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Abstract. The main purpose of this paper is to improve the results of Babu and Alemayehu [7] in metric spaces
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1. Introduction

Aamri and Moutawakil [1] introduced the concept of property (E.A) which was perhaps
inspired by the condition of compatibility introduced by Jungck [3]. Numerous research publi-
cations can be seen using this small but pivoting condition for choices of sequences for a pair

of self maps in metric spaces and their related spaces.

Throughout this paper (X,d) is a metric space which we denote simply by X; and A, B, S and

T are selfmaps of X.

2. Preliminaries
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Definition 2.1[4]. Let A and S be selfmaps of a set X. If Au = Su = w (say), w € X, for some u
in X,then u is called a coincidence point of A and S and the set of coincidence points of A and

S in X is denoted by C(A,S), and w is called a point of coincidence of A and S.

Definition 2.2 Let A, B, S and T be selfmaps of a set X. If u € C(A,S) and v € C(B, T) for some
u,v € X and Au = Su = Bv = Tv = z(say), then z is called a common point of coincidence of
the pairs (A,S) and (B,T).

Definition 2.3 The pair (A, S) is said to be

(i) satisfy property (E.A)[I] if there exists a sequence {x,} in X such that li_r>n Ax, =
n—oo
lim Sx, =t for somet in X.
n—soo
(ii) be compatible [3] if lim d(ASx,,SAx,) =0, for somet in X whenever {x,} is a sequence
n—>oo
in X such that lim Ax,, = lim Sx,, =¢
n—soo n—yoo
(iii) be weakly compatible [5|, if the commute at their coincidence point.
(iv) be occasionally weakly compatible (owc)[9,10), if ASx = SAx for some

x€C(A,S).

Remark 2.4 (i) Every compatible pair is weakly compatible but its converse need not be true
[5].

(i) Weak compatibility and property (E. A) are independent of each other [14].

(ii1) Every weakly compatible pair is occasionally weakly compatible but its converse need not
be true [11].

(iv) Occasionally weakly compatible and property (E. A) are independent of each other [16].
Definition 2.5 [13] Let (X,d) be a metric space and A, B, S and T be four selfmaps on X. The
pairs (A,S) and (B, T) are said to satisfy common property (E.A) if there exist two sequences
{xn} and {y,} in X such that nh_r)rolo Ax, = nh_r)r.}o Sxp=1t= r}l_r)r.}o By, = nh_r>r°10 Ty, for some ¢ in X.
Remark 2.6 Let A,B,S and T be self maps of a set X. If the pairs (A,S) and (B,T) have
common point of coincidence in X then C(A,S) # ¢ and C(B,T) # ¢. But converse is not true.

Example 2.7 Let X = [0, ) with usual metric and A, B, S and T self maps on X and defined by

Ax=1—x% Sx=1—ux; Bx:%—l—xz; Tx:%forallxeX
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It is easy to observe that C(A,S) = {0,1} and C(B,T) = {0, %} but the pairs (A,S) and (B,T)
not having common point of coincidence.

Remark 2.8 The converse of the Remark 2.6 is true provided it satisfies inequality (3.1). This

is given as in Proposition 3.1 in Section III.

Proposition 2.9 ([15]) Let A and S be two self maps of a set X and the pair (A,S) is satisfies
occasionally weakly compatible(owc) condition. If the pair (A,S) have unique point of coinci-

dence Ax = Sx = z then z is the unique common fixed point of A and S.
Proof: To be given
Ax = Sx = {z}(say ) foranyx e C(A,S). (2.1)
Since the pair (A, S) satisfies the property owc, therefore
Az = ASx = SAx = Sz implies that z € C(A,S).
From (2.1), we get Az = Sz = z. Hence proposition follows.
In 1996, Tas et al.[8] proved the following .
Theorem 2.10 Let A, B, S and T be selfmaps of a complete metric space (X,d) such that A(X) C
T(X) and B(X) C S(X) and satisfying the inequality
[d(Ax, By)]* < c1 max{[d(Sx,Ax)]?, [d(Ty,By)]?, [d(Sx, Ty)]*}
+c max{d(Sx,Ax)d(Sx,By), d(Ty,Ax)d(Ty,By)}
+c3d(Sx,By)d(Ty,Ax)
for all x,y € X, where c1,c3,c3 >0, c1 +2¢2 < 1, ¢; +¢3 < 1. Further, assume that the pairs

(A,S) and (B,T) are compatible on X. If one of the mappings A, B, S and T is continuous then

A,B,S and T have a unique common fixed point in X.
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3. Main results

Proposition 3.1. Let A,B,S and T be self maps of a metric space (X,d) and satisfying the
inequality

[d(Ax,By)]* < c1 max{[d(Sx,Ax) ], [d(Ty, By))?, [d(Sx, Ty)]*}
+c max{d(Sx,Ax)d(Sx,By), d(Ty,Ax)d(Ty,By)}
+c3d(Sx,By)d(Ty,Ax) (3.1)
for all x,y € X, where cy,c,¢3 > 0 and ¢y +c3 < 1. Then the pairs (A,S) and (B,T) have
common point of coincidence in X if and only if C(A,S) # ¢ and C(B,T) # ¢.
Proof. If Part: Itis trivial.
Only if part: Assume C(A,S) # ¢ and C(B,T) # ¢.

