Available online at http://scik.org

Advances in Fixed Point Theory, 3 (2013), No. 2, 341-354

ISSN: 1927-6303

SOME GENERAL CONVERGENCE THEOREMS ON SEQUENCES OF FIXED POINTS

S. N. MISHRA^{1,*}, RAJENDRA PANT² AND R. PANICKER¹

¹Department of Mathematics, Walter Sisulu University, Mthatha 5117, South Africa

²Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur 440010, India

Abstract. For each $n \in \mathbb{N}$ (naturals), let $\{X_n\}$ be a sequence of nonempty subsets of a 2-metric space

 (X, ρ) and $\{T_n : X_n \to X_n\}$ a sequence of (ψ, ϕ) -weakly contractive mappings with respect to a different

2-metric ρ_n which converges in some general sense to a limit mapping. We obtain a number of stability

results in this paper which extend certain well known results.

Keywords: (ψ, ϕ) -weakly contractive mappings; stability; 2-metric space; sequence of 2-metrics.

2000 AMS Subject Classification: 54H25, 47H10.

1. Introduction

Stability of fixed points of a sequence of mappings has been an interesting and contin-

uing area of research in fixed point theory since its inception in 1962 when a result about

the relationship between the convergence of a sequence of contraction mappings $\{T_n\}$ of

a metric space X and their fixed points was obtained by Bonsall [5] (see also Nadler, Jr

[24]). Subsequently, certain stability results for a sequence of contractive mappings were

obtained by Fraser and Nadler [10]. Later on Rhoades [26] and Singh [28-30] studied the

aspects of stability of fixed points in 2- metric spaces. In most of these results, pointwise

*Corresponding author

Received March 26, 2013

341

and uniform convergence play a vital role in arriving at the desired conclusion. However, if the domain of definition of $\{T_n\}$ is different for each $n \in \mathbb{N}$, then the above notions do not work. An alternative to this problem has recently been presented by Barbet and Nachi [3-4], where some new notions of convergence have been introduced and utilized to obtain stability results in a metric space which extend the earlier results of Bonsall [5] and Nadler [24] over a variable domain. These results have been further generalized by Mishra et al. [16-22] in different settings. In this paper, we obtain a number of stability results in 2-metric spaces for a much wider class of (ψ, ϕ) -weakly contractive mappings (see [19, Remark1.1]) which include the well known contraction mappings, nonlinear contractions due to Boyd and Wong [7] and weakly contractive mappings (see [1], [27] for details). The results obtained herein thus compliment the results of Fraser and Nadler [10], Barbet and Nachi [4] and generalize the results of Mishra et al. [21] to 2-metric spaces.

2. Preliminaries

Throughout this paper, \mathbb{N} will denote the set of natural numbers while $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$.

For the sake of completeness and an easy reading, we recall some basic concepts on 2-metric spaces. For details we refer to Gähler [11] and Iséki [12-14].

Definition 2.1. Let X be a non-empty set. A real valued function $\rho: X \times X \times X \to \mathbb{R}$ is said to be a 2-metric on X if the following conditions are satisfied:

- (a) To each pair of distinct points $a, b \in X$ there exists a point $c \in X$ such that $\rho(a, b, c) \neq 0$;
- (b) If at least two of a, b, c are equal then $\rho(a, b, c) = 0$;
- (c) $\rho(a,b,c) = \rho(b,c,a) = \rho(a,c,b)$ for all $a,b,c \in X$ (symmetry about three variables);
- (d) $\rho(a,b,c) \leq \rho(a,b,d) + \rho(a,d,c) + \rho(d,b,c)$ for all $a,b,c,d \in X$ (triangular area inequality).

When ρ is a 2-metric on X, then the ordered pair (X, ρ) is called a 2-metric space. It is easily seen that ρ is non-negative and it abstracts the properties of the area function for

Euclidean triangles in the same manner as a metric abstracts the properties of the length function.

Definition 2.2. A sequence $\{x_n\}$ in a 2-metric space (X, ρ) is said to be convergent with limit $z \in X$ if $\lim_{n \to \infty} \rho(x_n, z, a) = 0$ for all $a \in X$. Notice that if the sequence $\{x_n\}$ converges to z, then $\lim_{n \to \infty} \rho(x_n, a, b) = \rho(z, a, b)$ for all $a, b \in X$. Further, the sequence $\{x_n\}$ is said to be a Cauchy sequence if $\lim_{m,n \to \infty} \rho(x_m, x_n, a) = 0$ for all $a \in X$. If every Cauchy sequence in X is convergent, (X, ρ) is said to be a complete 2-metric space.

