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1. INTRODUCTION

Banach fixed point theorem provides a constructive method to determine the existence

and uniqueness of fixed point of certain self maps of metric spaces. It can be used to prove

existence and uniqueness of solutions to integral and differential equations. The fixed point

theory, initially stated in the metric space setting, has been extended in more general spaces

even though most of them are metric like. Among of these general spaces, we will prove our

results in the G-metric space, which has been discussed and explored by many authors.

Definition 1.1. [9]. Let X 6= φ be a set and G : X3→ [0,∞) which satisfy the following proper-

ties:
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(G1) G(r,s, t) = 0 if r = s = t whenever r,s, t ∈ X ;

(G2) G(r,r,s)> 0 whenever r,s ∈ Xwith r 6= s;

(G3) G(r,r,s)≤ G(r,s, t) whenever r,s, t ∈ Xwith t 6= s;

(G4) G(r,s, t) = G(r, t,s) = G(s, t,r) = ...,

(G5) G(r,s, t)≤ G(r,a,a)+G(a,s, t) where r,s, t,a ∈ X (rectangle inequality).

Then (X ,G) is known as a G-metric space.

Proposition 1.2. [9]. In a G-metric space if

G(r,s, t) = 0,

then r = s = t where r,s, t ∈ X .

Definition 1.3. [9]. In a G-metric space, a sequence {rn} converges to a point r ∈ X if

lim
n,m→∞

G(r,rn,rm) = 0,

that is, for any ε > 0, there exists N ∈ N such that

G(r,rn,rm)< ε f or all n,m≥ N.

We call r the limit of the sequence and write rn→ r or lim
n→∞

rn = r.

Proposition 1.4. [9]. Let (X ,G) be a G-metric space. A sequence {rn}⊆X, has the following

equivalent properties:

(i) lim
n→∞

rn = r.

(ii) lim
n,m→∞

G(r,rn,rm) = 0.

(iii) lim
n→∞

G(r,rn,rn) = 0.

(iv) lim
n→∞

G(rn,r,r) = 0.

Definition 1.5. [9]. In a G-metric space, a sequence {rn} is called a G-Cauchy if for any ε > 0,

there is natural number n1 with

G(rn,rm,rl)< ε f or all n,m, l ≥ n1.

Proposition 1.6. [9]. A sequence {rn} in a G-metric space is G-Cauchy if and only if,

G(rn,rm,rm)< ε where ε > 0 and for all m,n≥ n1.
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Definition 1.7. [9]. A G-metric space is said to be symmetric if

G(r,s,s) = G(r,r,s), f or all r,s ∈ X .

Proposition 1.8. [9]. Every G-metric space (X ,G) will define a metric space (X ,dG) by

dG(r,s) = G(r,s,s)+G(s,r,r), ∀ r,s ∈ X .

Note that if (X ,G) is a symmetric G-metric space, then

dG(r,s) = 2G(r,s,s), ∀ r,s ∈ X .(1)

Definition 1.9. [9]. In a G-metric space, if every G-Cauchy sequence is G-convergent then it is

called a complete metric space. Further a G-metric space is continuous in all its three variables.

Proposition 1.10. [9]. Let (X ,G) and (X
′
,G
′
) be G-metric spaces, then a function f : X→X ′

is G-continuous at a point r ∈ X if and only if it is G-sequentially continuous at r; that is,

whenever {rn} is G-convergent to r, { f (rn)} is G-convergent to f(r).

Definition 1.11. [5] A pair ( f ,g) of self mappings of metric space (X ,d) is said to be weakly

compatible if the mappings commute at all of their coincidence points, that is, f r = gr for some

r ∈ X implies f gr = g f r.

Definition 1.12. [1] A point r ∈ X is called a coincidence point of two self mappings f and g if

w = f r = gr and the point w is called a point of coincidence of f and g.

Proposition 1.13. [1] If two weakly compatible self mappings f and g have a unique point

of coincidence, then that point is the unique common fixed point of f and g.

2. MAIN RESULTS

Theorem 2.1. Let (X ,G) be a complete G-metric space and f ,g : X → X be mappings satis-

fying one of the following conditions:

G( f r, f s, f t)≤ a1G(gr,gs,gt)+a2G(gr, f r, f r)+a3G(gs, f s, f s)+a4G(gt, f t, f t)(2)

or

G( f r, f s, f t)≤ a1G(gr,gs,gt)+a2G(gr,gr, f r)+a3G(gs,gs, f s)+a4G(gt,gt, f t)(3)
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for all r,s, t ∈ X where 0≤ a1 +a2 +a3 +a4 < 1.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f and

g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and f is

G-continuous at p.

