

Available online at <http://scik.org>

Adv. Fixed Point Theory, 2026, 16:3

<https://doi.org/10.28919/afpt/9702>

ISSN: 1927-6303

A FIXED POINT THEOREM FOR (F, Φ) -WEAK CONTRACTION ON COMPLETE METRIC SPACE

PH. RAJU SINGH^{1,*}, H. MANGLEM SINGH²

¹Department of Mathematics, Moirang College, Moirang 795133, India

²Department of Mathematics, Thambal Marik College, Oinam, India

Copyright © 2026 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. By introducing the notion of (F, ϕ) - weak contraction, we establish a fixed point result using this (F, ϕ) -weak contraction. Our result generalize and extend some well known results in the literature.

Keywords: metric space; fixed point; F -contraction.

2020 AMS Subject Classification: 47H10, 54H25.

1. INTRODUCTION

Throughout this article, we denote by (X, d) a metric space (MS) with metric d , by \mathbb{N} the set of all natural numbers, by \mathbb{R} the set of all real numbers and by \mathbb{R}_+ the set of all positive real numbers.

2. PRELIMINARIES

In 1922, a famous result called Banach Contraction Principle (BCP) was proved by S. Banach [1] and can be stated as follows.

*Corresponding author

E-mail address: rajuphai@yahoo.co.in

Received November 18, 2025

Theorem 2.1. [1] Let (X, d) be a complete MS and $T : X \rightarrow X$ be a mapping satisfying

$$(2.1) \quad d(Tx, Ty) \leq kd(x, y)$$

$\forall x, y \in X$ and $k \in (0, 1)$. Then T has a unique fixed point (FP) in X .

Since then many generalizations were developed with modifications of the right of inequality (2.1) (see [2], [4], [6],[7]).

Replacing the constant k in (2.1) by a function, Boyd and Wong [2] established the following result.

Theorem 2.2. [2]. Let (X, d) be a complete MS and $T : X \rightarrow X$ be a mapping. If there exists an upper semicontinuous from the right function $\phi : [0, \infty) \rightarrow [0, \infty)$ s.t. $\phi(t) \leq t$ for $t \in (0, \infty)$ and $\forall x, y \in X$

$$(2.2) \quad d(Tx, Ty) \leq \phi d(x, y)$$

then the mapping T has a unique FP x^* and the iterative sequence $\{T^n x\}$ converges to x^* , $\forall x \in X$.

Conditions on the function ϕ were modified by many authors (see[5], [6], [7][8]).

Another approach of modifying right of (2.1) is due to Cirić[4].

Theorem 2.3. [4]. Let (X, d) be a complete MS. Let $T : X \rightarrow X$ be a mapping s.t. for some constant $\alpha \in (0, 1)$ and $\forall x, y \in X$,

$$(2.3) \quad d(Tx, Ty) \leq \alpha \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$$

Then T has a unique FP.

A generalization similar to the combination of forms (2.2) and (2.3) was used by Pant [7].

Theorem 2.4. [7]. Let T be a self-mapping of a complete MS (X, d) s.t $\forall x, y \in X$,

$$(2.4) \quad d(Tx, Ty) \leq \phi (M(x, y))$$

where $M(x, y) = \max \left\{ d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\}$, $\phi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ denotes a function s.t. $\phi(t) < t$ for each $t > 0$ and $\lim_{n \rightarrow \infty} \phi^n(t) = 0$. Then T has a unique FP say z . Moreover, T is continuous at z iff $\lim_{x_n \rightarrow z} M(x_n, z) = 0$.

Besides these, Wardowski [11] introduced a new notion called F - contraction and gave examples showing that his new notion is a generalization of Banach contraction.

Definition 2.5. [11] Let $F : \mathbb{R}_+ \rightarrow \mathbb{R}$ be a mapping such that

(F1) F is strictly increasing i.e $\forall \alpha, \beta \in \mathbb{R}_+$ s.t. $\alpha < \beta$, then $F(\alpha) < F(\beta)$

(F2) for each sequence $\{\alpha_n\}$ of positive numbers, $\lim_{n \rightarrow \infty} \alpha_n = 0$ iff

$$\lim_{n \rightarrow \infty} F(\alpha_n) = -\infty$$

(F3) there exists $k \in (0, 1)$ s.t. $\lim_{\alpha \rightarrow 0^+} \alpha^k F(\alpha) = 0$.

