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Abstract. In this paper, we propose a new mathematical model that describes the dynamics of a nonlinear finance

system. The proposed model is formulated by fractional differential equations (FDEs) involving the generalized

Hattaf fractional (GHF) derivative. Firstly, we prove that our fractional model is mathematically and financially

well-posed by means of fixed point theory. Additionally, we study the existence of equilibria. Furthermore,

the stability analysis of the financial model is carefully studied. Finally, numerical simulations are presented to

illustrate our theoretical results.
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1. INTRODUCTION

Finance is the application of economic principles to decision-making that involves the al-

location of money under conditions of uncertainty [1]. Investors allocate their capital across
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various types of financial assets to achieve their specific objectives. In parallel, companies and

governments obtain financing by issuing debt securities in their own names, which then allow

them to finance their activities and projects.

Various mathematical models have been proposed and developed to understand the dynamics

of financial systems. In 2001, Ma and Chen [2, 3] established the foundations of mathemati-

cal modeling in finance using ordinary differential equations (ODEs), revealing the existence

of nonlinear behaviors in the interaction of interest rate, investment demand and price index.

Further, Chen [4] investigated the complex behaviors of a financial system with time-delayed

feedback through numerical modeling. In 2011, Yu et al. [5] constructed a new hyperchaotic

finance system by adding an additional state variable. Subsequently, Tacha et al. [6] oriented

their research towards practical applications with adaptive control and electronic simulation.

The memory effect is an inherent characteristic of the nonlinear dynamics system in finance.

It refers to the collective and historical knowledge, experiences, and information that society

has accumulated over time. This includes knowledge of past political events, financial prac-

tices, and sociocultural norms that shape financial behavior. However, the classical calculus

based on ODEs used in the above models [2, 3, 4, 5, 6] does not allow modeling this memory

effect. Recently, fractional calculus based on FDEs represents a powerful tool for modeling the

memory effect and the hereditary properties that exist in many phenomena arising from various

fields of science, industry and engineering. In finance, He et al. [7] used the Caputo derivative

[8] in the dynamic investigation and fixed-time synchronization of a fractional-order financial

system. Chauhan et al. [9] studied the fractional order financial model by using Caputo-Fabrizio

derivative [10]. Liping et al. [11] analyzed a new financial chaotic model using the Atangana-

Baleanu operator [12].

More recently, Hattaf [13] introduced a new generalized fractional derivative that covered

the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. This fractional derivative

namely generalized Hattaf fractional (GHF) derivative, which used by many authors. In biology,

Hajhouji et al. [14] proposed a mathematical model that takes into account immunological

memory to describe the dynamics of HIV-1 infection in the presence of highly therapy. In

ecology, Assadiki et al. [15] formulated a fractional prey-predator model with the GHF. In
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economics, Lasfar et al. [16] developed a new fractional business cycle model with general

investment and variable depreciation rate taking into consideration the memory effect.

The main objective of this study is to propose a mathematical model formulated by FDEs in-

volving the GHF derivative in order to describe the interaction between interest rate, investment

demand and price index. To that end, the paper is organized as follows. Section 2 provides the

formulation of the model and some interesting concepts needed to the elaboration of this study.

Section 3 presents the existence and uniqueness of solution by means of Banach contraction,

and it discuses the existence of equilibrium points. Section 4 focuses on the stability analysis

of financial equilibrium. Finally, some numerical simulations are given in Section 5.

2. BASIC CONCEPTS AND MODEL FORMULATION

In this section, we first recall the definition of the GHF derivative and its proprieties necessary

for the elaboration of this study. After, we present our fractional finance model.

