Available online at http://scik.org
Adv. Fixed Point Theory, 2025, 15:21
https://doi.org/10.28919/afpt/9255
ISSN: 1927-6303

FIXED POINT RESULTS IN SYMMETRIC G-METRIC SPACE

MONIKA SIHAG, NAWNEET HOODA*

Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039,
India
Copyright © 2025 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In the present paper, we generalize the results of Gaba [2] by using the concept of weakly compatible
mappings in symmetric G-complete G-metric space. Further, we give examples to support our results.
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1. INTRODUCTION

Banach fixed point theorem guarantees the existance and uniqueness of fixed point for con-
traction self-maps of metric space. But a contraction map is a continuous map, so it is limitation
of this theorem. Kannan [6] established a fixed point theorem where continuity of the function
is relaxed. Then Sessa [8] defined the notion of weakly commuting. After that Jungck general-
ized this idea to compatible mappings [3] and to weakly compatible mappings [4]. Numerous
examples are provided to show that each of these generalizations of commutativity is a proper
extension of the previous definition. Mustafa and Sims [7] introduced the notion of G-metric
space which was a generalization of metric space. In the present paper, we prove some fixed
point theorems involving weakly compatible maps in the setting of symmetric G-metric space
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and generalize the results of Gaba [2]. Let us recall some basic rudiments of G-metric space

before we start our main results.

Definition 1.1. [7] Let X be a nonempty set and let the function G : X x X x X — [0, o) satisfy

the following properties:

(G1) G(x,y,z) =0 if x =y =7z whenever x,y,z € X;

(G2) G(x,x,y) >0 whenever x,y € Xwithx #y;

(G3) G(x,x,y) < G(x,y,z) whenever x,y,z € Xwith z #y;

(Ga) G(x,y,2) = G(x,z,y) = G(y,2,X) = ..., (symmetry in all three variables);
(Gs) G(x,y,z) < G(x,a,a)+ G(a,y,z) for any points x,y,z,a € X.

Then the function G is called a generalized metric, or, more specifically a G-metric on X and

the pair (X, G) is called a G-metric space.

Proposition 1.2. [7] A G-metric space (X,G) is said to be symmetric if

G(X,y,y) = G(y,x,x) fO}" all X,y € X.

Definition 1.3. [7]. Let (X,G) be a G-metric space and let {x,} be a sequence of points of X,

we say that {x,} is G-convergent to x € X if

lim G(x,x,,%,) =0,
1,Mm—500

that is,

for any € > 0, there exists N € N such that
G(x,xp,xp) < € forall nom>N.

We call x the limit of the sequence and write x,, — x or lim x,, = x.
n—yoo

Definition 1.4. [7] Let (X, G) be a G-metric space. We say that {x, } is

(1) a G-Cauchy sequence if, for each € > 0 there exists an N € N such that
G(xp,xm,x;) < €€X, foralln,m,l > N.

(i) a G-Convergent sequence to x € X if for any € > 0, there is N € N such that foralln,m > N,

G(x,xp,xm) < €.
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A G-metric space (X, G) is said to complete if every G-Cauchy sequence in X is G-Convergent

in X.

Proposition 1.5. [7] Let (X,G) be a G-metric space. The following are equivalent;

(i) {xn} is G-convergent to x € X.
(ii) lim G(x,,Xm,x) =0.
n,m—so0

(i)  lim G(xy,x,x) = 0.

n—oo

@iv)  lim G(x,x,x,) = 0.

n—oo

Proposition 1.6. [5] A G-metric on a G-metric space (X,G) is continuous on its three vari-

ables.

Definition 1.7. [2] A self mapping f defined on a G-metric space (X, G) is said to be orbitally
continuous iff

lim ffix =x* € X = fx" = lim ff"x.
1—ro0 )

Definition 1.8. [5] A pair (f,g) of self mappings of metric space (X,d) is said to be weakly
compatible if the mappings commute at all of their coincidence points, that is, fx = gx for some

x € Ximplies fgx = gfx.

Definition 1.9. [1] Let f and g be self-maps of a set X. If w = fx = gx for some x € X, then x

is called a coincidence point of f and g, and w is called a point of coincidence of f and g.

Proposition 1.10. [1] Let f and g be weakly compatible self-maps of a set X. If f and g have

a unique point of coincidence w = fx = gx, then w is the unique common fixed point of f and g.

