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Abstract. By introducing the notion of (F,φ) - weak contraction, we establish a fixed point result using this

(F,φ)-weak contraction. Our result generalize and extend some well known results in the literature.
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1. INTRODUCTION

Throughout this article, we denote by (X ,d) a metric space (MS) with metric d, by N the set

of all natural numbers, by R the set of all real numbers and by R+ the set of all positive real

numbers.

2. PRELIMINARIES

In 1922, a famous result called Banach Contraction Principle (BCP) was proved by S. Banach

[1] and can be stated as follows.
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Theorem 2.1. [1] Let (X ,d) be a complete MS and T : X → X be a mapping satisfying

(2.1) d(T x,Ty)≤ kd(x,y)

∀x,y ∈ X and k ∈ (0,1). Then T has a unique fixed point (FP) in X.

Since then many generalizations were developed with modifications of the right of inequality

(2.1) (see [2], [4], [6],[7]).

Replacing the constant k in (2.1) by a function, Boyd and Wong [2] established the following

result.

Theorem 2.2. [2]. Let (X ,d) be a complete MS and T : X → X be a mapping. If there exists an

upper semicontinuous from the right function φ : [0,∞)→ [0,∞) s.t. φ(t)≤ t for t ∈ (0,∞) and

∀x,y ∈ X

(2.2) d(T x,Ty)≤ φ d(x,y)

then the mapping T has a unique FP x∗ and the iterative sequence {T nx} converges to x∗,

∀ x ∈ X.

Conditions on the function φ were modified by many authors (see[5], [6], [7][8]).

Another approach of modifying right of (2.1) is due to Ciric[4].

Theorem 2.3. [4]. Let (X ,d) be a complete MS. Let T : X → X be a mapping s.t. for some

constant α ∈ (0,1) and ∀ x,y ∈ X,

(2.3) d(T x,Ty)≤ α max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}

Then T has a unique FP.

A generalization similar to the combination of forms (2.2) and (2.3) was used by Pant [7].

Theorem 2.4. [7]. Let T be a self-mapping of a complete MS (X ,d) s.t ∀ x,y ∈ X,

(2.4) d(T x,Ty)≤ φ (M(x,y))
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where M(x,y) = max
{

d(x,T x),d(y,Ty), d(x,Ty)+d(y,T x)
2

}
, φ : R+→ R+ denotes a function s.t.

φ (t)< t for each t > 0 and lim
n→∞

φ n(t) = 0. Then T has a unique FP say z. Moreover, T is

continuous at z iff lim
xn→z

M(xn,z) = 0.

Besides these, Wardowski [11] introduced a new notion called F- contraction and gave ex-

amples showing that his new notion is a generalization of Banach contraction.

Definition 2.5. [11] Let F : R+→ R be a mapping such that

(F1) F is strictly increasing i.e ∀ α,β ∈ R+ s.t. α < β , then F(α)< F(β )

(F2) for each sequence {αn} of positive numbers, lim
n→∞

αn = 0 iff

lim
n→∞

F(αn) =−∞

(F3) there exists k ∈ (0,1) s.t. lim
α→0+

αkF(α) = 0.

A mapping T : X → X is called F-contraction if ∃ τ > 0 such that

(2.5) ∀ x,y ∈ X , d(T x,Ty)> 0 =⇒ τ +F(d(T x,Ty))≤ F(d(x,y))

Examples of F- contraction are given in [11].

Using F-contraction, Wardowski [11] proved the following theorem generalizing BCP.

Theorem 2.6. [11] Let (X ,d) be a complete MS and let T : X → X be an F- contraction. Then

T has a unique FP x∗ ∈ X and for every x0 ∈ X a sequence {T nx0}n∈N is convergent to x∗.

In 2014, Wardowski and Dung[12] generalized F- contraction into F-weak contraction as

follows.