A mapping $T : X \rightarrow X$ is called F -contraction if $\exists \tau > 0$ such that

$$(2.5) \quad \forall x, y \in X, d(Tx, Ty) > 0 \implies \tau + F(d(Tx, Ty)) \leq F(d(x, y))$$

Examples of F - contraction are given in [11].

Using F -contraction, Wardowski [11] proved the following theorem generalizing BCP.

Theorem 2.6. [11] Let (X, d) be a complete MS and let $T : X \rightarrow X$ be an F - contraction. Then T has a unique FP $x^* \in X$ and for every $x_0 \in X$ a sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ is convergent to x^* .

In 2014, Wardowski and Dung[12] generalized F - contraction into F -weak contraction as follows.

Definition 2.7. [12] Let (X, d) be a MS. $T : X \rightarrow X$ is called F -weak contraction on (X, d) if $\exists \tau > 0$ s.t. $\forall x, y \in X$ with $d(Tx, Ty) > 0$, implies that

$$(2.6) \quad \tau + F(d(Tx, Ty)) \leq F \left(\max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\} \right)$$

Remark 2.8. [12]

Every F -contraction is an F -weak contraction but the converse is not necessarily true (see example [12]).

Using this notion of F - weak contraction, the authors proved the following theorem extending Wardowski [11] theorem (2.1)

Theorem 2.9. [12] *Let (X, d) be a complete MS and $T: X \rightarrow X$ be a F - weak contraction. If T or F is continuous, then*

- (1) *T has a unique FP $x^* \in X$.*
- (2) *$\forall x \in X$, $\{T^n x\}$ is convergent to x^* .*

Recently, Lukacs and Kajanto[5], proved the following Lemma.

Lemma 2.10. [5] *If $F: (0, \infty) \rightarrow \mathbb{R}$ is an increasing function and $\{\alpha_n\}_{n \in \mathbb{N}} \subset (0, +\infty)$ is a decreasing sequence s.t.*

$$\lim_{n \rightarrow \infty} F(\alpha_n) = -\infty \text{ then } \lim_{n \rightarrow \infty} \alpha_n = 0.$$

Also in [8], Peri and Kumam used new condition $(F3')$ instead of $(F3)$ of Wardowski [11] which is stated as

$(F3')$ F is continuous on $(0, \infty)$.

Now, we denote by \mathfrak{I} the family of all functions satisfying $(F1)$ and $(F3')$.

Example 2.11. *Let $F_1(x) = 2x$, $F_2(x) = x^n + x$, $n > 0$. Then $F_1, F_2, F_3 \in \mathfrak{I}$.*

It is noted that condition $(F3)$ and $(F3')$ are independent ([8],Remark 1.1).

$$\text{Let } M(x, y) = \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\}.$$

$$\text{Clearly, } \max \left\{ a, b, c, \frac{e+f}{2} \right\} \leq \max \{a, b, c, e, f\} \quad \forall a, b, c, e, f \in \mathbb{R}.$$

In this paper, by considering $M(x, y) = \max \{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$, we define (F, ϕ) - weak contraction and prove a FP theorem for (F, ϕ) - weak contraction which generalised some well known result in the literature.

3. MAIN RESULTS

In the following we use the definition

Definition 3.1. *Let Φ be a family of functions $\phi: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ satisfying:*

- ($\phi 1$) ϕ is non decreasing and continuous,
- ($\phi 2$) $\phi(2t) < t$ for $t \in \mathbb{R}_+$.

Remark 3.2. For $t \in (0, \infty)$, we consider that $\phi(2t) < t$ implies that $\phi(t) < t$ but not conversely.

Example 3.3. Let $\phi: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be defined by $\phi(t) = \frac{2}{3}t$. Then ϕ is non-decreasing, continuous and $\phi(t) < t \forall t \in \mathbb{R}_+$. But $\phi(2t) = \frac{2}{3}(2t) = \frac{4}{3}t > t$, so that $\phi(t) < t$ does not imply $\phi(2t) < t$. Now, we define (F, ϕ) -we contraction as follows.