Proof. Suppose that f and g satisfy condition (2), then for all r,s ∈ X , we have

G( f r, f s, f s)≤ a1G(gr,gs,gs)+a2G(gr, f r, f r)+(a3 +a4)G(gs, f s, f s),

G( f s, f r, f r)≤ a1G(gs,gr,gr)+a2G(gs, f s, f s)+(a3 +a4)G(gr, f r, f r).

Suppose that (X ,G) is symmetric, then by definition of metric (X ,dG) and (1), we get

dG( f r, f s)≤ a1dG(gr,gs)+
a3 +a4 +a2

2
dG(gr, f r)+

a3 +a4 +a2

2
dG(gs, f s), ∀ r,s ∈ X .

In this line, since 0 < a1+a2+a3+a4 < 1, then the existence and uniqueness of the fixed point

follows from well-known theorem in metric space (X ,dG) (see [2]).

Suppose (X ,G) is not symmetric. Let r0 be an arbitrary point in X. Since f (X) ⊂ g(X) ,

there is r1 ∈ X such that gr1 = f r0. Continuing the same process, we can construct a sequence

{grn} such that grn+1 = f rn for all n ∈ N. If there is n ∈ N such that grn = grn+1, then f and g

have a point of coincidence. Let grn 6= grn+1 for all n ∈ N. By (2), we have

G(grn,grn+1,grn+1) = G( f rn−1, f rn, f rn)

≤ a1G(grn−1,grn,grn)+a2G(grn−1,grn,grn)

+(a3 +a4)G(grn,grn+1,grn+1),

then

G(grn,grn+1,grn+1)≤
a1 +a2

1− (a3 +a4)
G(grn−1,grn,grn).

Let q = (a1 +a2)/(1− (a3 +a4)), then 0≤ q < 1 since 0≤ a1 +a2 +a3 +a4 < 1. So,

G(grn,grn+1,grn+1)≤ q G(grn−1,grn,grn).
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Continuing in the same argument, we will get

G(grn,grn+1,grn+1)≤ qn G(gr0,gr1,gr1).

Also for all natural numbers n,m with n < m, the rectangle inequality gives

G(grn,grm,grm)≤ G(grn,grn+1,grn+1)+G(grn+1,grn+2,grn+2)

+ ...+G(grm−1,grm,grm)

≤ (qn +qn+1 + ...+qm−1])G(gr0,gr1,gr1)

≤ qn

1−q
G(gr0,gr1,gr1).

Thus lim
n,m→∞

G(grn,grm,grm) = 0, proving {grn} as G-Cauchy sequence. Since the space g(X)

is complete, there exists q ∈ g(X) and there exists p ∈ X such that gp = q. We will show that

gp = f p. Let gp 6= f p. By (2), we have

G(grn, f p, f p)≤ a1G(grn−1,gp,gp)+a2G(grn−1,grn,grn)+(a3 +a4)G(gp, f p, f p),

taking the limit as n→ ∞, and using the fact that the function G is continuous, then

G(gp, f p, f p)≤ (a3 +a4)G(gp, f p, f p).

This contradiction implies that gp = f p.

If p
′
is another coincidence point of f and g, then

G(gp,gp
′
,gp

′
)≤ a1G(gp,gp

′
,gp

′
)+a2G(gp, f p, f p)+(a3 +a4)G(gp

′
, f p

′
, f p

′
)

= a1G(gp,gp
′
,gp

′
)

which is a contradiction, so gp = gp
′
. Thus f and g have one and only one coincident point.

The uniqueness of fixed point follows by Proposition 1.13. Let {gsn} be a sequence in X with

lim
n→∞

(gsn) = gp. Now

G(gp, f sn, f sn)≤ a1G(gp,gsn,gsn)+a2G(gp, f p, f p)+(a3 +a4)G(gsn, f sn, f sn)

= a1G(gp,gsn,gsn)+(a3 +a4)G(gsn, f sn, f sn),

and since

G(gsn, f sn, f sn)≤ G(gsn,gp,gp)+G(gp, f sn, f sn),
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we have that

G(gp, f sn, f sn)≤
a1

1− (a3 +a4)
G(gp,gsn,gsn)+

a3 +a4

1− (a3 +a4)
G(gsn,gp,gp).

Taking the limit as n→ ∞, from which we see that G(gp, f sn, f sn)→ 0 and so, by Proposition

1.10, f (sn)→ gp = f p, proving the continuity of f at p.