Definition 2.3. Let (X, ρ) be a 2-metric space and $T: X \to X$. Then T is called (ψ, ϕ) -weakly contractive if

$$(2.1) \qquad \psi\left(\rho(Tx, Ty, a)\right) \le \psi\left(\rho(x, y, a)\right) - \phi\left(\rho(x, y, a)\right)$$

for all $x, y, a \in X$ where $\psi, \phi : [0, \infty) \to [0, \infty)$ are both continuous functions such that $\psi(t), \phi(t) > 0$ for $t \in (0, \infty)$ and $\psi(0) = 0 = \phi(0)$. In addition, ϕ is nondecreasing and ψ is increasing(strictly).

If we take $\psi(t) = t$ in (2.1), then it reduces to

(2.2)
$$\rho(Tx, Ty, a) \le \rho(x, y, a) - \phi(\rho(x, y, a))$$

for all $x, y, a \in X$. In this case, T is called weakly contractive mapping [27].

If we take $\phi(t) = t - \alpha(t)$ in (2.2), then it reduces to

(2.3)
$$\rho(Tx, Ty, a) \le \alpha(\rho(x, y, a))$$

for all $x, y \in X$, where $\alpha : [0, \infty) \to [0, \infty)$ is upper semicontinuous from the right and $\alpha(t) < t$ for t > 0. We note that $\alpha(0) = 0$. In this case, T is called a nonlinear contraction [7].

If we take $\phi(t) = (1-k)t$ for $k \in [0,1)$, $\psi(t) = t$ in (2.1), then it reduces to

(2.4)
$$\rho(Tx, Ty, a) \le k\rho(x, y, a)$$

for all $x, y, a \in X$. In this case, T is called a k-contraction.

For corresponding definitions in a metric space, we refer to Mishra et al. [19] (see also [9]).

The class of (ψ, ϕ) - weakly contractive mappings was initially introduced and studied by Dutta and Choudhury [9] where both ϕ and ψ were assumed to be nondecreasing. However, recently it was observed by Bose and Roychowdhury [6] (see also [8]) that, in the above definition the function ψ must be assumed to be strictly increasing.

It is well known that a contraction mapping in a 2-metric space X has a unique fixed point. Initially, an additional requirement of boundedness was placed on X by Iséki et al. [14] and which was dispensed with subsequently by Rhoades [26] and Lal and Singh [15] independently. Note that, in a complete 2-metric space, a convergent sequence need not be Cauchy (see Naidu and Prasad [25, Example 0.1]), but every convergent sequence in a 2-mertic space (X, ρ) is Cauchy whenever ρ is continuous. However, the converse need not be true (see Naidu and Prasad [25, Example 0.2]). For some recent developments on fixed points in 2-metric spaces, we refer to Aliouche and Simpson [2].

Throughout this paper, let (X, ρ) be a 2-metric space with a continuous 2-metric ρ .

3. Stability results in 2-metric spaces

First we recall the following definitions from Mishra et al. [20] (see also Barbet and Nachi [4] for a comparison).

Definition 3.1. Let $\{X_n\}_{n\in\overline{\mathbb{N}}}$ be a family of nonempty subsets of a 2-metric space X and $\{T_n: X_n \to X\}_{n\in\overline{\mathbb{N}}}$, a family of mappings. Then:

 T_{∞} is called a (G)-limit of the sequence $\{T_n\}_{n\in\mathbb{N}}$, or equivalently $\{T_n\}_{n\in\mathbb{N}}$ satisfies the property (G) if the following condition holds:

(G): $Gr(T_{\infty}) \subset \liminf Gr(T_n)$: for every $z \in X_{\infty}$, there exists a sequence $\{x_n\}$ in $\prod_{n \in \mathbb{N}} X_n$ such that

$$\lim_{n\to\infty}\rho(x_n,z,a)=0 \text{ and } \lim_{n\to\infty}\rho(T_nx_n,T_\infty z,a)=0 \text{ for all } a\in X,$$

where Gr(T) denotes the graph of T.

 T_{∞} is called a (H)-limit of the sequence $\{T_n\}_{n\in\mathbb{N}}$, or equivalently $\{T_n\}_{n\in\overline{\mathbb{N}}}$ satisfies the property (H) if the following condition holds:

(H): For all sequences $\{x_n\}$ in $\prod_{n\in\mathbb{N}}X_n$, there exists a sequence $\{y_n\}$ in X_∞ such that $\lim_{n\to\infty}\rho(x_n,y_n,a)=0$ and $\lim_{n\to\infty}\rho(T_nx_n,T_\infty y_n,a)=0$ for all $a\in X$.