Definition 2.1. [13] Let p ∈ [0,1), q,γ > 0 and f ∈ H1(t0,T ). The GHF derivative of order p

in the Caputo sense of the function f (t) with respect to the weight function ω(t) is defined as

follows:

(1) Dp,q,γ
t0,t,ω f (t) =

N(p)
1− p

1
ω(t)

∫ t

t0
Eq[−µp(t− τ)γ ]

d
dτ

(ω f )(τ)dτ,

where ω ∈ C1(t0,T ), ω > 0 on [t0,T ], N(p) is a normalization function such that N(0) =

N(1) = 1, µp =
p

1−p and Eq(t) =
+∞

∑
k=0

tk

Γ(qk+1) is the Mittag-Leffler function of parameter q.

The GHF derivative introduced in the above definition generalizes and extends many special

cases existing in the literature. In the fact, when ω(t) = 1 and q = γ = 1, we get the Caputo-

Fabrizio fractional derivative [10], which is given by

CDp,1,1
t0,t,1 f (t) =

N(p)
1− p

∫ t

t0
exp[−µp(t− τ)] f ′(τ)dτ.

We obtain the Atangana-Baleanu fractional derivative [12] when ω(t) = 1 and q = γ = p, which

is given by

CDp,p,p
t0,t,1 f (t) =

N(p)
1− p

∫ t

t0
Ep[−µp(t− τ)p] f ′(τ)dτ.
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For q = γ = p, we get the weighted Atangana-Baleanu fractional derivative [17], which is given

by

CDp,p,p
t0,t,ω f (t) =

N(p)
1− p

1
ω(t)

∫ t

t0
Ep[−µp(t− τ)p]

d
dτ

(ω f )(τ)dτ.

For simplicity, we denote CDp,q,q
t0,t,ω by D p,q

t0,ω . According to [13], the generalized Hattaf frac-

tional integral operator associated to D p,q
t0,ω is defined by

(2) I p,q
t0,ω f (t) =

1− p
N(p)

f (t)+
p

N(p)
RLI q

t0,ω f (t),

where RLI q
t0,ω is the standard weighted Riemann-Liouville fractional integral of order q defined

by

(3) RLI q
t0,ω f (t) =

1
Γ(q)

1
ω(t)

∫ t

t0
(t− τ)q−1

ω(τ) f (τ)dτ.

Theorem 2.2. [13] Let p∈ [0,1), q> 0 and f ∈H1(t0,T ). Then we have the following property:

(4) I p,q
t0,ω(D

p,q
t0,ω f )(t) = f (t)− ω(t0) f (t0)

ω(t)
.

Theorem 2.3. [13] The Laplace transform of ω(t)D p,q
0,ω is given by

L {ω(t)D p,q
0,ω f (t)}(s) = N(p)

1− p
sqL {ω(t) f (t)}(s)− sq−1ω(0) f (0)

sq +µp
.

Lemma 2.4. [18] Let q > 0, x(t), u(t) be nonnegative functions and v(t) = M ≥ 0 with N(p)−

(1− p)M > 0. Assume that

x(t)≤ u(t)+MI p,q
0,ω x(t).

Then

x(t)≤ N(p)
N(p)− (1− p)M

[
u(t)+

∫ t

0

+∞

∑
n=1

(pM)n(t− τ)nq−1u(τ)
Γ(nq) [N(p)− (1− p)M]n

dτ

]
.

Furthermore, if in addition u(t) is a nondecreasing function on [0,T ], we have

x(t)≤ N(p)u(t)
N(p)− (1− p)M

Eq

(
pMT q

N(p)− (1− p)M

)
.

According to Krasnoselskii’s fixed point theorem [19, 20], we have the following lemma.
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Lemma 2.5. [19, 20] Let M be a nonempty closed convex subset of a Banach space (C, ||.||).

Suppose that A and B map M into C such that

(i): Aψ1 +Bψ2 ∈M, for all ψ1,ψ2 ∈M;

(ii): A is a contraction mapping;

(iii): B is continuous and B(M) is contained in a compact subset of C.

Then A+B has a fixed point ψ ∈M.