2. MAIN RESULTS

Theorem 2.1. Let (X, G) be a symmetric G-complete G-metric space and f,g: X — X satisfy

G(fx,gy,82) + G(gx, fy,8z) + G(gx, gy, fz)
2G(gx, fx, fx) +G(gy, fy. fy) + G(gz, fz, fz) + 1

forall x,y,z € X. If f(X) C g(X) and g(X) is a complete, then

(D) G(fx, fy,fz) < ( )G(gx,gy,gZ)

(1) fand g have atleast one coincident point p € X

(ii) for any x € X, the sequence {f"x} G-converges to a coincidence point.
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(iii) if p,p € X are two distinct coincident points, then G(gp,gp',gp’) = G(gp,gp',8p) > %

Proof. Let f and g satisfy the condition (1) and let x( be an arbitrary point in X. Since f (X) C
g(X), there is x; € X such that gx; = fxo. Continuing the same process, we can construct a
sequence {gx,} such that gx, | = fx, for all n € N. If there is n € N such that gx,, = gx,,1,
then f and g have a point of coincidence. Let gx, # gx, | for all n € N. So for each n € N, by

using (Gs) we obtain that

G(gxn,gxn+l,gxn+l) = G(fxn—l;fxmfxn)

G(fx,_ G(gx, G(ex,
S( (fxn 17gxnagxn)+ (gxn l,fxn;gxn)+ (g-xn 17gxn7fxn) )G(gx’l_ngr”gx")
2G(gxn—lafxn—17fxn—1)+G(gxn7fxn7fxn)+G(gxn7fxn7fxn)+1
G G(gx, G(ex,
:( (8%n, 8%n, 8%n) + G(8%n—1,8%n+1,8%n) + G(gXn—1,8%n, §¥n+1) )G(gxnl,gxn,gxn)
2G(gXn—1,8%n,8%n) + G(8%Xn; 8Xn+1,8%n+1) + G(8Xn, 8Xnt1,8%n+1) + 1
2G(gxn—l7gxn7gxn+l) )
= G(gXxn—1,8%n, 8X
(ZG(gxn1,gxn,gxn)+2G(gxn,gxn+1,gxn+1)+1 (8xn &)
2G(gx, 2G
S( (8Xn—1,8%n,&Xn) +2G(8Xn, 8Xn+1,8%n+1) )G(gxnl,gxn,gxn).
2G(8Xn—1,8%n, 8%n) +2G(8Xn, 8Xn+1,8%n+1) + 1
2 N 2
Put G(gxn 17gxn7gxn)+ G(gxnagxn-l-lagxn-l-l) :p,thCHOS p <1 and

2G(gxn—1,8%n,8%n) +2G(8%n, 8Xn11,8%n11) +1

G(8xn, xn+1,8%n41) < P G(8Xn—1,8%n; §%n)-
That is for each n € N, we have
G(8%n, 8%n+1,8%n+1) = G(fXn—1, fXn, fXn)
< p G(8g%n—1,8%n, 8Xn)

S sz(g-xn—27 8Xn—1, gxl’l—l)

< p"G(gxo,8x1,8x1).

Moreover, for all n,m € N; n < m, we have by rectangle inequality that

G (8%n>8%m>8&%m) < G (8%n,8%n+1,8%n+1) + G (8Xn41,8%n+2,8%n+2) + G (8Xn+2,8%n+3,8%n+3)

+ ...+ G(gXm—1,8%m, 8Xm)
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< (p"+p " +p 2+ p™ 1) Glgxo, gx1,8%1)

< G(gx(),gxl,gxl),

I—p
and so lim G (gx,, gxm,gxm) = 0, as n,m — oo.
Thus {gx,} is a G-Cauchy sequence. Since (X,G) is complete, there exists ¢ € X such that

{gx,} is G-Convergent to g € g(X). So there exists p € X such that gp = g. We will show that

gp = fp.Letgp # fp. By (1), we have

G(gxn, [P, fpr) = G(fxn—1,fP,fP)

< ( G(fxn—lagpagp)+G(gxn—17fp>gp)+G<gxn—17gp7fp)
~ \2G(g%n—1,fXn—1,fXn1) + G(gp, [P, fP) + G(gp, fp,fp) +1

Taking limit as n — oo, and since G is continuous, we have G(gp, fp, fp) =0and gp = fp.