The following classical results were obtained by Fraser and Nadler [10].

Theorem 3.2. [10, Theorem 2]. Let (X,d) be a metric space and $\{d_n\}_{n\in\mathbb{N}}$ a sequence of metrics on X converging uniformly to d, where each d_n is equivalent to d. Let $\{T_n : X \to X\}_{n\in\mathbb{N}}$ be a sequence of contractive mappings on (X,d_n) converging pointwise to a mapping $T_\infty : X \to X$. If for each $n \in \mathbb{N}$, x_n is a fixed point of T_n , and if $\{x_n\}_{n\in\mathbb{N}}$ admits a subsequence converging to x_∞ , then x_∞ is a fixed point of T_∞ .

Theorem 3.3. [10, Theorem 3]. Let (X,d) be a metric space and $\{d_n\}_{n\in\mathbb{N}}$ a sequence of metrics on X converging uniformly to d. Let $\{T_n: X \to X\}_{n\in\mathbb{N}}$ be a sequence of k-contraction mappings on (X,d_n) converging pointwise to a mapping $T_\infty: X \to X$. If for each $n \in \overline{\mathbb{N}}$, x_n is a fixed point of T_n , then the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x_∞ .

The above theorems have recently been extended to nonlinear contraction mappings due to Boyd and Wong [7] by Mishra et al.[21].

Following Nachi [23](see also [21]), we have the following convergence properties in 2-metric spaces.

Definition 3.4. Let (X, ρ) be a 2-metric space. $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X and $\{X_n\}_{n\in\mathbb{N}}$ a family of nonempty subsets of X. Then $\{\rho_n\}_{n\in\mathbb{N}}$ is said to satisfy property:

(A): For all $x \in X_{\infty}$, $a \in X$ and $\{x_n\}_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_n$, $\lim_{n \to \infty} \rho_n(x_n, x, a) = 0 \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x, a) = 0$.

(A₀): For all $x \in X_{\infty}$, $a \in X$ and $\{x_n\}_{n \in \mathbb{N}} \subset X$, $\lim_{n \to \infty} \rho_n(x_n, x, a) = 0 \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x, a) = 0$.

- **(B):** For all sequences $\{x_n\}_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}X_n$, there exists a sequence $\{y_n\}$ in X_∞ such that $\lim_{n\to\infty}\rho_n(x_n,y_n,a)=0 \Leftrightarrow \lim_{n\to\infty}\rho(x_n,y_n,a)=0$ for all $a\in X$.
- (B₀): For all sequences $\{x_n\}_{n\in\mathbb{N}}\subset X$ and $\{y_n\}_{n\in\mathbb{N}}\subset X$: $\lim_{n\to\infty}\rho_n(x_n,y_n,a)=0\Leftrightarrow\lim_{n\to\infty}\rho(x_n,y_n,a)=0.$

4. Convergence of fixed points

In this section we present some results for a sequence $\{T_n\}_{n\in\mathbb{N}}$ of (ψ,ϕ) - weakly contractive mappings in 2-metric spaces. The domain of definition being different for each T_n , the convergence of $\{T_n\}_{n\in\mathbb{N}}$ under consideration will be in the sense of (G) and (H).

The following Proposition gives a sufficient condition for the existence of a unique G-limit.

Proposition 4.1. Let X be a 2-metric space, $\{X_n\}_{n\in\mathbb{N}}$ a family of nonempty subsets of X and $\{T_n: X_n \to X\}_{n\in\mathbb{N}}$ a sequence of (ψ, ϕ) -weakly contractive mappings. If $T_\infty: X_\infty \to X$ is a (G)-limit of $\{T_n\}$, then T_∞ is unique.

Proof. Assume that $T_{\infty}: X_{\infty} \to X$ and $T_{\infty}^*: X_{\infty} \to X$ are (G)-limit mappings of the sequence $\{T_n\}$. Hence for any point $x \in X_{\infty}$, there exist two sequences $\{x_n\}$ and $\{y_n\}$ in $\prod_{n \in \mathbb{N}} X_n$ converging to x such that $\{T_n x_n\}$ and $\{T_n y_n\}$ converge to T_{∞} and T_{∞}^* respectively. Therefore

$$\lim_{n\to\infty} \rho\left(T_n x_n, T_\infty x, a\right) = 0, \ \lim_{n\to\infty} \rho\left(T_n y_n, T_\infty^* x, a\right) = 0 \ \text{ for all } a\in X.$$