Now, we propose the following financial model involving GHF derivative:
D p,q

0,ωx(t) = z(t)+(y(t)−a)x(t),

D p,q
0,ωy(t) = 2−by(t)− x2(t),

D p,q
0,ωz(t) = x(t)y(t)− x(t)− cz(t),

(5)

where x(t), y(t) and z(t) denote the interest rate, the investment demand and the price index

at time t, respectively. Further, the positive parameters a, b and c are, respectively, the saving

amount, the cost per investment and elasticity of the demand of the commercial markets.

It is important to note that our financial model presented by system (5) improves and gener-

alizes numerous financial models existing in the literature. For instance,

• When q = p and w(t) = 1, we get the fractional model proposed by Liping et al. [11].

• When p = q = 1 and w(t) = 1, we obtain the model of Ma and Chen [2, 3].

3. THE EXISTENCE OF SOLUTION AND EQUILIBRIUM POINTS

In this section, we first investigate the existence and uniqueness of solutions of system (5) by

means of fixed point theory.

Let C = C([0,T ],R3) be the Banach space of continuous functions g from [0,T ] into R3

equipped with the sup-norm

‖g‖= sup
t∈[0,T ]

|g(t)|.

The system (5) can be rewritten as follows:

(6)

 D p,q
0,ωu(t) = F(t,u(t)),

u(0) = u0,
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where u(t) = (x(t),y(t),z(t))T , u0 = (x(0),y(0),z(0))T and the vector function F is given by

F =


F1

F2

F3

=


z+(y−a)x

2−by+ x2

xy− x− cz

 .

Applying the Hattaf fractional integral to both sides of (6), we get

(7) u(t) =
ω(0)u(0)

ω(t)
+I p,q

0,ω F(t,u(t))

=
ω(0)u0

ω(t)
+

1− p
N(p)

F(t,u(t))+
p

N(p)
1

Γ(q)
1

ω(t)

∫ t

0
(t− τ)q−1

ω(τ)F(τ,u(τ))dτ.

Next, we will demonstrate that F satisfies a Lipschitz condition in its second variable, from

which the following lemma follows.

Lemma 3.1. The vector F is Lipschtiz in its second variable.

Proof. We have

|F(t,u1)−F(t,u2)|= |F1(t,u1(t))−F1(t,u2(t))|+ |F2(t,u1(t))−F2(t,u2(t))|

+ |F3(t,u3(t))−F3(t,u3(t))|

= |z1(t)+(y1(t)−a)x1(t)− z2(t)− (y2(t)−a)x2(t))|

+ |2−by1(t)+ x2
1(t)−2+by2(t)− x2

2(t)|

+ |x1(t)y1(t)− x1(t)− cz1(t)− x2(t)y2(t)+ x2(t)+ cz2(t)|

≤ |z1(t)− z2(t)|+2|y1(t)x1(t)− y2(t)x2(t)|+(a+1)|x1(t)

− x2(t)|+b|y1(t)− y2(t)|+(|x1(t)|+ |x2(t)|)|x1(t)− x2(t)|

+ c|z1(t)− z2(t)|

≤ (a+1+2m1 +2m2)(|x1(t)− x2(t)|+(2m2 +b)|y1(t)− y2(t)|

+(c+1)|z1(t)− z2(t)|,

where m1 = sup
t∈[0,T ]

(|x1(t)|, |x2(t)|) and m2 = sup
t∈[0,T ]

(|y1(t)|, |y2(t)|). Hence, the Lipschitz condi-

tion holds and F satisfies

(8) |F(t,u1)−F(t,u2)| ≤ L|u1−u2|,
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where L = max{a+1+2m1 +2m2,b+2m2,c+1}. �

Now, we consider the following hypothesis:

(H0) : There exist positive constants φ1 and φ2 such that

|F(t,Z(t))| ≤ φ1||Z||+φ2, for all t ∈ [0,T ].