) G(gxn—1,8p,8D)-

If p’ is another coincidence point of f and g, then

G(gp,gp,gp’) =G(fp,fp.fP)

< ( G(fp.gp,gpr’) +G(gp, fp,gp") +G(gp.gp, fP')
~\2G(fp,fp.fP')+G(gp,fp,.fp) +G(gp'. fp'.fp')+1

< [G(gp,gp.gp') +G(gp.gp.gp") +G(gp.gp.gp")| G(gp.gp.8pr’)

> G(gp,gp.gp’)

=3G(gp,gp,&p')?

giving

W =

G(gp,gp,gp’) >

O

Remark 2.2. The maps f and g defined in Theorem 2.1 belong to the category of so called
weakly Picard operators, as the uniqueness of coincidence point is not guaranteed. Further

Theorem 2.1 can also be proved for non symmetric G-complete G-metric space.

Example 2.3. Let X = [0, 1] and define f,g: X — X by

x=1, .
fx= and  g(x) = 3.
0, otherwise

B[ —

Then g(x) € [0, %] and f(X) C g(X) and g(X) is a complete.
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Further x = 0 and x = 1 are two coincidence points of f and g. Define G : X> — [0,0) as
1 11
il R ZZ
G(O7O72) G(07272)7
G(1,0,0) = G(0,1,1) = 3,
G(x,x,x)=0 forallx€X.
We will consider only two cases G(f0, f0, f1) and G(f0, f1,f1) as other cases are straight

forward.

Case I. Consider

1
©0.02) ) 60,01
ZG(0,0,0)+G(0,0,0)+G(§,§,z)—f—1 2

1 1

2= G(0,0,5) = G(f0, 0, 1) < (

=12.
Case II.
11 G(0,3,3)+G(0,3,3) +G(0,5,5) 1
2:G<07§7§):G(f0,f17f1)§ 212 1 1212 1 1212 G(Oa_v_)
2G(07070)+G(§7§7§)+G(27§7§)+1
1
=3[G(0,0,=2)]?
2
=12.

Thus all the conditions of Theorem 2.1 are satisfied. Further {0, 1} are two distinct coincident

points of f and g, and G(1,0,0) = G(0,1,1) =3 > 1.
By setting g to be an identity function in Theorem 2.1, we get immediately the following:

Corollary 2.4. [2, Theorem 2.1] Let (X,G) be a symmetric G-complete G-metric space and

f: X — X satisfying

G(fx,y,2) +G(x fy,2) + G(x,y, f2)
CUn e < (2G(x,fx,fx> GO f3f3) + G fz o) 1 ) Ol

forall x,y,z € X. Then

(1) f has atleast one fixed point p € X

(ii) for any x € X, the sequence {f"x} G-converges to a fixed point.
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T / . , 1
(iii) if p,p € X are two distinct fixed points, then G(p,p',p') = G(p',p',p) > 3.
It is to be noted that we have derived Corollary 2.4 with a different approach than Gaba [2].

Remark 2.5. In order to validate Corollary 2.4, Gaba [2] considered the space X = {0, %, 1}
and G : X — [0,0). The space (X, G) is not a G-complete G-metric space and thus the purpose
of [2, Example 2.2] is forfeited.

The following result guarantees the existence of unique fixed point for weakly compatible

mappings.

Theorem 2.6. Let (X,G) be a symmetric G-complete G-metric space and f,g: X — X sat-
isfying
(2)

G(fx, fy, f2) < o min{G(gy, /Y, fy), G(8z, £z, f2) }[1 + G(gx, fx, fx)]

[1+G(gx,8y,82)]
for all x,y,z € X where o and B are non negative reals with o+ < 1. If f(X) C g(X) and

+BG(gx, gy, 82)

g(X) is complete subspace of X, then f and g have a unique point of coincidence in X. Moreover

if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Let f and g satisfy the condition (2) and let xy be an arbitrary point in X. Since f (X) C
g(X), there is x; € X such that gx; = fxo. Continuing the same process, we can construct a
sequence {gx,} such that gx, ;| = fx, for all n € N. If there is n € N such that gx,, = gx,, 11,
then f and g have a point of coincidence. Let gx, # gx,+ for all n € N. So for each n € N, we

obtain that

G(gxmgxn-i-l ,ngH_]) = G(fxn—l 7fxn7fxn>

<a min{G(gxnafxnvfxn)aG(gxnafxnafxn)}[l‘I‘G(gxn—lafxn—l,fxn—l)]]

1+ G(gxnfl »8Xn, an>

+ ﬁG(gxn— 1 7g-xn7gxn)

o min{ G(gxu, 8Xn+1,8%n+1), G(8%n, 8%n+1,8%n11) }[1 + G(8%n—1,8%n, 8Xn)]
1+ G(gxnfl »gxmgxn)