The similar arguments are applied if f and g fulfil (3). Now the only thing to be proved is {grn}

is a G-cauchy sequence. We have

G(grn,grn,grn+1)≤ a1 G(grn−1,grn−1,grn)+(a2 +a3) G(grn−1,grn−1,grn)

+a4 G(grn,grn,grn+1),

then

G(grn,grn,grn+1)≤
a1 +a2 +a3

1−a4
G(grn,grn,grn+1).

Let q = a1+a2+a3
1−a4

, then 0≤ q < 1 since 0≤ a1 +a2 +a3 +a4 < 1.

Continuing in the same way, we find that

G(grn,grn,grn+1)≤ qn G(gr0,gr0,gr1).

Then for all n,m ∈ N; n < m, we have by repeated use of the rectangle inequality

G(grn,grn,grm)≤ (qn/1−q) G(gr0,gr0,gr1).

�

Example 2.2. Let X = [0,2], G(r,s, t) = max{|r− s|, |s− t|, ||r− t|}.

Define f ,g : X → X by

f r = 1 and gr = 2− r,

The functions f and g satisfy the condition (2) in Theorem 2.1. Indeed, we have

G( f r, f s, f t) = 0,

Further, f (X)⊂ g(X) and g(X) is a complete subspace of (X ,G), f and g are weakly compatible.

Thus all the axioms in Theorem 2.1 are fulfilled. This gives f and g have a unique common

fixed point which is r = 1. The similar arguments if condition (3) is satisfied.
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Corollary 2.3. [7, Theorem 2.1] Let (X ,G) be a complete G-metric space and f : X → X be

a mapping satisfying one of the following conditions:

G( f r, f s, f t)≤ a1G(r,s, t)+a2G(r, f r, f r)+a3G(s, f s, f s)+a4G(t, f t, f t)

or

G( f r, f s, f t)≤ a1G(r,s, t)+a2G(r,r, f r)+a3G(s,s, f s)+a4G(t, t, f t)

for all r,s, t ∈ X where 0≤ a1 +a2 +a3 +a4 < 1, then f has a unique fixed point (say p, i.e., fp

= p), and f is G-continuous at u.

Proof. It follows by taking g = IX (Identity mapping) in Theorem 2.1. �

Corollary 2.4. [13, Corollary 3.4] Let X be a complete G-metric space. Suppose there is

k ∈ [0,1) such that the map f : X → X satisfies

G( f r, f s, f t)≤ k G(r,s, t),

for all r,s, t ∈ X . Then f has a unique fixed point (say p) and f is G-continuous at p.

Proof. From Theorem 2.1, taking g = IX and a2 = a3 = a4 = 0. �

Corollary 2.5. [10, Theorem 2.3] Let (X ,G) be a complete G-metric space and f : X → X

be a mapping satisfying, for all r,s, t ∈ X

G( f r, f s, f t)≤ a1G(r, f r, f r)+a2G(s, f s, f s)+a3G(t, f t, f t)

where 0 < a1 +a2 +a3 < 1, then f has a fixed point, say p, and f is G-continuous at p.

Proof. If we assume g = IX and a1 = 0, in Theorem 2.1 we get the result. �

Corollary 2.6. Let (X ,G) be a complete G-metric space and let f ,g : X → X be mappings

satisfying one of the following conditions:

G( f m(r), f m(s), f m(t))≤ a1G(gr,gs,gs)+a2G(gr, f m(r), f m(r))+a3G(gs, f m(s), f m(s))

+a4G(gt, f m(t), f m(t))(4)
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or

G( f m(r), f m(s), f m(t))≤ a1G(gr,gs,gs)+a2G(gr,gr, f m(r))+a3G(gs,gs, f m(s))

+a4G(gt,gt, f m(t))(5)

for all r,s, t ∈ X , where 0≤ a1 +a2 +a3 +a4 < 1. Then f has a unique fixed point (say p), and

f m is G-continuous at p.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f and

g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and f is

G-continuous at p.

Proof. From Theorem 2.1, we see that f m has a unique fixed point (say p), that is, f m(p) = p.

But f (p) = f ( f m(p)) = f m+1(p) = f m( f (p)), so f (p) is another fixed point for f m and by

uniqueness f p = p. �

Corollary 2.7. [7, Corollary 2.2] Let (X ,G) be a complete G-metric space and let f : X→ X

be a mapping satisfying one of the following conditions:

G( f m(r), f m(s), f m(t))≤ a1G(r,s,s)+a2G(r, f m(r), f m(r))+a3G(s, f m(s), f m(s))

+a4G(t, f m(t), f m(t))(6)

or

G( f m(r), f m(s), f m(t))≤ a1G(r,s,s)+a2G(r,r, f m(r))+a3G(s,s, f m(s))

+a4G(t, t, f m(t))(7)

for all r,s, t ∈ X , where 0≤ a1 +a2 +a3 +a4 < 1. Then f has a unique fixed point (say p), and

f m is G-continuous at p.