In addition, we define the operators A and B such that:

Au(t) =
ω(0)u0

ω(t)
+

1− p
N(p)

F(t,u(t))

,

Bu(t) =
p

N(p)
1

Γ(q)
1

ω(t)

∫ t

0
(t− τ)q−1

ω(τ)F(τ,u(τ))dτ.

Moreover, we set β1 =
(

1−p
N(p) +

pT q

N(p)Γ(q+1)

)
φ1. Thus, we obtain the following result.

Theorem 3.2. If (H0) is satisfied, then our FDE model (5) has at least one solution when β1 < 1

and L(1−p)
N(p) < 1.

Proof. Let Mm = {u ∈ C : ‖u‖ ≤ m} be a closed and convex set, where m ≥ β2
1−β1

and β2 =

|u0|+
(

1−p
N(p) +

pT q

N(p)Γ(q+1)

)
φ2.

First, we show that Aψ1 +Bψ2 ∈ Em for all ψ1,ψ2 ∈Mm. Using hypothesis (H0), we have

‖Aψ1 +Bψ2‖= max
t∈[0,T ]

∣∣∣∣ω(0)u0

ω(t)
+

1− p
N(p)

F(t,ψ1(t))

+
p

N(p)Γ(q)ω(t)

∫ t

0
(t− τ)q−1

ω(τ)F(τ,ψ2(τ))dτ

∣∣∣∣.
≤ max

t∈[0,T ]

{∣∣∣∣ω(0)u0

ω(t)

∣∣∣∣+ 1− p
N(p)

|F(t,ψ1(t))|

+
p

N(p)Γ(q)ω(t)

∫ t

0
(t− τ)q−1

ω(τ) |F(τ,ψ2(τ))|dτ

}
.

It follows from ω(0)< ω(t), for all t ≥ 0, that

‖Aψ1 +Bψ2‖ ≤ |u0|+
1− p
N(p)

(φ1‖ψ1‖+φ2)+
pT q

N(p)Γ(q+1)
(φ1‖ψ2‖+φ2)

= |u0|+
(

1− p
N(p)

+
pT q

N(p)Γ(q+1)

)
φ2 +

(
1− p
N(p)

+
pT q

N(p)Γ(q+1)

)
φ1m

= β2 +β1m≤ m.

Therefore, Aψ1 +Bψ2 ∈Mm. This verifies the condition (i) of Lemma 2.5.
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For the condition (ii) of Lemma 2.5, we have for all u1,u2 ∈ Em that

‖Au1−Au2‖= max
t∈[0,T ]

1− p
N(p)

|F(t,u1(t))−F(t,u2(t))|

≤ (1− p)
N(p)

L‖u1−u2‖.

As L(1−p)
N(p) < 1, we deduce that A is a contraction mapping.

Finally, we verify that condition (iii) of Lemma 2.5 is satisfied. To this end, we show that

B is continuous, uniformly bounded and equicontinuous. Clearly, the operator B is continuous

due to the continuity of F . Let u ∈Mm, we have

‖Bu‖= max
t∈[0,T ]

∣∣∣∣ p
N(p)Γ(q)ω(t)

∫ t

0
(t− τ)q−1

ω(τ)F(τ,u(τ))dτ

∣∣∣∣
≤ pT q

N(p)Γ(q+1)
[φ1‖u‖+φ2]

≤ pT q

N(p)Γ(q+1)
(φ1m+φ2) .