Definition 3.4. Let (X, d) be a MS. A mapping $T: X \rightarrow X$ is called (F, ϕ) -weak contraction on (X, d) if $\exists \tau > 0$ with $F \in \mathfrak{I}$ and $\phi \in \Phi$ s.t $\forall x, y \in X$,

$$(3.1) \quad d(Tx, Ty) > 0 \implies \tau + F(d(Tx, Ty)) \leq F(M(x, y))$$

where

$$(3.2) \quad M(x, y) = \phi(\max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\})$$

Remark 3.5. Let T be (F, ϕ) - weak contraction. Then from (3.1), $\forall x, y \in X$, $Tx \neq Ty$

$$F(d(Tx, Ty)) < \tau + F(d(Tx, Ty)) \leq F(\phi(\max\{(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}))$$

Since $\phi(2t) < t \implies \phi(t) < t$, for $t > 0$, therefore $\forall x, y \in X$, $Tx \neq Ty$

$$F(d(Tx, Ty)) < \tau + F(d(Tx, Ty)) \leq F(\max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\})$$

Then by (F1), we have

$$d(Tx, Ty) < \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\} \forall x, y \in X, Tx \neq Ty$$

Example 3.6. Let $X = [0, 1]$ and d be the usual metric on X i.e

$$d(x, y) = |x - y|, \forall x, y \in X$$

Define $T: X \rightarrow X$ as

$$Tx = \begin{cases} \frac{x}{3}, & x \in [0, 1) \\ \frac{1}{3}, & x = 1 \end{cases}$$

$$\forall x, y \in [0, 1], x \neq y,$$

$$d(Tx, Ty) = \left| \frac{x}{3} - \frac{y}{3} \right| = \frac{1}{3} |x - y| = \frac{1}{3} d(x, y)$$

and

$$d(x, y) \leq \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$$

Therefore, taking $F(x) = 2x$ and $\phi(x) = \frac{4x}{9}$, we can find a real no. $\tau > 0$ (say $\tau = \frac{1}{10}$) s.t. (3.1) holds. Hence T is (F, ϕ) - weak contraction. Now we state our main result.

Theorem 3.7. *Let (X, d) be a complete MS and let $T : X \rightarrow X$ be a (F, ϕ) - weak contraction.*

Then, T has a unique FP $x^ \in X$.*

Proof: Let $x_0 \in X$ be a arbitrary and fixed. Define $\{x_n\}_{n \in \mathbb{N}} \subset X$ s.t. $x_{n+1} = Tx_n, n = 0, 1, 2, \dots$

If $\exists n_0 \in \mathbb{N}$ s.t. $x_{n_0+1} = x_{n_0}$, then $Tx_{n_0} = x_{n_0}$ and the proof is completed.

Suppose $x_{n+1} \neq x_n \forall n \in \mathbb{N}$. Then by (7), $\forall n \in \mathbb{N}$,

$$(3.3) \quad F(d(x_{n+1}, x_n)) = F(d(Tx_n, Tx_{n-1})) \leq F(M(x_n, x_{n-1})) - \tau$$

where

$$\begin{aligned} M(x_n, x_{n-1}) &= \phi(\max \{d(x_n, x_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_{n-1}), d(x_{n-1}, Tx_n)\}) \\ &= \phi(\max \{d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_n), d(x_n, x_n), d(x_{n-1}, x_{n+1})\}) \\ &= \phi(\max \{d(x_n, x_{n-1}), d(x_{n+1}, x_n), d(x_n, x_{n-1}), d(x_n, x_n), d(x_n, x_{n-1}) + d(x_{n+1}, x_n)\}) \\ &= \phi(d(x_n, x_{n-1}) + d(x_{n+1}, x_n)) \end{aligned}$$

If $d(x_{n+1}, x_n) > d(x_n, x_{n-1})$, then from (3.3), using $(\phi 2)$

$$F(d(x_{n+1}, x_n)) \leq F(\phi(2d(x_{n+1}, x_n))) - \tau \leq F(d(x_{n+1}, x_n)) - \tau < F(d(x_{n+1}, x_n))$$

which is a contradiction. Hence, $d(x_{n+1}, x_n) < d(x_n, x_{n-1}) \forall n \in \mathbb{N}$.