Proof. It follows by taking g = IX in Corollary 2.6. �

Theorem 2.8. Let (X ,G) be a complete G-metric space and let f ,g : X → X be mappings

satisfying one of the following conditions:

G( f r, f s, f t)≤ k max{G(gr, f r, f r),G(gs, f s, f s),G(gt, f t, f t)}(8)
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or

G( f r, f s, f t)≤ k max{G(gr,gr, f r),G(gs,gs, f s),G(gt,gt, f t)}(9)

for all r,s, t ∈X , where 0≤ k < 1. Then f has a unique fixed point (say p), and f is G-continuous

at p.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f

and g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and f

is G-continuous at p.

Proof. Suppose that f and g satisfy condition (8), then for all r,s ∈ X ,

G( f r, f s, f s)≤ k max{G(gr, f r, f r),G(gs, f s, f s)}

G( f s, f r, f r)≤ k max{G(gs, f s, f s),G(gr, f r, f r)}

Suppose that (X ,G) is symmetric, then by definition of the metric (X ,dG) and (1) we get

dG( f r, f s)≤ k max{dG(gr, f r),dG(gs, f s)}, ∀ r,s ∈ X .

Since k < 1, then the existence and uniqueness of the fixed point follows from a theorem in

metric space (X ,dG) (see [2]).

Suppose (X ,G) is not symmetric.Let r0 be an arbitrary point in X. Since f (X)⊂ g(X) , there

is r1 ∈ X such that gr1 = f r0. Continuing the same process, we can construct a sequence {grn}

such that grn+1 = f rn for all n ∈N. If there is n ∈N such that grn = grn+1, then f and g have a

point of coincidence. Let grn 6= grn+1 for all n ∈ N. So for each n ∈ N. By (8), we have

G(grn,grn+1,grn+1)≤ k max{G(grn−1,grn,grn),G(grn,grn+1,grn+1)}

= k G(grn−1,grn,grn) since(0≤ k < 1).

Continuing in the same argument, we will find

G(grn,grn+1,grn+1)≤ kn G(gr0,gr1,gr1).
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For all n,m ∈ N; n < m, we have by rectangle inequality that

G(grn,grm,grm)≤ G(grn,grn+1,grn+1)+G(grn+1,grn+2,grn+2)

≤ (kn + kn+1 + ...+ km−1])G(gr0,gr1,gr1)

≤ kn

1− k
G(gr0,gr1,gr1).

Then, limG(grn,grm,grm) = 0, as n,m→ ∞, and thus {grn} is G-Cauchy sequence. Due to the

completeness of (X ,G), there exists q ∈ g(X) and p ∈ X such that gp = q. We will show that

gp = f p. Let gp 6= f p. By (8), we have

G(grn+1, f p, f p)≤ k max{G(grn+1,grn+2,grn+2),G(gp, f p, f p)}

and by taking the limit as n→ ∞, and using the fact that the function G is continuous, we get

that

G(gp, f p, f p)≤ k G(gp, f p, f p).

This contradiction implies that gp = f (p).

To prove uniqueness, suppose that p 6= p
′
such that f (p

′
) = gp

′
, then

G(gp,gp
′
,gp

′
)≤ k max{G(gp

′
,gp

′
,gp

′
),G(gp,gp,gp)}= 0

which implies that gp = f p
′
.

To show that f is G-continuous at p, let {gsn} ⊆ X be a sequence such that lim
n→∞

(gsn) = gp, then

G(gp, f sn, f sn)≤max{G(gp, f p, f p),G(gsn, f sn, f sn)}

= k G(gsn, f sn, f sn)

But,

G(gsn, f sn, f sn)≤ G(gsn,gp,gp)+G(gp, f sn, f sn),

then

G(gp, f sn, f sn)≤
k

1− k
G(gsn,gp,gp).

