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1. Introduction

Recently, Huang and Zhang [1] generalize the concept of a metric space, replacing the

set of real numbers by an ordered Banach space and obtain some fixed point theorems for

mappings satisfying different contraction conditions in cone metric spaces. Subsequently

many authors have generalized the results of Huang and Zhang and have studied fixed

point theorems for different types of cones, see for instance [9],[10],[11],[12],[13],[14] etc. In

sequel, J.R. Morales and E. Rojas [3],[4],[5] obtained sufficient conditions for the existence

of a unique fixed point of T-Kannan contractive, T-zamfirescu, T-contractive mappings

etc, in complete cone metric spaces. Afterwards; R.Sumitra et al [9] have proved common
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fixed point theorem for a Banach pair of mappings satisfying T-Hardy Rogers type con-

traction condition in cone metric spaces. In the sequel, we need a definition which was

introduced and called Banach operator of type k by subrahmanyam [7]. Recently Chen

and Li [8] extended the concept of Banach operator of type k of Banach operator pair

and proved various best approximation results using common fixed point theorems for

f-nonexpansive mappings.

The purpose of this paper is to prove common fixed point theorem for T-Reich con-

traction mappings in cone metric spaces. Our results generalize and extend the result

[9].

2. Preliminary

In this section we recall the definition of cone metric spaces and some of their properties

(see [1]).

The following notions will be used in order to prove the main results.

Definition 2.1[1]: Let E be a real Banach space and P a subset of E.P is called a

cone if and only if:

i): P is closed, non-empty, and P 6= {0};

ii): ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b,

iii): x ∈ P and −x ∈ P ⇒ x = 0⇔ P ∩ (−P ) = {o}.

Given a cone P ⊂ E, a partial ordering is defined as 6 on E with respect to P by x 6 y

if and only if y − x ∈ P.It is denoted as x � y will stand for y − x ∈ intP, where intP

denotes the interior of P . The cone P is called normal if there is a number K > 0 such

that, for all x, y ∈ E, 0 6 x 6 y implies ‖ x ‖6 K ‖ y ‖ . (2.1.1.)
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The least positive number K satisfying (2.1.1) is called normal constant of P .

Definition 2.2[1]: Let X be a non-empty set. Suppose E is real Banach space, P

is a cone with intP6= φ and 6 is a partial ordering with respect to P . If the following

d : X ×X → E satisfies,

(i) 0 6 d (x, y): for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x): for all x, y ∈ X;

(iii) d(x, y) 6 d(x, z) + d(y, z): for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example2.3[1] Let E = R2, P = {(x, y) ∈ E : x, y > 0} ⊂ R2, X = R and d :

X ×X → E such that d (x, y) = (| x− y |,∝| x− y |), where ∝> 0 is a constant. Then

(X, d) is cone metric space.

Lemma 2.4[1]: Let (X, d) be a cone metric space and P be a normal cone wih normal

constant K.

(i): A sequence {xn} in X converges to x, if and only if d(xn, x)→ 0 as n→∞.

(ii): A sequence {xn} in X is a Cauchy sequence if and only if d(xn, xm) → 0 as

n,m→∞.

Definition 2.5[4]: Let (X, d) be a cone metric space and {xn} be a sequence in X. Then,

(i){xn}converges: to x ∈ X if for every c ∈ E with o� c, there is no ∈ N, the set

of all natural numbers such that for all n > no,

d(xn, x)� c.:

It: is denoted by limn→∞ xn = x or xn → x, (n→∞).

(ii): If for every c ∈ E, there is a number no ∈ N such that for all m,n > no.

d(xn, xm)� c.:

then: {xn}is called a Cauchy sequence in X.
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(iii): (X, d)is a complete cone metric space if every Cauchy sequence in X is con-

vergent.

(iv): A self mapping T : X → X is said to be continuous at a point x ∈ X, if

limn→∞ xn = x implies that limn→∞ Txn = Tx for every {xn} in X.

Definition 2.6 - A self mapping T of a metric space (X, d) is said to be a contraction

mapping, if there exists a real number 0 6 k < 1 such that for all x, y ∈ X.

d(Tx, Ty) 6 kd(x, y) (2.6.1)

Definition 2.7 [2]: Let T and f be two self-mappings of a metric space (X, d). The

self mappin f of X is said to be T-contraction, if there exists a real number 0 6 k < 1

such that

d(Tfx, Tfy) 6 kd(Tx, Ty) (2.7.1)

for all x, y ∈ X.

If T = I, the identity mapping, then the Definition 2.7 reduces to Banach contraction

mapping.

The following example shows that a T-contraction mapping need not be a contraction

mapping.