+ BG(gxn— 1 7gxn7gxn)



8 MONIKA SIHAG, NAWNEET HOODA

o G(gxrh 8Xn+1,8%Xn+1 ) [1 + G(gxl’l—l y8Xn; gxn)]
1+ G(gxn—lagxmgxn)

+ BG(gxi’l— 1y gxr“gxn)

=« G(gxn7gxn+lagxn+1) + ﬁG(gxnfl,an,an),

and so
G(8%n, 8%n11,8%n+1) < (%)G(gxnl,gxmgxn)
= P G(gXn—1,8%n,&%n),
where
p=to <1

The similar arguments as of Theorem 2.1 yield gp = fp.
Claim: f and g have a unique point of coincidence. Let fg = gq for some g € X. Using (2),

it follows that

G(gp,gp,89) = G(fp,fp.fq)

r . G , , 7G , 5 1 G 9 b

< o | min{Glep.fp fp)1+(§?g£qg£q££ TGP IPN| | BGi(ep.gp gq)
[ i G 9 9 7G bl Y 1 G ) ?

_ o | min{G(ep.sp gphggg;“(lg;‘qg);)[ +G8r.8P:8P) | | BG(ep, ep.2q)

=BG(gp.gr,8q),

which is a contradiction since 8 < 1, proving our claim. Therefore gp = gg. This gives that f

and g have a unique point of coincidence and Proposition 1.10 makes us to go through. 0

Example 2.7. Let X = [0,2], G(x,y,z) = max{|x—y|,|[y—z|,|x—2z|}.
Define f,g: X — X by

fx=1 and gx=2-—x.

The use of (2) makes

0=G(fx, fy,fz)

<o min{G(gy, [y, fy),G(8z, fz, fz) }[1 + G(gx, fx, fx)]
B 1+G(gx, gy, gz)

+ BG(gx, 8y, 82)
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< a[min{|gy — 1], |gz— 1[}[1+ [gx — 1|]] + B [max{|gx — gvl, |gy — gz, |8z — gx[}]
<20 +p
<o+1

which is always true. Thus all the conditions of Theorem 2.6 are satisfied and consequently f

and g have a unique common fixed point, indeed, x = 1.
By setting g to be an identity function in Theorem 2.6, we immediately have

Corollary 2.8. [2, Theorem 2.4] Let (X,G) be a symmetric G-complete G-metric space and
f: X — X satisfying

min{G(y, fy, fy),G(z, fz,f2) }1 + G(x, fx, fx)
[1+G(x,,2)]

forall x,y,z € X where o and B are non negative reals with

G(fx,fy.fz) < a +BG(x,y2)
oa+p <l
Then f has a fixed point in X .
The following two results are generalization of Theorem 2.6.

Theorem 2.9. Let (X,G) be a symmetric G-complete G-metric space and and f,g: X — X

be mappings satisfying

G 1+G
G(fx, fy.f2) < ay { (&0, f : f();[(gj : y(ia)fx,fx)]}

ra [G(gz,fz,fZ)[l +G(gx, fx,fx)]}
? 1+G(gx, gy, 82)

3) + a3]G(gx, gy, 82)]

forall x,y,z € X where a; = a; (x,y,z) ,i = 1,2, 3 are non-negative functions such that for arbi-

trary0 < A < 1:

w

ai (x,y,z) +a (x,y7z) +as (X,y,z) = Zai (X,y,z) <A
i=1

Further if f(X) C g(X) and g(X) is complete subspace of X, then f and g have a unique point

of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique

common fixed point.
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Proof. Let f and g satisfy condition (3) and let xy be an arbitrary point in X. Since f(X) C
g(X), there is x; € X such that gx; = fxo. Continuing the same process, we can construct a
sequence {gx,} such that gx, ;| = fx, for all n € N. If there is n € N such that gx,, = gx,, 11,
then f and g have a point of coincidence. Let gx, # gx,+ for all n € N. So for each n € N, we

obtain that

G(8%n; 8¥nt1,8%nt1) = G(fXn—1, f%n, fXn)

<a G(gxnafxnafxn)[l + G(gxnflafxnflyfxnfl)]
N 1 + G(gxnfl 7gxn7gxn)
G(gxnyfxmfxn)[l + G(gxnflyfxnflafxnfl)]
+ap
1 + G(gxnflugxnagxn)