Since T_n is (ψ, ϕ) -weakly contractive for each $n \in \mathbb{N}$,

$$\psi(\rho(T_n x_n, T_n y_n, a)) \le \psi(\rho(x_n, y_n, a)) - \phi(\rho(x_n, y_n, a))$$

which implies that

$$\psi(\rho(T_n x_n, T_n y_n, a)) \le \psi(\rho(x_n, y_n, a)).$$

As ψ is increasing, from the above inequality we have

$$(4.5) \rho(T_n x_n, T_n y_n, a) \le \rho(x_n, y_n, a).$$

By the triangular area inequality and condition (4.5), for all $n \in \mathbb{N}$ and for any $a \in X$, we have

$$\rho(T_{\infty}x, T_{\infty}^*x, a) \leq \rho(T_{\infty}x, T_{\infty}^*x, T_nx_n) + \rho(T_{\infty}x, T_nx_n, a) + \rho(T_nx_n, T_{\infty}^*x, a)
\leq \rho(T_{\infty}x, T_{\infty}^*x, T_nx_n) + \rho(T_{\infty}x, T_nx_n, a) + \rho(T_nx_n, T_{\infty}^*x, T_ny_n)
+ \rho(T_nx_n, T_ny_n, a) + \rho(T_ny_n, T_{\infty}^*x, a)
\leq \rho(T_{\infty}x, T_{\infty}^*x, T_nx_n) + \rho(T_{\infty}x, T_nx_n, a) + \rho(T_nx_n, T_{\infty}^*x, T_ny_n)
+ \rho(x_n, y_n, a) + \rho(T_ny_n, T_{\infty}^*x, a) \to 0 \text{ as } n \to \infty.$$

Hence we deduce that $\lim_{n\to\infty} \rho(T_{\infty}x, T_{\infty}^*x, a) = 0$ and the unicity of the limit is established.

When $\psi(t) = t$ and $\phi(t) = t - \alpha(t)$ in the above proposition, we get the following result.

Corollary 4.2. [18, Proposition 3.3]. Let X be a 2-metric space, $\{X_n\}_{n\in\mathbb{N}}$ a family of nonempty subsets of X and $\{T_n: X_n \to X\}_{n\in\mathbb{N}}$ a sequence of nonlinear contraction mappings. If $T_\infty: X_\infty \to X$ is a (G)-limit of $\{T_n\}$, then T_∞ is unique.

Now we present the following analogue of Theorem 3.2 to 2-metric spaces for the mappings satisfying condition (2.1).

Theorem 4.3. Let (X, ρ) be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X satisfying the property (A). Let $\{X_n\}_{n\in\overline{\mathbb{N}}}$ be a family of nonempty subsets of X and $\{T_n: X_n \to X_n\}_{n\in\mathbb{N}}$ a sequence of (ψ, ϕ) -weakly contractive mappings on (X_n, ρ_n) converging in the sense of (G) to a mapping $T_\infty: X_\infty \to X$. If for each $n \in \overline{\mathbb{N}}$, x_n is a fixed point of T_n and if the sequence $\{x_n\}_{n\in\mathbb{N}}$ admits a subsequence converging to a point $x_\infty \in X_\infty$, then x_∞ is a fixed point of T_∞ .

Proof. Let $\{x_{n_j}\}$ be a subsequence of $\{x_n\}$ converging to $x_{\infty} \in X_{\infty}$. Then by the property (G) there exists a sequence $\{y_n\} \in \prod_{n \in \mathbb{N}} X_n$ such that:

$$\lim_{n\to\infty} \rho(y_n, x_\infty, a) = 0 \text{ and } \lim_{n\to\infty} \rho(T_n y_n, T_\infty x_\infty, a) = 0 \text{ for all } a \in X.$$

Therefore by (A),

$$\lim_{n\to\infty} \rho_n(y_n, x_\infty, a) = 0 \text{ and } \lim_{n\to\infty} \rho_n(T_n y_n, T_\infty x_\infty, a) = 0.$$

If we define a sequence $\{z_n\}$ such that

$$z_{n_j} = x_{n_j} \text{ for all } j \in \mathbb{N},$$

 $z_n = y_n \text{ if } n \neq n_j, \text{ for any } j \in \mathbb{N}.$

Then $\lim_{n\to\infty} \rho(z_n, x_\infty, a) = 0$ and so $\lim_{n\to\infty} \rho_n(z_n, x_\infty, a) = 0$, by (A).