Taking the limit as n→∞, from which wee see that G(gp, f sn p, f sn)→ 0, and so by Proposition

1.10, f (sn)→ gp = f p. So, f is G-continuous at p.
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Corollary 2.9. [7, Theorem 2.3] Let (X ,G) be a complete G-metric space and let f : X → X

be a mapping satisfying one of the following conditions:

G( f r, f s, f t)≤ k max{G(r, f r, f r),G(s, f s, f s),G(t, f t, f t)}

or

G( f r, f s, f t)≤ k max{G(r,r, f r),G(s,s, f s),G(t, t, f t)}

for all r,s, t ∈X , where 0≤ k < 1. Then f has a unique fixed point (say p), and f is G-continuous

at p.

Proof. It follows by taking g = IX in Theorem 2.8. �

Corollary 2.10. Let (X ,G) be a G-complete G-metric space and let f ,g : X→X be mappings

satisfying one of the following conditions, for all m ∈ N

(10) G( f m(r), f m(s), f m(t)≤ k max


G(gr, f m(r), f m(r)),

G(gs, f m(s), f m(s)),

G(gt, f m(t), f m(t))


or

(11) G( f m(r), f m(s), f m(t)≤ k max


G(gr,gr, f m(r)),

G(gs,gs, f m(s)),

G(gt,gt, f m(t))


for all r,s, t ∈ X. Then f has a unique fixed point (say p), and f m is G-continuous at p.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f and

g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and f is

G-continuous at p.

Proof. We use the same argument as in Corollary in 2.6. �

Corollary 2.11. [7, Corollary 2.4] Let (X ,G) be a G-complete G-metric space and let

f : X → X be a mapping satisfying one of the following conditions, for all m ∈ N
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(12) G( f m(r), f m(s), f m(t)≤ k max


G(r, f m(r), f m(r)),

G(s, f m(s), f m(s)),

G(t, f m(t), f m(t))


or

(13) G( f m(r), f m(s), f m(t)≤ k max


G(r,r, f m(r)),

G(s,s, f m(s)),

G(t, t, f m(t))


for all r,s, t ∈ X. Then f has a unique fixed point (say p), and f m is G-continuous at p.

Proof. It follows by taking g = IX in Corollary 2.10. �

Theorem 2.12. Let (X ,G) be a complete G-metric space, and f ,g : X → X be mappings

satisfying one of the following conditions:

G( f r, f s, f s)≤ k max{G(gr, f s, f s),G(gs, f r, f r),G(gs, f s, f s)}(14)

or

G( f r, f s, f s)≤ k max{G(gr,gr, f s),G(gs,gs, f r),G(gs,gs, f s)}(15)

for all r,s, t ∈ X, where k ∈ [0,1). Then f has a unique fixed point (say p), and f is G-continuous

at p.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f

and g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and

f is G-continuous at p.

Proof. Suppose that f and g satisfy condition (14), then for all r,s ∈ X ,

G( f r, f s, f s)≤ k max{G(gr, f s, f s),G(gs, f r, f r),G(gs, f s, f s)},

G( f s, f s, f r)≤ k max{G(gr, f s, f s),G(gs, f r, f r),G(gr, f r, f r)}.
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Suppose that (X ,G) is symmetric, then by definition of the metric (X ,dG) and (1), we have

dG( f r, f s)≤ k
2

max


dG(gr, f s),

dG(gs, f r),

dG(gs, f s)

+
k
2

max


dG(gr, f s),

dG(gs, f r),

dG(gr, f r)


≤ k max{dG(gr, f s),dG(gs, f r),dG(gs, f s)}, ∀ r,s ∈ X .

Since 0≤ k < 1, then the existence and uniqueness of the fixed point follows from a theorem in

metric space (X ,dG) (see [2]).

Suppose (X ,G) is not symmetric. Let r0 ∈ X be arbitrary point, and define the sequence

{grn} by grn = f n(r0), then by (14) and using k < 1, we deduce that

G(grn,grn+1,grn+1)≤ k max{G(grn−1,grn+1,grn+1),G(grn,grn+1,grn+1)}

= k G(grn−1,grn+1,grn+1)

So,

G(grn,grn+1,grn+1)≤ k G(grn−1,grn+1,grn+1),

and using

G(grn−1,grn+1,grn+1)≤ k max{G(grn−2,grn+1,grn+1),G(grn,grn−1,grn−1),

G(grn,grn+1,grn+1)},

then,

G(grn,grn+1,grn+1)≤ k2 max{G(grn−2,grn+1,grn+1),G(grn,grn−1,grn−1)}.

Continuing in this procedure, we will have

G(grn,grn+1,grn+1)≤ kn
Γn,

where Γn = max{G(gri,gr j,gr j); for all i, j ∈ {0,1, ...n+1}}.