-+ as [G(gxn—l 3 gxl’ngn)]

G (8%n, 8%n+1,8%n11)[1 + G(8Xn—1,8%n, 8%n)]

1+ G(gxnflugxnagxn)
ta, G(8%n, 8%n11,8%n+1)[1 + G(8xn—1,8%n,8%n)]
1+ G(gxn—hgxmgxn)

+ a3[G(gxn—1,8%n, 8%n)]
< a1G(gxn, 8Xn+1,8%n+1) + a2G(8Xn, 8Xn+1,8%n+1)

+a3G(gxn—1,8%n,8%n)-

Therefore
G( )< G )
X, GX X — _G(gx,_1,8x,,8x
8Xn;, 8Xn+1,8%Xn+1) > 1_(a1+a2) 8Xn—1,8%n,8Xn
:pG(an_l,an,gxn),
where
as
— —=p <1,
1—(a;+ay) p

since a; +a +az < 1. As usual procedure, uniqueness of fixed point can be established. [

Letting g be an identity function in Theorem 2.9, we get the following
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Corollary 2.10. [2, Theorem 2.5] Let (X,G) be a symmetric G-complete G-metric space and
and f: X — X be mapping satisfying

G 1+G
Guxnuoga{ @bqﬁzay%fwﬁy

iy {G(z,fz,fZ)[l+G(gx,fx,fx)]}
’ [+G(x.y.2)

+a3[G(x,,7)]

forall x,y,z € X where a; = a; (x,y,z) ,i = 1,2,3 are non-negative functions such that for arbi-

trary0 < A; < 1:

w

ag (x,y,z) +ap (x,y,z) +as (x,y,z) = Zai (X,y,z) < ll'
i=1

Then f has a fixed point in X .

Theorem 2.11. Let (X,G) be a symmetric G-complete G-metric space. Suppose f and g

satisfy the following condition:

G(fx, fy,fz) < a1G(gx, 8y, 82)
+a2[G(gx, fx, fx) + G(gy, [y, [y) + G(8z, [z, /2)]
+a3[G(fx,8y,82) + G(gx, f,82) + G(gx, 8y, f2)]
+asmin{G(gy, fy, ), G(8z, fz f2) 1 + G(gx, fx, f0))[1 + G(gx, 8y,82)] '
+asG(fx, gy, g2)[1 + G(gx, fy,82) + G(gx, gy, f2)][1 + G(gx, £y,82)] '
+a6G(gx, gy, g2)[1+ G(gx, f, fx) + G(fx, gy, g2)][1 + G(gx, gy, 82)] !
) +a7G(fx,8,82)

for all x,y,z € X where a; = aj(x,y,z),i = 1,...... ,7, are non-negative functions such that for

arbitrary 0 < Ay < %
aj (x,y,z)+3a2(x,y,z) —|—4a3(x,y,z)+a4(x,y,z) —|—a6(x,y,z) < )Ll-

Further if f(X) C g(X) and g(X) is complete subspace of X, then f and g have a unique point
of coincidence in X. Moreover if f and g are weakly compatible then f and g have a unique

common fixed point.
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Proof. Let f and g satisfy the condition (4) and let xy be an arbitrary point in X. Since f (X) C
g(X), there is x; € X such that gx; = fxo. Continuing the same process, we can construct a
sequence {gx,} such that gx, ;| = fx, for all n € N. If there is n € N such that gx,, = gx,, 11,
then f and g have a point of coincidence. Let gx, # gx,+ for all n € N. So for each n € N, we

obtain that

G(gxnagxn-i-l?gxn-H) = G(fxn—l ,fxn,fxn)
< a1G(gxn_1,gxn,gxn)
+02[G(gxn717fxn71 7fxn71) + G(gxnyfxmfxn) + G(gxnvfxnafxn)]

+a3[G(fxn—1,8%n, 8xn) + G(8Xn—1, [Xn, 8Xn) + G(8Xn—1,8%n, fXn)]
+a4min{G(gxn,fx,,,fxn), G(g%n, fXn, fXn) H1 + G(8%n—1, fXn—1,[%n—1)]
1+ G(gxn—1,8%n, 8%n)
G(fXn—1,8%n,8%n)[1 +G(Xn_1, fXn,8%) + G(8Xn—1,8%n, [Xn)]
[1+ G(8%n—1,8%n, 8%n)]
G(8%n—1,8%n,8%n)[1 + G(gxn—1, [Xn—1, fXn—1) + G(fXn—1,8%n, 8%n)]
(14 G(gxn—1,8%n,8%n)]