Now

$$\rho(z_n, y_n, a) \le \rho(z_n, y_n, x_\infty) + \rho(z_n, x_\infty, a) + \rho(x_\infty, y_n, a) \to 0 \text{ as } n \to \infty,$$

and thus

$$\lim_{n \to \infty} \rho_n(z_n, y_n, a) = 0.$$

Further, we have

$$(4.6) \rho_{n_{j}} \left(T_{n_{j}} z_{n_{j}}, T_{\infty} x_{\infty}, a \right) \leq \rho_{n_{j}} \left(T_{n_{j}} z_{n_{j}}, T_{\infty} x_{\infty}, T_{n_{j}} y_{n_{j}} \right) + \rho_{n_{j}} \left(T_{n_{j}} z_{n_{j}}, T_{n_{j}} y_{n_{j}}, a \right) + \rho_{n_{j}} \left(T_{n_{j}} y_{n_{j}}, T_{\infty} x_{\infty}, a \right).$$

Since T_{n_j} is a (ψ, ϕ) -weakly contractive mapping on (X_{n_j}, ρ_{n_j}) for each $j \in \mathbb{N}$, we have

$$\psi(\rho_{n_j}(T_{n_j}z_{n_j}, T_{n_j}y_{n_j}, a)) \leq \psi(\rho_{n_j}(z_{n_j}, y_{n_j}, a)) - \phi(\rho_{n_j}(z_{n_j}, y_{n_j}, a))$$

$$\leq \psi(\rho_{n_j}(z_{n_j}, y_{n_j}, a)).$$

By the monotonicity of ψ , we obtain

(4.7)
$$\rho_{n_j}(T_{n_j}z_{n_j}, T_{n_j}y_{n_j}, a) \le \rho_{n_j}(z_{n_j}, y_{n_j}, a).$$

From (4.6) and (4.7) we have

$$\rho_{n_{j}}\left(T_{n_{j}}z_{n_{j}},T_{\infty}x_{\infty},a\right) \leq \rho_{n_{j}}\left(T_{n_{j}}z_{n_{j}},T_{\infty}x_{\infty},T_{n_{j}}y_{n_{j}}\right) + \rho_{n_{j}}\left(z_{n_{j}},y_{n_{j}},a\right) + \rho_{n_{j}}\left(T_{n_{j}}y_{n_{j}},T_{\infty}x_{\infty},a\right).$$

On taking the limit as $j \to \infty$, we obtain

(4.8)
$$\lim_{j \to \infty} \rho_{n_j} \left(T_{n_j} z_{n_j}, T_{\infty} x_{\infty}, a \right) = 0.$$

Since $T_{n_j}z_{n_j}=T_{n_j}x_{n_j}=x_{n_j}$ and x_{n_j} converges to x_{∞} as $j\to\infty$, (4.8) becomes $\rho_{n_j}(x_{\infty},T_{\infty}x_{\infty},a)=0$ for all $a\in X$. Hence $T_{\infty}x_{\infty}=x_{\infty}$.

Using Theorem 4.3, we can deduce the following results.

Corollary 4.4. Let (X, ρ) be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X satisfying the property (A). Let $\{X_n\}_{n\in\overline{\mathbb{N}}}$ be a family of nonempty subsets of X and $\{T_n: X_n \to X_n\}_{n\in\mathbb{N}}$ a sequence of k-contraction mappings on (X_n, ρ_n) converging in the sense of (G) to a mapping $T_\infty: X_\infty \to X$. If for each $n \in \overline{\mathbb{N}}$, x_n is a fixed point of T_n and if the sequence $\{x_n\}_{n\in\mathbb{N}}$ admits a subsequence converging to a point $x_\infty \in X_\infty$, then x_∞ is a fixed point of T_∞ .

Proof. This comes from Theorem 4.3, when $\psi(t) = t$ and $\phi(t) = (1 - k)t$, $k \in [0, 1)$. \square When $X_n = X$ for all $n \in \overline{\mathbb{N}}$ in Theorem 4.3, we have the following result:

Corollary 4.5. Let X be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$, a sequence of 2-metrics on X satisfying the property (A_0) . Let $\{T_n: X \to X\}_{n\in\mathbb{N}}$ be a sequence of (ψ, ϕ) -weakly contractive mappings on (X_n, ρ_n) converging pointwise to a mapping $T_\infty: X_\infty \to X$. If for each $n \in \overline{\mathbb{N}}$, x_n is a fixed point of T_n and if the sequence $\{x_n\}_{n\in\mathbb{N}}$ admits a subsequence converging to a point $x_\infty \in X_\infty$, then x_∞ is a fixed point of T_∞ .