Therefore, B is uniformly bounded on Mm. To show the equicontinuity of B, let u ∈ Mm and

t1, t2 ∈ [0,T ] with t1 < t2. Then

|Bu(t2)−Bu(t1)|=
p

N(p)Γ(q)

∣∣∣∣∣
∫ t2

0
(t2− τ)q−1 ω(τ)

ω(t2)
F(τ,u(τ))dτ

−
∫ t1

0
(t1− τ)q−1 ω(τ)

ω(t1)
F(τ,u(τ))dτ

∣∣∣∣∣
=

p
N(p)Γ(q)

∣∣∣∣∣
∫ t1

0

[
(t2− τ)q−1 1

ω(t2)
− (t1− τ)q−1 1

ω(t1)

]
ω(τ)F(τ,u(τ))dτ

+
∫ t2

t1
(t2− τ)q−1 ω(τ)

ω(t2)
F(τ,u(τ))dτ

∣∣∣∣∣
≤ p

N(p)Γ(q)

∫ t1

0

∣∣∣(t2− τ)q−1 1
ω(t2)

− (t1− τ)q−1 1
ω(t1)

∣∣∣ω(τ)|F(τ,u(τ))|dτ

+
p

N(p)Γ(q)

∫ t2

t1
(t2− τ)q−1 ω(τ)

ω(t2)
|F(τ,u(τ))|dτ.

Hence,

|Bu(t2)−Bu(t1)| ≤
p

N(p)Γ(q+1)
(φ1‖Z‖+φ2)

[
(t2− t1)q 1

ω(t2)
− tq

2
1

ω(t2)
+ tq

1
1

ω(t1)

]
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+
p

N(p)Γ(q+1)
(φ1‖Z‖+φ2)

[
(t2− t1)q 1

ω(t2)

]
≤ 2p

N(p)Γ(q+1)
(φ1m+φ2)

[
(t2− t1)q 1

ω(t2)

]
.

Since t1 → t2, the right-hand side of the above inequality approaches zero. Therefore, B is

equicontinuous. By the Arzelà-Ascoli theorem, it follows that B is relatively compact and hence

completely continuous. Consequently, condition (iii) of Lemma 2.5 is satisfied, which allows

us to conclude that FDE model (5) has at least one solution. �

Theorem 3.3. Assume that L < N(p)
1−p . If u and v are two solutions of (5), then u = v. This implies

the uniqueness of solution.

Proof. Let u and v are two solutions of (5). We have

u(t)− v(t) = I p,q
0,ω (F(t,u(t)−F(t,v(t))) .

According to Lemma 3.1, we deduce that

|u(t)− v(t)| ≤ LI p,q
0,ω |u(t)− v(t)|.

Using Lemma 2.4, we have

|u(t)− v(t)| ≤ N(p)×0
N(p)− (1− p)L

Eq

(
pLT q

N(p)− (1− p)L

)
,

which leads that u(t) = v(t), for all t ∈ [0,T ]. �

Theorem 3.4. If L( 1−p
N(p) +

T q

Γ(q+1)) < 1, then system (5) has a unique solution for any initial

condition.

Proof. We consider the operator Φ : C → C as follows

(Φu)(t) =
ω(0)u(0)

ω(t)
+I p,q

0,ω F(t,u(t)), t ∈ [0,T ].

It suffices to prove that the operator Φ has a unique fixed point. We first prove that Φ is well

defined. We have

|(Φu)(t)|= |ω(0)u0

w(t)
+I p,q

0,ω F(t,u(t))|

≤ |u0|
ω(0)
ω(t)

+I p,q
0,ω |F(t,u(t))|.
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Since ω(0)< ω(t), for all t ≥ 0, F is Lipschitz continuous and t ≤ T , we deduce that |F(u(t))|

is bounded by a constant D and

|(Φu)(t)| ≤ |u0|+DI p,q
0,w (1)

≤ |u0|+D
(

1− p
N(p)

+
pT q

N(p)Γ(q+1)

)
.

Hence, the operator Φ is well defined. On the other hand, we have for all u1,u2 ∈ C and

t ∈ [0,T ] that

|(Φu1)(t)− (Φu2)(t)|= |I p,q
0,w F(t,u1(t))−F(t,u2(t))|

≤ |1− p
N(p)

(F(t,u1(t))−F(t,u2(t)))+
p

N(p)

RL
I q

0,w(F(t,u1(t))−F(t,u2(t)))|

≤ 1− p
N(p)

L|u1−u2|+
p

N(p)
L||u1−u2||C

T q

Γ(q+1)
.