For n,m ∈ N;n < m, let Γ = max{Γi; for all i = n, ...,m−1}.

Then, for all m,m ∈ N; n < m, we have by rectangle inequality

G(grn,grm,grm)≤ G(grn,grn+1,grn+1)+G(grn+1,grn+2,grn+2)
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+ ...+G(grm−1,grm,grm)

≤ kn
Γn + kn+1

Γn+1 + ...+ km−1
Γm−1

≤ (Kn + kn+1 + ...+ km−1)Γ

≤ kn

1− k
Γ.

This prove that lim G(grn,grm,grm) = 0, as n,m→ ∞, and thus {grn} is G-Cauchy sequence.

Since (X ,G) is G-complete then there exists p ∈ X such that {grn} is G-converge to p.

Suppose that f (p) 6= gp, then

G(grn, f p, f p)≤ k max{G(grn−1, f p, f p),G(gp,grn+1,rn+1),G(gp, f p, f p)}.

Taking the limit as n → ∞, and using the fact that the function f is G-continuous, we get

G(gp, f p, f p)≤ k G(gp, f p, f p), this contradiction implies that gp = f p.

To prove the uniqueness, suppose that gp 6= gp
′
such that f (p

′
) = gp

′
So, by (14), we have that

G(gp,gp
′
,gp

′
)≤ k max{G(gp,gp

′
,gp

′
),G(gp

′
,gp,gp)}

= k G(gp
′
,gp,gp).

Again we will find G(gp
′
,gp,gp)≤ k G(gp,gp

′
,gp

′
), so

G(gp,gp
′
,gp

′
)≤ k2 G(gp,gp

′
,gp

′
);

since k < 1, this implies that gp = gp
′
. To show that f is G-continuous at p, let {gsn} ⊆ X be a

sequence such that lim(gsn) = gp as n→ ∞, then

G(gp, f (sn), f (sn))≤ k max{G(gp, f (sn), f (sn)),G(g(sn), f p, f p),G(g(sn), f (sn), f (sn))}.

But,

G(g(sn), f (sn), f (sn))≤ k max{G(g(sn),gp,gp),G(gp, f (sn), f (sn)),G(g(sn), f (sn), f (sn))},

so,

G(gp, f (sn), f (sn))≤
k

1− k
G(g(sn),gp,gp).
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Taking the limit as n→ ∞, from which we see that G(gp, f (sn), f (sn))→ 0 and so, by Proposi-

tion 1.10, we have f (sn)→ gp = f p which implies that f is G-continuous at p. �

Corollary 2.13. [7, Theorem 2.5] Let (X ,G) be a complete G-metric space, and f : X → X

be a mapping satisfying one of the following conditions:

G( f r, f s, f s)≤ k max{G(r, f s, f s),G(s, f r, f r),G(s, f s, f s)}(16)

or

G( f r, f s, f s)≤ k max{G(r,r, f s),G(s,s, f r),G(s,s, f s)}(17)

for all r,s, t ∈ X, where k ∈ [0,1). Then f has a unique fixed point (say p), and f is G-continuous

at p.

Proof. It follows by taking g = IX in Theorem 2.12. �

Corollary 2.14. Let (X ,G) be a complete G-metric space, and let f ,g : X → X be mappings

satisfying one of the following conditions:

(18) G( f r, f s, f t)≤ k max


G(gr, f s, f s),G(gr, f t, f t),

G(gs, f r, f r),G(gs, f t, f t),

G(gt, f r, f r),G(gt, f s, f s)


or

(19) G( f r, f s, f t)≤ k max


G(gr,gr, f s),G(gr,gr, f t),

G(gs,gs, f r),G(gs,gs, f t),

G(gt,gt, f r),G(gt,gt, f s)


for all r,s, t ∈ X, where k ∈ [0,1). Then f has a unique fixed point (say p), and f is G-continuous

at p.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f

and g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and

f is G-continuous at p.
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Proof. If we let s = t in conditions (18) and (19), then they become conditions (14) and (15),

respectively, in Theorem 2.12; so the proof follows from Theorem 2.12. �

Corollary 2.15. [7, Corollary 2.6] Let (X ,G) be a complete G-metric space, and let f : X →

X be a mapping satisfying one of the following conditions:

(20) G( f r, f s, f t)≤ k max


G(r, f s, f s),G(r, f t, f t),

G(s, f r, f r),G(s, f t, f t),

G(t, f r, f r),G(t, f s, f s)


or

(21) G( f r, f s, f t)≤ k max


G(r,r, f s),G(r,r, f t),

G(s,s, f r),G(s,s, f t),

G(t, t, f r),G(t, t, f s)


for all r,s, t ∈ X, where k ∈ [0,1). Then f has a unique fixed point (say p), and f is G-continuous

at p.