Example 2.8: Let X = [0,∞) be with the usual metric. Let define two mappings

T, f : X → X as

fx = βx, β > 1

Tx = ∝
x2
,∝∈ R.
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It is clear that, f is not contraction but f is T-contraction, since

d(Tfx, Tfy) =| ∝
β2x2
− ∝

β2y2
|= 1

β2 | Tx− Ty | .

Definition 2.9 [2]: Let T be a self mapping of a metric space (X, d). Then

(i) A mapping T is said to be sequentially convergent, if the sequence {yn} in X is

convergent whenever {Tyn} is convergent.

(ii) A mapping T is said to be subsequentially convergent, if {yn}has a convergent

subsequence whenever {Tyn}is convergent.

Definition 2.10 [7]: Let T be a self mapping of a normed space X. Then T is called

a Banach operator of type k if

‖ T 2x− Tx ‖6 k ‖ Tx− x ‖

for some k > 0 and for all x ∈ X.

This concept was introduced by subrahmanyam [7], then Chen and Li [8] extended this

as following:

Definition 2.11 [8]: Let T and f be two self mappings of a non-empty subset M of a

normed linear space X . Then (T, f) is a Banach operator pair, if any one of the following

conditions is satisfied:

(i) T [F (f)] ⊆ F (f) ie F (f) is T-invariant.
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(ii) fTx = Tx for each x ∈ F (f).

(iii) fTx = Tfx for each x ∈ F (f).

(iv) ‖ Tfx− fx ‖6 k ‖ fx− x ‖for some k > 0.

Lemma 2.12 [11]: Let a, b, c, u ∈ E,the real Banach space.

(i) If a 6 b and b� c, then a� c.

(ii) If a� b and b� c, then a� c.

(iii) If 0 6 u� c for each c ∈ int P, then u = 0.

If c ∈ intP, 0 6 an and an → 0, then there exists no such that for all n > no, if follows

that an � c.

3 Main Results

First, we give definitions of T-Reich contraction mapping and T-Rhoades contraction

mapping on cone metric spaces which are based on the ideas of Morales and Rojas [4].

Definition 3.1 Let (X, d)be a cone metric space and T, S : X → X two functions;

(i): A mapping S is said to be T-Reich contraction, if there is a a+ b+ c < 1 such

that

d(TSx, TSy) 6 ad(Tx, TSx) + bd(Ty, TSy) + cd(Tx, Ty): for all all x, y ∈ X and

a, b, c > 0.

(ii): A mapping S is said to be T-Rhoades contraction if there is a+ b+ c < 1 such

that
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d(TSx, TSy) 6 ad(Tx, TSy) + bd(Ty, TSx) + cd(Tx, Ty): for all all x, y ∈ X and

a, b, c > 0.

Theorem 3.2: Let T, f and g be three continuous self mappings of a complete cone

metric space (X,d). Assume that T is a injective mapping and P is a normal cone with

normal constant. If the mappings T, f and g satisfy

d(Tfx, Tgy) 6 a1d(Tx, Tfx) + a2d(Ty, Tgy) + a3d(Tx, Ty): (3.2.1)

for: all x, y ∈ X where ai, i = 1, 2, 3 are all non-negative constants such that a1 +

a2 + a3 < 1, then f and g have a unique common fixed point in X. Moreover, if

(T, f)and (T, g) are Banach pairs, then T, f and g have a unique common fixed

point in X.

Proof: Let xo ∈ X as an arbitrary element and define the sequences {x2n} and {x2n+1}

in X such that x2n+1 = fx2n and x2n+2 = gx2n+1 for each n = 0, 1, 2,− − − − − −

− − − − ∞. Consider d(Tx2n+1, Tx2n) = d(Tfx2n,Tgx2n−1) 6 a1d(Tx2n, T fx2n) +

a2d(Tx2n−1, T gx2n−1)

+a3d(Tx2n, Tx2n−1)

= a1d(Tx2n, Tx2n+1) + a2d(Tx2n−1, Tx2n)

+a3d(Tx2n, Tx2n−1)

6 (a2 + a3)d(Tx2n, Tx2n−1) + a1d(Tx2n, Tx2n+1)

d(Tx2n, Tx2n+1) 6
a2+a3
1−a1 d(Tx2n,Tx2n−1)

6 kd(Tx2n, Tx2n−1)

k = a2+a3
1−a1 < 1 as a1 + a2 + a3 < 1
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Proceeding further,

d(Tx2n, Tx2n+1) 6 k2nd(Txo, Tx1) (3.2.2)

Next, to claim that (Tx2n} is a Cauchy sequence.