The following theorem which is an extension of Theorem 3.3 to 2-metric spaces is our first stability result.

Theorem 4.6. Let (X, ρ) be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X satisfying the property (A). Let $\{X_n\}_{n\in\overline{\mathbb{N}}}$ be a family of nonempty subsets of X and $\{T_n: X_n \to X_n\}_{n\in\mathbb{N}}$ a sequence of (ψ, ϕ) -weakly contractive mappings on (X_n, ρ_n) converging in the sense of (G) to a mapping $T_\infty: X_\infty \to X$. If for each $n \in \overline{\mathbb{N}}$, x_n is a fixed point of T_n , then the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x_∞ .

Proof. Let $x_{\infty} \in X_{\infty}$ and by the property (G), there exists a sequence $\{y_n\}$ in $\prod_{n \in \mathbb{N}} X_n$ such that

$$\lim_{n \to \infty} \rho(y_n, x_\infty, a) = 0 \text{ and } \lim_{n \to \infty} \rho(T_n y_n, T_\infty x_\infty, a) = 0$$

for all $a \in X$. By the property (A), we deduce that

$$\lim_{n\to\infty} \rho_n(y_n, x_\infty, a) = 0 \text{ and } \lim_{n\to\infty} \rho_n(T_n y_n, T_\infty x_\infty, a) = 0.$$

We have

$$\psi\left(\rho_n(x_n, x_\infty, a)\right) = \psi\left(\rho_n(T_n x_n, T_\infty x_\infty, a)\right)$$

$$\leq \psi\left(\rho_n(T_n x_n, T_\infty x_\infty, T_n y_n) + \rho_n(T_n x_n T_n y_n, a) + \rho_n(T_n y_n, T_\infty x_\infty, a)\right).$$

Making $n \to \infty$ in the above inequality, we obtain

$$\lim_{n \to \infty} \psi \left(\rho_n(x_n, x_\infty, a) \right) \leq \lim_{n \to \infty} \psi \left(\rho_n(T_n x_n, T_\infty x_\infty, T_n y_n) + \rho_n(T_n x_n, T_n y_n, a) + \rho_n(T_n y_n, T_\infty x_\infty, a) \right)$$

$$= \lim_{n \to \infty} \psi \left(\rho_n(T_n x_n, T_n y_n, a) \right)$$

$$\leq \lim_{n \to \infty} \left[\psi \left(\rho_n(x_n, y_n, a) \right) - \phi \left(\rho_n(x_n, y_n, a) \right) \right]$$

$$\leq \lim_{n \to \infty} \psi \left(\rho_n(x_n, y_n, x_\infty) + \rho_n(x_n, x_\infty, a) + \rho_n(x_\infty, y_n, a) \right)$$

$$- \lim_{n \to \infty} \phi \left(\rho_n(x_n, y_n, x_\infty) + \rho_n(x_n, x_\infty, a) + \rho_n(x_\infty, y_n, a) \right)$$

$$= \lim_{n \to \infty} \psi \left(\rho_n(x_n, x_\infty, a) - \lim_{n \to \infty} \phi \left(\rho_n(x_n, x_\infty, a) \right) \right).$$

Hence

$$\lim_{n \to \infty} \phi\left(\rho_n(x_n, x_\infty, a)\right) \le 0.$$

By the property of ϕ we get

$$\lim_{n \to \infty} \rho_n(x_n, x_\infty, a) = 0$$

and the conclusion holds.

Corollary 4.7. Let (X, ρ) be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X satisfying the property (A). Let $\{X_n\}_{n\in\overline{\mathbb{N}}}$ be a family of nonempty subsets of X and $\{T_n: X_n \to X_n\}_{n\in\mathbb{N}}$ a sequence of k-contraction mappings on (X_n, ρ_n) converging in the sense of (G) to a mapping $T_\infty: X_\infty \to X$. If for each $n \in \overline{\mathbb{N}}$, x_n is a fixed point of T_n , then the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x_∞ .

Proof. This comes from Theorem 4.6, when
$$\psi(t) = t$$
 and $\phi(t) = (1-k)t$.

If $X_n = X$ for all $n \in \overline{\mathbb{N}}$ in Theorem 4.6, then we have the following:

Corollary 4.8. Let X be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X satisfying the property (A_0) . Let $\{T_n: X \to X\}_{n\in\mathbb{N}}$ be a sequence of (ψ, ϕ) -weakly contractive mappings on (X, ρ_n) converging pointwise to a mapping $T_\infty: X_\infty \to X$. If for each $n \in \overline{\mathbb{N}}$, x_n is a fixed point of T_n , then the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x_∞ .