Definition 2.7. [12] .Let (X ,d) be a MS. T : X → X is called F-weak contraction on (X ,d)

if ∃ τ > 0 s.t. ∀ x,y ∈ X with d(T x,Ty)> 0, implies that

(2.6) τ +F(d(T x,Ty))≤ F
(

max
{

d(x,y),d(x,T x),d(y,Ty),
d(x,Ty)+d(y,T x)

2

})
Remark 2.8. [12]

Every F-contraction is an F-weak contraction but the converse is not necessarily true (see ex-

ample [12]).
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Using this notion of F- weak contraction, the authors proved the following theorem extending

Wardowski [11] theorem (2.1)

Theorem 2.9. [12] Let (X ,d) be a complete MS and T : X → X be a F - weak contraction. If

TorF is continuous, then

(1) T has a unique FP x∗ ∈ X.

(2) ∀ x ∈ X, {T nx} is convergent to x∗.

Recently, Lukacs and Kajanto[5], proved the following Lemma.

Lemma 2.10. [5] If F : (0,∞) → R is an increasing function and {αn}n∈N ⊂ (0,+∞) is a

decreasing sequence s.t.

lim
n→∞

F (αn) =−∞ then lim
n→∞

αn = 0.

Also in [8], Peri and Kumam used new condition (F3′) instead of (F3) of Wardowski [11]

which is stated as

(F3′) F is continuous on (0,∞).

Now, we denote by ℑ the family of all functions satisfying (F1) and (F3′).

Example 2.11. Let F1(x) = 2x,F2(x) = xn + x,n > 0.Then F1,F2,F3 ∈ ℑ.

It is noted that condition (F3) and (F3′) are independent ( [8],Remark 1.1).

Let M(x,y) = max
{

d(x,y),d(x,T x),d(y,Ty), d(x,Ty)+d(y,T x)
2

}
.

Clearly, max
{

a,b,c, e+ f
2

}
≤max{a,b,c,e, f} ∀ a,b,c,e, f ∈ R.

In this paper, by considering M(x,y)=max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}, we

define (F,φ) - weak contraction and prove a FP theorem for (F,φ) - weak contraction which

generalised some well known result in the literature.

3. MAIN RESULTS

In the following we use the definition

Definition 3.1. Let Φ be a family of functions φ : R+→ R+ satisfying:

(φ1) φ is non decreasing and continuous,

(φ2) φ(2t)< t for t ∈ R+.
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Remark 3.2. For t ∈ (0,∞),we consider that φ(2t)< t implies that φ(t)< t but not conversely.

Example 3.3. Let φ : R+→ R+ be defined by φ (t)= 2
3t.Then φ is non-decreasing,

continuous and φ(t) < t ∀ t ∈ R+. But φ (2t)=2
3(2t) = 4

3t > t, so that φ(t) < t does not imply

φ(2t)< t. Now, we define(F,φ)-we contraction as follows.

Definition 3.4. Let (X ,d) be a MS. A mapping T : X → X is called (F,φ) -weak contraction on

(X ,d) if ∃ τ > 0 with F ∈ ℑ and φ ∈Φ s.t ∀ x,y ∈ X,

(3.1) d(T x,Ty)> 0 =⇒ τ +F(d(T x,Ty))≤ F(M(x,y))

where

(3.2) M(x,y) = φ (max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)})

Remark 3.5. Let T be (F,φ)- weak contraction. Then from (3.1), ∀ x,y ∈ X , T x 6= Ty

F(d(T x,Ty))< τ +F(d(T x,Ty))≤ F(φ(max{(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}))

Since φ(2t)< t =⇒ φ(t)< t, for t > 0, therefore ∀ x,y ∈ X , T x 6= Ty

F(d(T x,Ty))< τ +F(d(T x,Ty))≤ F(max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)})

Then by (F1), we have

d(T x,Ty)< max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}∀ x,y ∈ X ,T x 6= Ty

Example 3.6. Let X = [0,1] and d be the usual metric on X i.e

d(x,y) =| x− y |,∀ x,y ∈ X

Define T : X → X as

T x =


x
3 , x ∈ [0,1)

1
3 , x = 1

∀ x,y ∈ [0,1],x 6= y,

d(T x,Ty) =| x
3
− y

3
|= 1

3
| x− y |= 1

3
d(x,y)

and

d(x,y)≤max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}
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Therefore , taking F(x) = 2x and φ(x) = 4x
9 , we can find a real no. τ > 0 (say τ = 1

10) s.t.