Proof. It follows by taking g = IX in Corollary 2.14. �

Corollary 2.16. Let (X ,G) be a complete G-metric space, and let f ,g : X → X be mappings

satisfying one of the following conditions:

G( f m(r), f m(s), f m(t))≤ k max


G(gr, f m(s), f m(s)),G(gr, f m(t), f m(t)),

G(gs, f m(r), f m(r)),G(gs, f m(t), f m(t)),

G(gt, f m(r), f m(r)),G(gt, f m(s), f m(s))



G( f m(r), f m(s), f m(t))≤ k max


G(gr,gr, f m(s)),G(gr,gr, f m(t)),

G(gs,gs, f m(r)),G(gs,gs, f m(t)),

G(gt,gt, f m(r)),G(gt,gt, f m(s))



(22) G( f m(r), f m(s), f m(s))≤ k max


G(gr, f m(s), f m(s)),

G(gs, f m(r), f m(r)),

G(gs, f m(s), f m(s))
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or

(23) G( f m(r), f m(s), f m(s))≤ k max


G(gr,gr, f m(s)),

G(gs,gs, f m(r)),

G(gs,gs, f m(s))


for all r,s, t ∈ X, for some n ∈ N, where k ∈ [0,1), then f has a unique fixed point (say p), and

f m is G-continuous at p.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f and

g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and f is

G-continuous at p.

Proof. The proof follows from Theorem 2.12, Corollary 2.14, and from an argument similar to

that used in Corollary 2.6. �

Corollary 2.17. [7, Corollary 2.7] Let (X ,G) be a complete G-metric space, and let f : X →

X be a mapping satisfying one of the following conditions:

G( f m(r), f m(s), f m(t))≤ k max


G(r, f m(s), f m(s)),G(r, f m(t), f m(t)),

G(s, f m(r), f m(r)),G(s, f m(t), f m(t)),

G(t, f m(r), f m(r)),G(t, f m(s), f m(s))



G( f m(r), f m(s), f m(t))≤ k max


G(r,r, f m(s)),G(r,r, f m(t)),

G(s,s, f m(r)),G(s,s, f m(t)),

G(t, t, f m(r)),G(t, t, f m(s))



(24) G( f m(r), f m(s), f m(s)≤ k max


G(r, f m(s), f m(s)),

G(s, f m(r), f m(r)),

G(s, f m(s), f m(s))


or

(25) G( f m(r), f m(s), f m(s))≤ k max


G(r,r, f m(s)),

G(s,s, f m(r)),

G(s,s, f m(s))
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for all r,s, t ∈ X, for some n ∈ N, where k ∈ [0,1), then f has a unique fixed point (say p), and

f m is G-continuous at p.

Proof. It follows by taking g = IX in Corollary 2.16. �

Theorem 2.18. Let (X ,G) be a complete G-metric space, and let f ,g : X → X be mappings

satisfying one of the following conditions:

G( f r, f s, f s)≤ k max{G(gr, f s, f s),G(gs, f r, f r)}(26)

or

G( f r, f s, f s)≤ k max{G(gr,gr, f s),G(gs,gs, f r)}(27)

for all r,s, t ∈ X, where k ∈ [0,1), then f has a unique fixed point (say p), and f is G-continuous

at p.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f and

g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and f is

G-continuous at p.

Proof. Since whenever the mapping satisfy condition (26), or (27), then it satisfy condition

(18), or (19), respectively, in Theorem 2.12. Then the proof follows from Theorem 2.12. �

Corollary 2.19. [7, Theorem 2.8] Let (X ,G) be a complete G-metric space, and let f : X→X

be a mapping satisfying one of the following conditions:

G( f r, f s, f s)≤ k max{G(r, f s, f s),G(s, f r, f r)}(28)

or

G( f r, f s, f s)≤ k max{G(r,r, f s),G(s,s, f r)}(29)

for all r,s, t ∈ X, where k ∈ [0,1), then f has a unique fixed point (say p), and f is G-continuous

at p.

Proof. It follows by taking g = IX in Theorem 2.18. �
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Theorem 2.20. Let (X ,G) be a complete G-metric space, and let f ,g : X → X be mappings

satisfying one of the following conditions:

G( f r, f s, f s)≤ a1{G(gr, f s, f s)+G(gs, f r, f r)}(30)

or

G( f r, f s, f s)≤ a1 {G(gr,gr, f s)+G(gs,gs, f r)}(31)

for all r,s, t ∈ X, where a1 ∈ [0, 1
2). then f has a unique fixed point (say p), and f is G-continuous

at p.