Thus, from (3.3), $F(d(x_{n+1}, x_n)) \leq F(d(x_n, x_{n-1})) - \tau \forall n \in \mathbb{N}$.

It follows that

$$(3.4) \quad F(d(x_{n+1}, x_n)) \leq F(d(x_1, x_0)) - n\tau$$

$\forall n \in \mathbb{N}$.

Letting $n \rightarrow \infty$ in (3.4), we have $\lim_{n \rightarrow \infty} F(d(x_{n+1}, x_n)) = -\infty$.

Since $\{d(x_{n+1}, x_n)\}_{n \in \mathbb{N}}$ is a decreasing sequence of positive real numbers s.t. $\lim_{n \rightarrow \infty} F(d(x_{n+1}, x_n)) = -\infty$. Then by Lemma 2.10,

$$\lim_{n \rightarrow \infty} d(x_{n+1}, x_n) = 0$$

$$(3.5) \quad i.e. \lim_{n \rightarrow \infty} d(Tx_n, x_n) = 0$$

Suppose that $\{x_n\}_{n \in \mathbb{N}}$ is not a Cauchy sequence. Then $\forall \varepsilon > 0 \exists \{p(n)\}_{n \in \mathbb{N}}$ and $\{q(n)\}_{n \in \mathbb{N}}$ with $p(n) > q(n) > n$ s.t.

$$(3.6) \quad d(x_{p(n)}, x_{q(n)}) \geq \varepsilon$$

Suppose $p(n)$ is the smallest integer greater than $q(n)$ which satisfy (3.6) i.e.

$$d(x_{p(n)-1}, x_{q(n)}) < \varepsilon \quad \forall n \in \mathbb{N}.$$

Then, $\forall n \in \mathbb{N}$

$$\begin{aligned} \varepsilon \leq d(x_{p(n)}, x_{q(n)}) &\leq d(x_{p(n)}, x_{p(n)-1}) + d(x_{p(n)-1}, x_{q(n)}) \\ &\leq d(x_{p(n)}, x_{p(n)-1}) + \varepsilon \\ &= d(Tx_{p(n)-1}, x_{p(n)-1}) + \varepsilon. \end{aligned}$$

Letting $n \rightarrow \infty$ and using (3.5).

$$(3.7) \quad \varepsilon \leq \lim_{n \rightarrow \infty} d(x_{p(n)}, x_{q(n)}) < \varepsilon \quad i.e. \lim_{n \rightarrow \infty} d(x_{p(n)}, x_{q(n)}) = \varepsilon$$

Since $\lim_{n \rightarrow \infty} d(Tx_n, x_n) = 0 \exists k \in \mathbb{N}$ s.t.

$$(3.8) \quad d(x_{p(n)}, Tx_{p(n)}) \leq \frac{\varepsilon}{4}$$

and

$$(3.9) \quad d(x_{q(n)}, Tx_{q(n)}) \leq \frac{\varepsilon}{4}$$

$\forall n \geq k$. For this k , we claim that

$$d(Tx_{p(n)}, Tx_{q(n)}) = \varepsilon > 0$$

$\forall n \geq k$. Assume that $\exists m \geq k$ s.t. $d(Tx_{p(m)}, Tx_{q(m)}) = 0$, i.e

$$(3.10) \quad d(x_{p(m)+1}, x_{q(m)+1}) = 0$$

From (3.6) using (3.8), (3.9) and (3.10), we have

$$\varepsilon \leq d(x_{p(m)}, x_{q(m)}) \leq d(x_{p(m)}, x_{p(m)+1}) + d(x_{p(m)+1}, x_{q(m)+1}) + d(x_{q(m)+1}, x_{q(m)})$$

$$\begin{aligned}
&= d(x_{p(m)}, Tx_{p(m)}) + d(x_{p(m)+1}, x_{q(m)+1}) + d(x_{q(m)}, Tx_{q(m)}) \\
&< \frac{\varepsilon}{4} + 0 + \frac{\varepsilon}{4} \\
&= \frac{\varepsilon}{2}
\end{aligned}$$