+as

+ag

+a7G(fXn—1,8%n, Xn)

= a1[G(gXn—1,8%n,g%n)]

+ a2 |G (gXn—1,8%n, 8%n) + G(8Xn; 8Xn+1,8%n+1) + G(8Xn, §Xn+1,8%n+1)]
+ a3(G(gxn, §Xn, 8Xn) + G(8Xn—1,8%n+1,8%n) + G(8Xn—1,8%n, 8¥n+1)]

I+ G(gxn—lygxnagxn)
1+ G(gxn—1,8%n, 8%n)

+ a4G(gxn,gxn+1 ) gxn+1) (

G(gxn,l 9 gxn, gxn) [1 + G(gxn,l 7gxn7gxn) + G(gxfh gxnafx”)]
[1 + G(gxnflvgxnugxn)]

+as +a7G(8%n, 8%n, 8%n)

= ay [G(gxn—1,8%n, 8%n)] + a2[G(gxn—1,8%n, 8%n) +2G(8%n, &Xn+1,8%n+1)]
+a3[2G(gxn—1,8%n+1,8%n)| + a4|G(8Xn, 8%n+1,8%n+1) + acG(8%n—1,8%n, §Xn)
= a1(G(gXn—1,8%n,8%n)| + a2[G(gXn—1,8%n, 8%n)| + 2a2[G(gXn, gXn11,8%n+1)]
+2a3(G(8%n—1,8%n+1,8%n)| + aa|G(8xn, 8xn11,8%n+1)] + a6[G(8Xn—1,8%n, 8Xn)]

= (al +ay+2a3+ a6) G(gxn—lagxnagxn) + (2(12 +2a3 +a4) G(gxnagxn—i-lvgxn—O—l)
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which gives

G(gxm 8Xn+1, gxn+l) S MG(gxn,l 7gxn7gxn) + A‘IG(gxnv 8Xn+-1 7gxn+1)

and so

A

1
G(gxn7gxn+l7gxn+l) < 1_—11 [G<gxn*17gxnagxﬂ)]‘
M

Since, 0 < A1 < %, so0<p= T < 1, we have

G(gxnagxn+17gxn+l) S pG(gxnfngn?gxn) .

Now by similar arguments of our previous Theorems, uniqueness of fixed point can be estab-

lished. L]

Example 2.12. Let X = [0,2], G(x,y,z) = max{|x—y|, |y —z|,|x—z|}.
The mappings f,g: X — X defined by
fx=1 and gx=2-—x,
along with a5 = 0 = a7 will satisfy the conditions of Theorem 2.11 and x = 1 is the unique
common fixed point.

Letting g to be an identity function in Theorem 2.11, we obtain

Corollary 2.13. [2, Theorem 2.6] Let (X,G) be a symmetric G-complete G-metric space
where f is an orbitally continuous mapping from X to itself. If it is the case that f satisfies the

following condition:

G(fx, fy,fz) <a1G(x,y,2)
+a[G(x, fx, fx) + Gy, fy, fy) + G(z, [z, f2)]

+a3[G(fx,y,2) + G(x, fy,2) + G(x,y, f2)]

[1+G(x, fx, fx)]
1+G(x,y,2)

+asG(fx,,2)[1+G(x, £y,2) + G(x,y, f2)][1 + G(x,y,2)] !

+agmin{(G(y, fy, fv),G(z, fz, f2))}

+a6G(x,y,2)[1+ G(x, fx, fx) + G(fx,,2)] [l + G(x,y,2)] '
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(5) +Cl7G(fX,y,Z)

for all x,y,z € X where a; :== a;j(x,y,z),i = 1,...... ,7, are non-negative functions such that for

arbitrary 0 < A; < 1:
al(x,y,z)+3a2(x,y,z) +4a3(x,y7z)—|—a4(x,y,z) +a6(x7y7z) < )Ll'

Then f has a fixed point in X .

Remark 2.14. Please note that we have not imposed any condition of f in Theorem 2.11 where

as in Corollary 2.13, f is orbitally continuous.

Remark 2.15. Taking g as an identity map and imposing restrictions on a;, where a’s are non-
nagative real numbers less than 1, in Theorem 2.11, we can generalize and extend many more
results present in the literature of fixed point theory. Further, our results can be proved for

non-symmetric G-complete G-metric space.
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