The following theorem is our second stability result using the (H)-convergence in 2-metric spaces.

Theorem 4.9. Let (X, ρ) be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X satisfying the property (B). Let $\{X_n\}_{n\in\overline{\mathbb{N}}}$ be a family of nonempty subsets of X and $\{T_n: X_n \to X_n\}_{n\in\overline{\mathbb{N}}}$ a sequence of mappings on (X_n, ρ_n) converging in the sense of (H) to a (ψ, ϕ) -weakly contractive mapping $T_\infty: X_\infty \to X$. If for each $n \in \overline{\mathbb{N}}$, $x_n \in X_n$ is a fixed point of T_n , then the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x_∞ .

Proof. By the property (H), there exists a sequence $\{y_n\}$ in X_{∞} such that

$$\lim_{n\to\infty} \rho(x_n,y_n,a) = 0 \text{ and } \lim_{n\to\infty} \rho(T_nx_n,T_\infty y_n,a) = 0 \text{ for any } a\in X.$$

Therefore using the property (B), we have

$$\lim_{n\to\infty} \rho_n(x_n, y_n, a) = 0 \text{ and } \lim_{n\to\infty} \rho_n(T_n x_n, T_\infty y_n, a) = 0 \text{ for any } a \in X.$$

By the triangular area inequality,

$$\psi\left(\rho_n(x_n,x_\infty,a)\right) \leq \psi\left(\rho_n(T_nx_n,T_\infty x_\infty,T_\infty y_n) + \rho_n(T_nx_n,T_\infty y_n,a) + \rho_n(T_\infty y_n,T_\infty x_\infty,a)\right).$$

Taking the limit as $n \to \infty$,

$$\lim_{n \to \infty} \psi \left(\rho_n(x_n, x_\infty, a) \right) \leq \lim_{n \to \infty} \psi \left(\rho_n(T_\infty y_n, T_\infty x_\infty, a) \right)
\leq \lim_{n \to \infty} \left[\psi \left(\rho_n(y_n, x_\infty, a) \right) - \phi \left(\rho_n(y_n, x_\infty, a) \right) \right]
\leq \lim_{n \to \infty} \left[\psi \left(\rho_n(y_n, x_\infty, x_n) + \rho_n(y_n, x_n, a) + \rho_n(x_n, x_\infty, a) \right) \right]
- \lim_{n \to \infty} \left[\phi \left(\rho_n(y_n, x_\infty, x_n) + \rho_n(y_n, x_n, a) + \rho_n(x_n, x_\infty, a) \right) \right]
= \lim_{n \to \infty} \left[\psi \left(\rho_n(x_n, x_\infty, a) \right) - \lim_{n \to \infty} \phi \left(\rho_n(x_n, x_\infty, a) \right) \right].$$

Hence

$$\lim_{n \to \infty} \phi\left(\rho_n(x_n, x_\infty, a)\right) = 0$$

and the conclusion follows.

Corollary 4.10. Let (X, ρ) be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X satisfying the property (B). Let $\{X_n\}_{n\in\overline{\mathbb{N}}}$ be a family of nonempty subsets of X and $\{T_n: X_n \to X_n\}_{n\in\overline{\mathbb{N}}}$ a sequence of mappings on (X_n, ρ_n) converging in the sense of (H) to a k-contraction mapping $T_\infty: X_\infty \to X$. If for each $n \in \overline{\mathbb{N}}$, $x_n \in X_n$ is a fixed point of T_n , then the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x_∞ .

Proof. This comes from Theorem 4.9, when
$$\psi(t) = t$$
 and $\phi(t) = (1 - k)t$.

When $X_n = X$ for all $n \in \overline{\mathbb{N}}$ in Theorem 4.9, we obtain the following.

Corollary 4.11. Let X be a 2-metric space and $\{\rho_n\}_{n\in\mathbb{N}}$ a sequence of 2-metrics on X satisfying the property (B_0) . Let $\{T_n: X \to X\}$ be a sequence of mappings on (X, ρ_n) converging uniformly to a (ψ, ϕ) - weakly contractive mapping $T_\infty: X \to X$. If for each $n \in \overline{\mathbb{N}}$, x_n is a fixed point of T_n then the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x_∞ .