a contradiction. Therefore

$$d(Tx_{p(n)}, Tx_{q(n)}) = \varepsilon > 0$$

$\forall n \geq k$. Then by (3.1), $\forall n \geq k$

$$(3.11) \quad F(d(Tx_{p(n)}, Tx_{q(n)})) \leq F(M(x_{p(n)}, x_{q(n)})) - \tau$$

where

$$\begin{aligned}
M(x_{p(n)}, x_{q(n)}) &= \phi \left(\max \{ d(x_{p(n)}, x_{q(n)}), d(x_{p(n)}, Tx_{p(n)}), d(x_{q(n)}, Tx_{q(n)}), \right. \\
&\quad \left. d(x_{p(n)}, Tx_{q(n)}), d(x_{q(n)}, Tx_{p(n)}) \} \right) \\
&\leq \phi \left(\max \{ d(x_{p(n)}, x_{q(n)}), d(x_{p(n)}, Tx_{p(n)}), d(x_{q(n)}, Tx_{q(n)}), \right. \\
&\quad \left. d(x_{p(n)}, x_{q(n)}) + d(x_{q(n)}, Tx_{q(n)}), d(x_{p(n)}, x_{q(n)}) + d(x_{p(n)}, Tx_{p(n)}) \} \right) \\
&= \phi \left(d(x_{p(n)}, x_{q(n)}) + \frac{\varepsilon}{4} \right)
\end{aligned}$$

Letting $n \rightarrow \infty$ in (3.11) and using (F1), (F3'), (ϕ 1) and (ϕ 2),

$$\begin{aligned}
F(\varepsilon) &\leq F(\phi(\varepsilon + \frac{\varepsilon}{4})) - \tau \\
&\leq F(\phi(2\varepsilon)) - \tau \\
&\leq F(\varepsilon) - \tau \\
&< F(\varepsilon)
\end{aligned}$$

a contradiction. Thus $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy.

Since (X, d) is complete, then $\exists x^* \in X$ s.t. $\lim_{n \rightarrow \infty} x_n = x^*$.

Now we shall prove that x^* is a FP of T .

By (F3'), we will consider two cases.

Case I: If there exists subsequence $\{x_{n_i}\}_{i \in \mathbb{N}}$ of $\{x_n\}_{n \in \mathbb{N}}$ s.t. $x_{n_i} = Tx^* \forall i \in \mathbb{N}$, then $x^* =$

$$\lim_{i \rightarrow \infty} x_{n_i} = \lim_{i \rightarrow \infty} Tx^* = Tx^*$$

Case II : If \exists no such subsequence of $\{x_n\}_{n \in \mathbb{N}}$, then $\exists n_0 \in \mathbb{N}$ s.t. $x_{n+1} \neq Tx^* \forall n \geq n_0$ i.e $d(Tx_n, Tx^*) > 0 \forall n \geq n_0$. Then, by (3.1)

$$(3.12) \quad \tau + F(d(x_{n+1}, Tx^*)) = \tau + F(d(Tx_n, Tx^*)) \leq F(M(x_n, x^*))$$

where

$$(3.13) \quad \begin{aligned} M(x_n, x^*) &= \phi(\max \{d(x_n, x^*), d(x_n, Tx_n), d(x^*, Tx^*), d(x_n, Tx^*), d(x^*, Tx_n)\}) \\ &\leq \phi(\max \{d(x_n, x^*), d(x_n, x_{n+1}), d(x^*, Tx^*), \\ &\quad d(x_n, x^*) + d(x^*, Tx^*), d(x^*, x_{n+1})\}) \end{aligned}$$

We know that $\lim_{n \rightarrow \infty} d(x_n, x^*) = \lim_{n \rightarrow \infty} d(x_{n+1}, x^*) = 0$, then letting $n \rightarrow \infty$ in (3.13) and using $(\phi 1)$ and $(\phi 2)$, we have

$$(3.14) \quad \begin{aligned} \lim_{n \rightarrow \infty} M(x_n, x^*) &= \phi(d(x^*, Tx^*)) \\ &\leq \phi(2d(x^*, Tx^*)) < d(x^*, Tx^*) \end{aligned}$$

Letting $n \rightarrow \infty$ in (3.12) and using $(F1), (F3')$ and (3.14) we have

$$\tau + F(d(x^*, Tx^*)) \leq F(d(x^*, Tx^*))$$

a contradiction as $\tau > 0$. Hence

$$d(x^*, Tx^*) = 0$$

that is x^* is a FP of T .