Consider m,n ∈ N such that m > n,

d(Tx2n, Tx2m) 6 d(Tx2n,Tx2n+1) + d(Tx2n+1,Tx2n+2)

+−−−−−−+ d(Tx2m−1, Tx2m)

6 (k2n + k2n+1 +−−−−+k2m−1)d(Tx1, Txo)

= k2n

1−kd(Txo,Tx1).

From (2.1.1), it follows that

‖ d(Tx2m, Tx2n) ‖6 k2n

1−k ‖ d(Txo,Tx1) ‖ (3.2.3)

Since k ∈ (0, 1), k2n → 0 as n → ∞. Therefore ‖ d(Tx2m, Tx2n) ‖→ 0 as m,n → ∞.

Thus {Tx2n} is a Cauchy sequence in X. As X is a complete cone metric space, there

exists z ∈ X such that limn→∞Tx2n = z.

Since T is subsequentially convergent {x2n}, has a convergent subsequence {x2m} such

that limm→∞x2m = u. As T is continuous,

limm→∞Tx2m = Tu (3.2.4)
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By the uniqueness of the limit, z = Tu. Since f is continuous limm→∞fx2m = fu.

Again as T is continuous, limn→∞Tfx2m = Tfu

limm→∞Tx2m+1 = Tfu (3.2.5)

Now consider, d(Tfu, Tu) 6 d(Tfu, Tx2m+1) + d(Tx2m+1,Tu)

= d(Tfu, Tfx2m) + d(Tx2m+1,Tu)

6 a1d(Tu, Tfu) + a2d(Tx2m,Tfx2m)

+a3d(Tu, Tx2m) + d(Tx2m+1,Tu)

= a1d(Tu, Tfu) + a2d(Tx2m, Tx2m+1)

+a3d(Tu, Tx2m) + d(Tx2m+1, Tu)

(1− a1)d(Tfu, Tu) 6 a2[d(Tx2m, Tu) + d(Tu, Tx2m+1)]

+a3d(Tu, Tx2m) + d(Tx2m+1,Tu)

d(Tfu, Tu) 6 a2+a3
1−a1 d(Tu, Tx2m) + 1+a2

1−a1d(Tu, Tx2m+1)

d(Tfu, Tu) 6 a2+a3
1−a1 d(Tu, Tx2m) + 1+a2

1−a1d(Tu, Tx2m+1) (3.2.6)

Let 0� c be arbitrary. By (3.2.4)

d(Tu, Tx2m)� c(1−a1)
2(a2+a3)



324 A.K.DUBEY1,∗, REENA SHUKLA2, R.P. DUBEY2

Similarly by (3.2.5) it follows that

d(Tu, Tx2m+1)� c(1−a1)
2(1+a2)

Then (3.2.6) becomes

d(Tu, Tfu)� c
2

+ c
2

= c for each c ∈ intP. Now using Lemma 2.12(iii), it follows that

d(Tu, Tfu) = 0

which implies that Tu = Tfu. As T is injective, u = fu. Thus u is the fixed point of

f. Similarly it can be established that, u is also the fixed point of g. That means u is the

common fixed point of f and g.

To prove uniqueness: If w is another common fixed point of f and g, then fw = w = gw.

d(Tu, Tw) = d(Tfu, Tgw)

6 a1d(Tu, Tfu) + a2d(Tw, Tgw)

+a3d(Tu, Tw)

d(Tu, Tw) 6 a3d(Tu, Tw)

< (a1 + a2 + a3)d(Tu, Tw)

¡d(Tu, Tw) as a1 + a2 + a3 < 1
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a contradiction. Hence d(Tu, Tw) = 0

which implies Tu = Tw. As T is injective, u = w, is the unique common fixed point of

f and g.

Since we have assumed that (T, f) and (T, g) are Banach pairs; (T, f) and (T, g) com-

mutes at the fixed point of f and g respectively. This implies that Tfu = fTu for

u ∈ F (f). So Tu = fTu which gives that Tu is another fixed point of f . It is true for

g,too. By the uniqueness of fixed point of f, Tu = u. Hence u = Tu = fu = gu, u is the

unique commong fixed point of T, f and g in X.

Theorem 3.3: Let T, f and g be three continuous self mappings of a complete cone

metric space (X, d). Assume that T is a injective mapping and P is a normal cone with

normal constant. If the mappings T, f and g satisfy

d(Tfx, Tgy) 6 a1d(Tx, Tgy) + a2d(Ty, Tfx) + a3d(Tx, Ty) (3.3.1)

for all x, y ∈ X, where ai, i = 1, 2, 3 are all nonnegative constants such that a1+a2+a3 <

1,then f and g have a unique common fixed point in X. Moreover, if (T, f)and (T, g) are

Banach paris, then T, f and g have a unique common fixed point in X.

Proof: The proof is similar to the proof of Theorem 3.2
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