Further if range of X under f is contained in the range of X under g and g(X) is taken as

complete subspace, then f and g have one and only one point of coincidence. Moreover if f and

g satisfy weakly compatibility, then f and g have one and only one fixed point (say p) and f is

G-continuous at p.

Proof. Suppose that f and g satisfy condition (30), then we have

G( f r, f s, f s)≤ a1{G(gs, f r, f r)+G(gr, f s, f s)}

G( f s, f r, f r)≤ a1{G(gr, f s, f s)+G(gs, f r, f r)}

for all r,s ∈ X .

Suppose that (X ,G) is symmetric, then by definition of the metric (X ,dG) and (1), we get

dG( f r, f s)≤ a1{dG(gr, f s)+dG(gs, f r)} ∀ x,y ∈ X .

Since 0≤ 2a1 < 1, then the existence and uniqueness of the fixed point follow from a theorem

in metric space (X ,dG) (see [2]).

Suppose (X ,G) is not symmetric. Let r0 ∈ X be arbitrary point, and define the sequence

{grn} by grn = f n(x0), then by (30), we have

G(grn,grn+1,grn+1)≤ a1{G(grn−1,grn+1,grn+1)+G(grn,grn,grn)}

= a1G(grn−1,grn+1,grn+1).

But

G(grn−1,grn+1,grn+1)≤ a1G(grn−1,grn,grn)+aG(grn,grn+1,grn+1),
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thus we have

G(grn,grn+1,grn+1)≤
a1

1−a1
G(grn−1,grn,grn).

Let k = a1/(1−a1), hence 0≤ k < 1 then continue in this procedure, we will get that

G(grn,grn+1,grn+1)≤ knG(gr0,gr1,gr1).

For all n,m ∈ N;n < m, we have by rectangle inequality

G(grn,grm,grm)≤ G(grn,grn+1,grn+1)+G(grn+1,grn+2,grn+2)

+ ...+G(grm−1,grm,grm)

≤ (Kn + kn+1 + ...+ km−1)G(gr0,gr1,gr1)

≤ kn

1− k
G(gr0,gr1,gr1).

Then, limG(grn,grm,grm) = 0, as n,m→∞, and so, {grn} is G-Cauchy completeness of (X ,G),

there exists p ∈ X such that {grn} is G-converge to p.

Suppose that f (p) 6= gp, then

G(grn, f p, f p)≤ a1{G(grn−1, f p, f p)+G(gp,grn,grn)}.

Taking the limit as n→ ∞, and using the fact that the function is G-continuous, then

G(gp, f p, f p)≤ a1G(gp, f p, f p).

This contradiction implies that gp = f p.

To prove uniqueness, suppose that gp 6= gp
′
such that f (p

′
) = gp

′
, then

G(gp,gp
′
,gp

′
)≤ a{G(gp,gp

′
,gp

′
)+G(gp

′
,gp,gp),

so

G(gp,gp
′
,gp

′
)≤

(
k =

a1

1−a1

)
G(gp

′
,gp,gp)

again by the same argument, we can verify that G(gp,gp
′
,gp

′
)≤ k2G(gp,gp

′
,gp

′
), which im-

plies that gp = gp
′
.
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To show that f is G-continuous at u, let {gsn} ⊆ X be a sequence such that lim(gsn) = gp, then

G(gp, f (sn), f (sn))≤ a{G(gp, f (sn), f (sn))+G(g(sn), f p, f p)},

and so G(gp, f (sn), f (sn))≤ (a1/(1−a1))G(g(sn), f p, f p).

Taking the limit as n→∞, from which we see that G(gp, f (sn), f (sn)→ 0. By Proposition 1.10,

we have f (sn)→ gp = f p which implies that f is G-continuous at p. �

Corollary 2.21. [7, Theorem 2.9] Let (X ,G) be a complete G-metric space, and let f : X→X

be a mapping satisfying one of the following conditions:

G( f r, f s, f s)≤ a1{G(r, f s, f s)+G(s, f r, f r)}(32)

or

G( f r, f s, f s)≤ a1 {G(r,r, f s)+G(s,s, f r)}(33)

for all r,s, t ∈X, where a1 ∈ [0, 1
2). then f has a unique fixed point (say p), and f is G-continuous

at p.

Proof. It follows by taking g = IX in Theorem 2.20. �
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