References

- [1] Ya. I. Alber, and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces. New results in operator theory and its applications, 7–22, Oper. Theory Adv. Appl. 98, Birkhäuser, Basel, 1997.
- [2] Abdelkrim Aliouche and Carlos Simpson, Fixed points and lines in 2-metric spaces, Adv. Math. 229(2012), no.1, 668–690.
- [3] L. Barbet and K. Nachi, Convergence des points fixes de k-contractions (Convergence of fixed points of k-contractions), (2006) Preprint, University of Pau.
- [4] L. Barbet and K. Nachi, Sequences of contractions and convergence of fixed points, Monografias del Seminario Matemático Garc ía de Galdeano 33(2006), 51–58.
- [5] F. F. Bonsall, Lectures on Some Fixed Point Theorems of Functional Analysis, Tata Institute of Fundamental Research, Bombay 1962.
- [6] R. K. Bose and M. K. Roychowdhury, Fixed point theorems for generalized weakly contractive mappings, Surv. Math. Appl. 4(2009), 215–238.

- [7] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20(1969), 458–464.
- [8] B. S. Choudhury, P. Konar, B. E. Rhoades and N. Metiya, Fixed point theorems for generalized weakly contractive mappings, Nonlinear Anal. 74(2011), no. 6, 2116–2126.
- [9] P. N. Dutta and B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. 2008, 8 pp.
- [10] R.B. Fraser and Jr.Nadler, Sequences of contractive maps and fixed points, Pacific J. Math. 31(3)(1969), 659–667.
- [11] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26(1963/64), 115–148.
- [12] K. Iséki, Fixed point theorem in 2 -metric spaces, Math. Sem. Notes Kobe Univ. 3(1975), 133–136.
- [13] K. Iséki, Mathematics in 2-metric space, Bull. Korean Math. Soc. 132(1976), 127–135.
- [14] K. Iséki, P. L. Sharma and B. K. Sharma, Contraction type mapping on 2-metric space, Math. Japon. 21 (1976), 67–70.
- [15] S. N. Lal and A. K. Singh, An analogue of Banach's contraction principle for 2-metric spaces, Bull. Austral. Math. Soc. 18(1978), 137–143.
- [16] S. N. Mishra and A. K. Kalinde, On certain stability results of Barbet and Nachi, Fixed Point Theory 12(1)(2011), 137–144.
- [17] S. N. Mishra and Rajendra Pant, Sequences of ϕ -contractions and stability of fixed Points, Indian J. Math. 54(2)(2012), 211–223.
- [18] S. N. Mishra, Rajendra Pant and R. Panicker, Sequences of nonlinear contractions and stability of fixed points, Advances in Fixed Point Theory, 2 (2012), No. 3, 298–312.
- [19] S. N. Mishra, Rajendra Pant and R. Panicker, Sequences of (ψ, ϕ) weakly contractive mappings and stability of fixed points, Int. Journal of Math. Analysis, 7(22)(2013), 1085–1096.
- [20] S. N. Mishra, S. L. Singh and Rajendra Pant, Some new results on stability of fixed points, Chaos, Solitons & Fractals, 45(2012) 1012–1016.
- [21] S. N. Mishra, S. L. Singh and Rajendra Pant, Sequences of ϕ -contractions and convergence of fixed points, Advances in Fixed Point Theory, 3(2013), no. 1, 60–69.
- [22] S. N. Mishra, S. L. Singh, Rajendra Pant and S. Stofile, Some new notions of convergence and stability of common fixed points in 2-metric spaces, Advances in Fixed Point Theory, 2(2012), no. 1, 64–78.
- [23] K. Nachi, Sensibileté et stabilité de points fixes et de solutions d'inclusions, Thesis, University of Pau, 2006.
- [24] S. B. Nadler, Jr., Sequences of contractions and fixed points, Pacific J. Math. 27(1968), 579–585.

- [25] S. V. R. Naidu and J. Rajendra Prasad, Fixed points theorems in 2-metric spaces, Indian J. Pure Appl. Math. 17 (8)(1986), 974–993.
- [26] B. E. Rhoades, Contraction type mappings on a 2-metric space, Math. Nachr. 91(1979), 151–156.
- [27] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47(2001), no. 4, 2683–2693.
- [28] S. L. Singh, A note on the convergence of a pair of sequences of mappings, Arch. Math. 15(1)(1979), 47–52.
- [29] S. L. Singh and B. Ram, A note on the convergence of sequences of mappings and their common fixed points in a 2-metric space, Math. Sem. Not. 9(1981), 181–185.
- [30] S. L. Singh and B. Ram, A note on the convergence of sequences of mappings and their common fixed points in a 2-metric space II, J. Univ. Kuwait Sci. 10(1993), 31–35.