Now we prove that the FP is unique.

Let x_1^*, x_2^* be two FP of T . Suppose, if possible, that $x_1^* \neq x_2^*$. Then $Tx_1^* \neq Tx_2^*$. Then from (3.1)

$$(3.15) \quad \begin{aligned} \tau + F(d(x_1^*, x_2^*)) &= \tau + F(d(Tx_1^*, Tx_2^*)) \\ &\leq F(M(x_1^*, x_2^*)) \end{aligned}$$

where

$$\begin{aligned} M(x_1^*, x_2^*) &= \phi(\max \{d(x_1^*, x_2^*), d(x_1^*, Tx_1^*), d(x_2^*, Tx_2^*), d(x_1^*, Tx_2^*), d(x_2^*, Tx_1^*)\}) \\ &\leq \phi \max \{d(x_1^*, x_2^*), d(x_1^*, Tx_1^*), d(x_2^*, Tx_2^*), d(x_1^*, x_2^*) + d(x_2^*, Tx_2^*), d(x_1^*, x_2^*) + d(x_1^*, Tx_1^*)\} \end{aligned}$$

$$\begin{aligned}
&= \phi(d(x_1^*, x_2^*)) \\
&\leq \phi(2d(x_1^*, x_2^*)) \\
&< d(x_1^*, x_2^*)
\end{aligned}$$

Therefore, from (3.15), we have

$$\tau + F(d(x_1^*, x_2^*)) \leq F(d(x_1^*, x_2^*))$$

which implies that $\tau \leq 0$, a contradiction. Hence $x_1^* = x_2^*$.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

- [1] S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. <https://doi.org/10.4064/fm-3-1-133-181>.
- [2] D.W. Boyd, J.S.W. Wong, On Nonlinear Contractions, Proc. Am. Math. Soc. 20 (1969), 458–464. <https://doi.org/10.2307/2035677>.
- [3] E. Rakotch, A Note on Contractive Mappings, Proc. Am. Math. Soc. 13 (1962), 459–465. <https://doi.org/10.1090/s0002-9939-1962-0148046-1>.
- [4] L.B. Čirić, A Generalization of Banach’s Contraction Principle, Proc. Am. Math. Soc. 45 (1974), 267–273. <https://doi.org/10.2307/2040075>.
- [5] A. Lukács, S. Kajántó, Fixed Point Theorems for Various Types of F-Contractions in Complete b-Metric Spaces, Fixed Point Theory 19 (2018), 321–334. <https://doi.org/10.24193/fpt-ro.2018.1.25>.
- [6] J. Matkowski, Fixed Point Theorems for Mappings with a Contractive Iterate at a Point, Proc. Am. Math. Soc. 62 (1977), 344–348. <https://doi.org/10.1090/s0002-9939-1977-0436113-5>.
- [7] V. Pant, Remarks on Discontinuity at Fixed Points, J. Indian Math. Soc. 69 (2002), 173–175.
- [8] H. Piri, P. Kumam, Some Fixed Point Theorems Concerning F-Contractions in Complete Metric Spaces, Fixed Point Theory Appl. 2014 (2014), 210. <https://doi.org/10.1186/1687-1812-2014-210>.
- [9] V. Berinde, A Common Fixed Point Theorem for Quasicontraction Type Mappings, Ann. Univ. Sci. Budapest. Sect. Math. 46 (2003), 81–90.
- [10] V. Berinde, A Common Fixed Point Theorem for Compatible Quasi Contractive Self Mappings in Metric Spaces, Appl. Math. Comput. 213 (2009), 348–354. <https://doi.org/10.1016/j.amc.2009.03.027>.

- [11] D. Wardowski, Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces, *Fixed Point Theory Appl.* 2012 (2012), 94. <https://doi.org/10.1186/1687-1812-2012-94>.
- [12] D. Wardowski, N.V. Dung, Fixed Points of F-Weak Contractions on Complete Metric Spaces, *Demonstr. Math.* 47 (2014), 146–155. <https://doi.org/10.2478/dema-2014-0012>.