Then

||Φu1−Φu2||C ≤ L
(

1− p
N(p)

+
pT q

N(p)Γ(q+1)

)
||u1−u2||.

Since L
(

1−p
N(p) +

pT q

N(p)Γ(q+1)

)
< 1, we deduce that Φ is a contraction mapping. Hence, system

(5) has a unique solution. �

In the following, we establish the equilibrium points of our model.

Theorem 3.5.

(i) If 2+2c−b−abc≤ 0, then system (5) has only a trivial equilibrium of the form

E1

(
0,

2
b
,0
)
.

(ii) If 2+2c−b−abc > 0, then system (5) has besides to E1 two other equilibrium points

E2

(√
2+2c−b−abc

c+1
,
ac+1
c+1

,
a−1
c+1

√
2+2c−b−abc

c+1

)
,

and

E3

(
−
√

2+2c−b−abc
c+1

,
ac+1
c+1

,
−(a−1)

c+1

√
2+2c−b−abc

c+1

)
.
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Proof. Any equilibrium point of system (5) clearly satisfies the subsequent algebraic equations:

z+(y−a)x = 0,(9)

2−by− x2 = 0,(10)

xy− x− cz = 0.(11)

From (9), we get z = −(y− a)x and replacing it in (11), we have x = 0 or y =
1+ac
1+ c

. So, we

discuss two cases.

• If x = 0, then y =
2
b

and z = 0. Hence, the first financial equilibrium is E1(0, 2
b ,0).

• If x 6= 0, then y =
1+ac
1+ c

. It follows from (10) that if 2 + 2c − b −

abc > 0, we find two equilibrium points E2(
√

2+2c−b(1+ac)
1+c ,

1+ac
1+ c

,z∗) and

E3(−
√

2+2c−b(1+ac)
1+c ,

1+ac
1+ c

,−z∗), where z∗ =
a−1
c+1

√
2+2c−b(1+ac)

1+c .

�

4. STABILITY ANALYSIS

In this section, we focus on the local stability of the three equilibrium points of our FDE

model.

For any equilibrium point E∗(x∗,y∗,z∗), let X = x−x∗, Y = y−y∗ and Z = z− z∗. By substi-

tuting X , Y and Z into system (5) and linearizing, we get the following system
D p,q

0,ωX(t) = Z(t)+X∗Y (t)+Y ∗X(t)−aX(t),

D p,q
0,ωY (t) =−bY (t)−2X∗X(t),

D p,q
0,ωZ(t) = Y ∗X(t)+X∗Y (t)−X(t)− cZ(t).

(12)

By applying the Laplace transform to system (12), we obtain

∆(s).


X̃(s)

Ỹ (s)

Z̃(s)

=


b1(s)

b2(s)

b3(s)

 ,

where X̃(s) = L {ω(t)X(t)}, Ỹ (s) = L {ω(t)Y (t)}, Z̃(s) = L {ω(t)Z(t)},
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b1(s) = sq−1N(p)ω(0)X(0),

b2(s) = sq−1N(p)ω(0)Y (0),

b3(s) = sq−1N(p)ω(0)Z(0),

and

∆(s) =


x1 x2 x3

x4 x5 0

x7 x8 x9

,

with

x1 = sqN(p)− (y∗−a)(1− p)(sq +µp),

x2 = −x∗(1− p)(sq +µp),

x3 = −(1− p)(sq +µp),

x4 = 2x∗(1− p)(sq +µp),

x5 = sqN(p)+b(1− p)(sq +µp),

x6 = 0,

x7 = −(1− p)(sq +µp)(y∗−1),

x8 = −(1− p)(sq +µp)x∗,

x9 = sqN(p)+ c(1− p)(sq +µp).

