (t−t0)−α

Γ(1−α)

[
(υ2(σ(t)))2]→ 0, which is

C
∆

α
+L2(υ) ≤ −2[υ2(σ(t))Ξ2(t,υ1,υ2,υ3)],

applying υ(σ(t))≤ µC∆αυ(t)+υ(t)

C
∆

α
+L2(υ) = −2

[
µ(t)Ξ2

2(t,υ1,υ2,υ3)+υ2(t)Ξ2(t,υ1,υ2,υ3)

]

= −2
[

µ(t)
(
−2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

)2

+υ2

(
−2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

)]

= −2µ(t)

[(
−2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

)2]
−2υ1

[
−2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

]
.(23)

If T= R we have that µ = 0, so that (23) becomes;

C
∆

α
+L2(υ1,υ2) = −2υ2

[
−2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

]
= 4υ

2
1 −8υ

2
2 +10υ

2
3

= (4 −8 10) · (L1 L2 L3)
T .(24)

If T= N0, we have that µ = 1, so that (21) becomes:

C
∆

α
+L2(υ1,υ2) = −2

[(
−2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

)2]
−2υ1

[
−2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

]

≤ −2υ1

[
−2

υ2
1+

υ2
+4υ2−5

υ2
3

υ2

]
,

this also leads to the same conclusion as (24). Clearly, this also works for any other discrete

time.

Similarly, compute the Caputo Fr∆DiD for V3(υ1,υ2,υ3) = υ2
3 as follows:

C
∆

α
+L3
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= limsup
µ→0+

1
µα

{[
(υ3(σ(t)))2]− [(υ30)

2]

+

[
t−t0

µ

]
∑
r=1

(−1)r (αCr) [(υ3(σ(t))−µ
α

Ξ3(t,υ))2]− [((υ30)
2]

}
= limsup

µ→0+

1
µα

{[
(υ3(σ(t)))2]− [(υ30)

2]

+

[
t−t0

µ

]
∑
r=1

(−1)r (αCr) [(υ3(σ(t)))2−2υ3(σ(t))µα
Ξ3(t,υ1,υ2,υ3)

+µ
2α(Ξ3(t,υ1,υ2,υ3))

2]−
[
(υ30)

2]}

= − limsup
µ→0+

1
µα


[

t−t0
µ

]
∑
r=0

(−1)r (αCr)
[
(υ30)

2]


+ limsup
µ→0+

1
µα


[

t−t0
µ

]
∑
r=0

(−1)r (αCr)
[
(υ3(σ(t)))2]


− limsup

µ→0+

{ [ t−t0
µ

]
∑
r=1

(−1)r (αCr) [2υ3(σ(t))µα
Ξ3(t,υ1,υ2,υ3)]

}
.

Applying (8) and (9) we obtain

C
∆

α
+L3 ≤

(t− t0)−α

Γ(1−α)

[
(υ3(σ(t)))2]− [2υ1(σ(t))Ξ3(t,υ1,υ2,υ3)].

As t→ ∞, (t−t0)−α

Γ(1−α)

[
(υ3(σ(t)))2]→ 0, then

C
∆

α
+L3 ≤ −2[υ3(σ(t))Ξ3(t,υ1,υ2,υ3)].

applying υ(σ(t))≤ µC∆αυ(t)+υ(t)

C
∆

α
+L3 = −2

[
µ(t)Ξ2

3(t,υ3,υ2,υ3)+υ3(t)Ξ3(t,υ1,υ2,υ3)

]

= −2
[

µ(t)
(
−

υ2
1 +υ2

υ3
+5υ3

)2

+υ3

(
−

υ2
1 +υ2

υ3
+5υ3

)]

= −2µ(t)

[(
−

υ2
1 +υ2

υ3
+5υ3

)2]
−2υ3

[
−

υ2
1 +υ2

υ3
+5υ3

]
.(25)
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If T= R we have that µ = 0, so that (25) becomes;

C
∆

α
+L3(υ1,υ2,υ3) = −2υ3

[
−

υ2
1 +υ2

υ3
+5υ3

]
= 2υ

2
1 +2υ2−10υ

2
3

= (2 2 −10) · (L1 L2 L3)
T .(26)

If T= N0, we have that µ = 1, so that (21) becomes:

C
∆

α
+L3(υ1,υ2,υ3) = −2

[(
−

υ2
1 +υ2

υ3
+5υ3

)2]
−2υ1

[
−

υ2
1 +υ2

υ3
+5υ3

]

≤ −2υ1

[
−

υ2
1 +υ2

υ3
+5υ3

]
,

this also leads to the same conclusion as (26). Clearly, this also works for any other discrete

time.

Combining (22), (24) and (26), we have that

(27) C
∆

α
+L ≤


−6 0 12

4 −8 10

2 2 −10




L1

L2

L3



If A =


−6 0 12

4 −8 10

2 2 −10

.

The vectorial inequality (27) and all other conditions of Theorem 3.1 are satisfied if A has

eigen values with negative real parts, since the eigen values of A are λ1 = −14.248, λ2 =

−9.20293, λ3 = −0.549103, then (20) is uniformly stable. Therefore, we conclude that the

zero solution υ0 of the system (20) is (m0,m)−strictly uniformly stable..

5. CONCLUSION

In this work, we have explored the (m0,m)−strict uniform stability of Caputo fractional dy-

namic systems on time scales, leveraging the unique properties of the Caputo fractional de-

rivative to model systems with memory and hereditary effects. By focusing on (m0,m)−strict
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uniform stability, we have provided a more refined and rigorous framework for analyzing dy-

namic systems, addressing the limitations of traditional stability concepts such as Lyapunov

stability and asymptotic stability. The use of vector LFs has been pivotal in our analysis, al-

lowing for a component-wise examination of system stability. This approach has enabled us to

capture the individual behaviors of system components and their contributions to overall stabil-

ity, offering a more detailed and comprehensive understanding of multi-dimensional dynamics.

The practical relevance of our findings has been demonstrated through a comprehensive exam-

ple, highlighting the applicability of our results in real-world scenarios. The insights gained

from this work not only enhance our understanding of system behavior but also pave the way

for future research in areas such as variational Lyapunov stability and other related fields. As

the demand for more accurate and reliable models of dynamic systems continues to grow, the

concepts and methodologies developed in this work will serve as valuable tools for researchers

and practitioners alike.
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