Then there is au € C(A,S) and v € C(B, T) such that

Au = Su = p (say) (3.2)

Bv=Tv =g (say) . (3.3)

On takingx =u and y =vin (3.1), we get

[d(Au, Bv))? < ¢1 max{[d(Su,Au))?,[d(Tv,Bv)]?,[d(Su, Tv)]*}
+cy max{d(Su,Au)d(Su,Bv), d(Tv,Au)d(Tv,Bv)}
+c3d(Su,Bv)d(Tv,Au).

Using (3.2) and (3.3), we get

[d(p,q))* < (c1+¢3)[d(p,q)]?, a contradiction. Thus p = g.

Therefore A, B,S and T have common point of coincidence in X.

In the Proposition (2.1) of Babu et al.([7]), we can obtain some more conclusions of in their

paper. Therefore our result improves and strengthen Proposition 3.1 and subsequent theorems

in metric spaces.
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Proposition 3.2. Let A,B,S and T be four self maps of a metric space (X,d) satisfying the
inequality (3.1). Suppose that either

(i): B(X) C S(X), the pair (B,T) satisfies property (E.A.) and T (X) is a closed subspace
of X; or

(ii): A(X) C T(X), the pair (A,S) satisfies property (E.A.) and S(X) is a closed subspace
of X, holds.

Then the pairs (A,S) and (B,T) are satisfies the common property (E.A.); also both the pairs

(A,S) and (B, T) have common point of coincidence in X.

We have shorten the proof of Theorem 2.2 of ([7])by relaxing many lines:

Theorem 3.3 (Improved version of Theorem 2.2, [7]). Let A,B,S and T are satisfying all the

conditions given Proposition 3.2 with the following additional assumption:
the pairs (A,S) and (B,T) are owc on X.
Then A,B,S and T have a unique common fixed point in X.

Proof. By Proposition 3.2 the pairs (A, S) and (B, T ) have common point of coincidence. There-

fore there is u € C(A,S) and v € C(B,T) such that
Au = Su = z(say) =Bv="Tv. (3.4)

Now, we show that z is unique common point of coincidence of the pairs (A,S) and (B,T).

Let if possible 7’ is another point of coincidence of A, B,S and T. Then there is ' € C(A,S) and
v € C(B,T) such that

Au' = Su' =7 (say) =BV =TV. (3.5)
Putting x = u and y =/ in inequality (3.1), we have
[d(Au, Bv))? < ¢1 max{[d(Su,Au))?,[d(Tv,Bv)]?,[d(Su, Tv)]*}
+cy max{d(Su,Au)d(Su,Bv), d(Tv,Au)d(Tv,Bv)}

+c3d(Su,Bv)d(Tv,Au)

Now, using (3.4) and (3.5), we get
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[d(z,7)]* < (c1+4¢3)[d(z,7')]?, and arrive at a contradiction. Hence z = 7’ and we have C(A, S) =
{z} =C(B,T)

By Proposition 2.9, z is the unique common fixed point of A, B, S and 7 in X.

Remark 3.4 Proposition 2.5 of [7] and Theorem 2.6 of [7] are remain true, if we replace com-
pleteness of S(X) and 7'(X) by the completeness of S(X) N7 (X) in X. For this we have given

an Example 2.7 in the following manner without proof.

Now, we rewriting the Proposition 2.5 and Theorem 2.6 of [7].

Proposition 3.5 Let A,B,S and T be four self maps of a metric space (X,d) satisfying the
inequality (3.1) of proposition 3.1. Suppose that (A,S) and (B, T) satisfy a common property
(E.A) and S(X)NT(X) are closed subspace of X, then A, B, S and T have unique common point

of coincidence.

Theorem 3.6 In addition to the above proposition 3.5 on A, B, S and 7, if both the pairs (A,S)
and (B, T) are owc maps on X, then the point of coincidence is a unique common fixed point of

A,B,Sand T.

Example 3.7 Let X = [%, 1) with the usual metric. We define mappings A, B, S and T on X by

.

1 if xe[4,3); 2 ifxe[],3);
A(x) = B(x) =
| 5 ifxel31) z, if,xe(3,1)
(
%, if, x € [%,%), %, if, x € [%,%),
S(x) = T(x)=
| 3+3, ifxef31) 1-3, ifxe[},1)

We observe that S(X) = {1} U [%,%) and T(X) = (2’%] U {%} are not closed and S(X)N
TX)= {%} is a closed subspace of X.

The pairs (A,S) and (B, T) satisfies a common property (E.A) at the sequence {x,},
Xn=%+:m5 n=123,..inX.

Case (i): If x,y € [1, ) then the inequality (3.1), we get

(12)* < 1 max{(5)?, (1), (3} e max{g 3,313} 3 5
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i.e., 25 <16ci+c264+c318
Case (i1): If x,y € [%, 1) the inequality (3.1) holds trivial.
Case (iii): If x € [1,%) and y € [, 1) then from inequality (3.1), we have

(3)? < cimax{s5, (3 — )% (T +camax{55, G- PG -+ (3 -3).

4<ci+cr+c3.(4—3y).
Case (iv): ifx€ [3,1) andy € [£,3)
()7 < vmax{ (= 2 (2 (51} +eomanl 5= 13— | o)
+egl3— 5 |
In all cases the inequality (3.1) holds with ¢; = %,cz =5 % and ¢3 = % The pairs (A, S) and

(B,T) satisfies owc at the point % The point % is a unique fixed point of A,B, S and T.
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