Thus, the characteristic equation about E∗ is given by

(13) s3q +a1s2q +a2sq +a3 = 0,

where

a1 =
3µp(1− p)3[2X∗

2
(1+ c)+b(1−Y ∗)+bc(a−Y ∗)]+2µpN(p)(1− p)2[2X∗

2
+(1−Y ∗)

ξ1

+
c(a+b−Y ∗)+b(a−Y ∗)]+N2(p)(1− p)µp(a+b+ c−Y ∗)

ξ1
,

a2 =
3µp

2(1− p)3(2X∗
2
(1+ c)+b(1−Y ∗)+bc(a−Y ∗))+µp

2N(p)(1− p)2

ξ1
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+
(2X∗

2
+(1−Y ∗)+b(a−Y ∗)+ c(a+b−Y ∗))

ξ1
,

a3 =
µ3

p(1− p)3(2X∗
2
(1+ c)+b(1−Y ∗)+bc(a−Y ∗)

ξ1
,

with ξ1 = (1− p)3[2X∗
2
(1+ c)+ b(1−Y ∗)+ bc(a−Y ∗)] +N(p)(1− p)2[2X∗

2
+(1−Y ∗)+

c(a+b−Y ∗)+b(a−Y ∗)]+N2(p)(1− p)(a+b+ c−Y ∗)+N3(p).

Let sq = λ . Hence, (13) becomes

(14) λ
3 +a1λ

2 +a2λ +a3 = 0.

In the order to investigate the stability of the first equilibrium E1 of (5), we consider the follow-

ing hypotheses:

(H1) : N(p)(1− p)2[ab+ac+bc− 2+2c
b −1]+N(p)2(1− p)(a+b+c− 2

b)+N3(p)> (1−

p)3(2+2c−b−abc).

(H2) : N(p)2(1− p)(a+b+c− 2
b)+2N(p)(1− p)2(ab+ac+bc− 2+2c

b −1)> 3(1− p)3(2+

2c−b−abc).

(H3) :
N(p)3(ab+ac+bc− 2+2c

b −1)(a+b+ c− 2
b)

−2−2c+b+abc
> N(p)2 − (1− p)3(9− µp)(−2−

2c+b+abc)−N(p)(1− p)2(9−2µp)(ab+ac+bc− 2+2c
b −1)−2(1− p)N(p)2(a+

b+ c− 2
b).

Theorem 4.1.

(i) If 2+2c-b-abc < 0 and (H1) - (H3) hold, then the trivial equilibrium E1(0, 2
b ,0) is locally

asymptotically stable.

(ii) If 2+2c-b-abc > 0 and (H1) holds, then the trivial equilibrium E1(0, 2
b ,0) is unstable.

Proof. For E1(0, 2
b ,0), (14) becomes

(15) λ
3 + p1λ

2 + p2λ + p3 = 0,

where

p1 =
3bµp(1− p)3(−2−2c+b+abc)+2µpN(p)(1− p)2(ab2 +abc+b2c−2−2c−b)

ξ2

+
µpN2(p)(1− p)(ab+b2 +bc−2)

ξ2
,
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p2 =
3bµp

2(1− p)3(−2−2c+b+abc)+N(p)(1− p)2µp
2(ab2 +abc+b2c−2−2c−b)

ξ2
,

p3 =
bµ3

p(1− p)3(−2−2c+b+abc)
ξ2

,

and ξ2 = (1 − p)3b(−2 − 2c + b + abc) + N(p)(1 − p)2[ab2 + abc + b2c − 2 − 2c − b] +

N2(p)(1− p)(ab+b2 +bc−2)+bN3(p).

For (i), we have 2+2c−b−abc < 0 and (H1) - (H2) hold. Then

p1 > 0, p3 > 0, and p1 p2− p3 > 0.

Based on Routh-Hurwitz criterion, all the roots of equation (14) have negative real

parts.Therefore, the financial equilibrium E1 is locally asymptotically stable.

For (ii), we consider the following function:

f (λ ) = λ
3 + p1λ

2 + p1λ + p3.

We have lim
λ→+∞

f (λ ) = +∞ and f (0) = p3 < 0. Thus, the financial equilibrium E1 is unstable.

�

Next, we analyze the stability of the two remaining equilibrium points. In this case, we consider

the following hypotheses:

(A1) : N(p)(1− p)[4− 3b
1+ac
1+ c

+ b(a + c)] + N(p)2(
a−1
1+ c

+ b + c) + N(p) > −2(1−

p)2(2+2c−b−abc).

(A2) : 2N(p)(1− p)(4−3b
1+ac
1+ c

+b(a+c))+N(p)2(
a−1
1+ c

+b+c)>−6(1− p)(2+2c−

b−abc).

(A3) : N(p)3(4+b(a+c))(
a−1
1+ c

+b+c)+2N(p)2(1− p)(4+b(a+c)−3b
1+ac
1+ c

)2 > 2(2+

2c−b−abc)[(N(p)3+µpN(p)(5p−8)(1− p)4(4+b(a+c)−3b
1+ac
1+ c

)+2N(p)2(p−

1)(
a−1
1+ c

+b+ c)−2(1− p)2(8+ p)(2+2c−b−abc)].

Theorem 4.2. If 2+2c-b-abc > 0 and (A1) - (A3) hold, then the financial equilibrium points E2

and E3 are locally asymptotically stable.

Proof. For E2 and E3, (14) becomes

(16) λ
3 +q1λ

2 +q2λ +q3 = 0,
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where

q1 =
6µp(1− p)2(2+2c−b−abc)(1+ c)+2µpN(p)(1− p)2((4+b(a+ c))

ξ3

+
(1+ c)−3b(1+ac))+N(p)2(1− p)µp((a−1)+(b+ c)(1+ c))

ξ3
,

q2 =
6µ2

p(1− p)3(2+2c−b−abc)(1+ c)+µ2
p(1− p)2N(p)((4+b(a+ c))

ξ3

+
(1+ c)−3b(1+ac))

ξ3
,

q3 =
2µ3

p(1− p)3(2+2c−b−abc)(1+ c)
ξ3

,

and ξ3 = 2(1− p)3(1+ c)(2+ 2c− b− abc) +N(p)(1− p)2((4+ b(a+ c))(1+ c)− 3b(1+

ac))+N(p)2(1− p)((a−1)+(b+ c)(1+ c))+N(p)3(1+ c).

For 2+2c−b−abc > 0 and the conditions (A1) - (A3) hold, we have

q1 > 0, q3 > 0 and q1q2−q3 > 0.

According to the Routh-Hurwitz criterion, we deduce that all the roots of equation (16) have

negative real parts. Therefore, the financial equilibrium E2 and E3 are locally asymptotically

stable. �

5. NUMERICAL SIMULATIONS

This section presents some numerical simulations to illustrate our analytical results. The

discretization of the continuous model (5) is based on the numerical method introduced in [21].

Firstly, we choose a = 3, b = 2 and c = 1. In this case, we have 2+2c−b−abc =−4 < 0.

Then system (5) has the unique equilibrium point E1(0,1,0), which is locally asymptotically

stable. Figure 1 demonstrates this result.
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FIGURE 1. Stability of the trivial equilibrium E1.
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FIGURE 2. Stability of the equilibrium E3.
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FIGURE 3. Behavior of the financial model (5) under varying fractional order p.

FIGURE 4. Phase portraits for different values of p.
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Secondly, we choose a = 0.3, b = 0.1, c = 0.1. In this case, the equilibrium point

E3(1.38071,0.936364,−0.878634) is asymptotically stable. Figure 2 illustrates this result.

Finally, Figures 3 and 4 illustrate the dynamical behaviors of our FDE model (5) for different

values of fractional order p.
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