(3.1) holds. Hence T is (F,φ) - weak contraction. Now we state our main result.

Theorem 3.7. Let (X ,d) be a complete MS and let T : X → X be a (F,φ) - weak contraction.

Then, T has a unique FP x∗ ∈ X.

Proof: Let x0 ∈X be a arbitrary and fixed. Define {xn}n∈N⊂X s.t. xn+1 = T xn,n= 0,1,2, ....

If ∃ n0 ∈ N s.t. xn0+1 = xn0 , then T xn0 = xn0 and the proof is completed.

Suppose xn+1 6= xn ∀ n ∈ N. Then by (7), ∀ n ∈ N,

(3.3) F(d(xn+1,xn)) = F(d(T xn,T xn−1))≤ F(M(xn,xn−1))− τ

where

M(xn,xn−1) = φ(max{d(xn,xn−1),d(xn,T xn),d(xn−1,T xn−1),d(xn,T xn−1),d(xn−1,T xn)})

= φ(max{d(xn,xn−1),d(xn,xn+1),d(xn−1,xn),d(xn,xn),d(xn−1,xn+1)})

= φ(max{d(xn,xn−1),d(xn+1,xn),d(xn,xn−1),d(xn,xn),d(xn,xn−1)+d(xn+1,xn)})

= φ (d(xn,xn−1)+d(xn+1,xn))

If d(xn+1,xn)> d(xn,xn−1), then from (3.3), using (φ2)

F(d(xn+1,xn))≤ F(φ(2d(xn+1,xn)))− τ ≤ F(d(xn+1,xn))− τ < F(d(xn+1,xn))

which is a contradiction. Hence, d(xn+1,xn)< d(xn,xn−1) ∀ n ∈ N.

Thus, from (3.3), F(d(xn+1,xn))≤ F(d(xn,xn−1))− τ ∀ n ∈ N.

It follows that

(3.4) F(d(xn+1,xn))≤ F(d(x1,x0))−nτ

∀ n ∈ N.

Letting n→ ∞ in (3.4), we have lim
n→∞

F(d(xn+1,xn)) =−∞.

Since {d(xn+1,xn)}n∈N is a decreasing sequence of positive real numbers s.t.

lim
n→∞

F(d(xn+1,xn)) =−∞. Then by Lemma 2.10,

lim
n→∞

d(xn+1,xn) = 0
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(3.5) i.e lim
n→∞

d(T xn,xn) = 0

Suppose that {xn}n∈N is not a Cauchy sequence. Then ∀ ε > 0 ∃ {p(n)}n∈N and {q(n)}n∈N

with p(n)> q(n)> n s.t.

(3.6) d(xp(n),xq(n))≥ ε

Suppose p(n) is the smallest integer greater than q(n) which satisfy (3.6) i.e.

d(xp(n)−1,xq(n))< ε ∀ n ∈ N.

Then , ∀ n ∈ N

ε ≤ d(xp(n),xq(n)) ≤ d(xp(n),xp(n)−1)+d(xp(n)−1,xq(n))

≤ d(xp(n),xp(n)−1)+ ε

= d(T xp(n)−1,xp(n)−1)+ ε.

Letting n→ ∞ and using (3.5).

(3.7) ε ≤ lim
n→∞

d(xp(n),xq(n))< ε i.e. lim
n→∞

d(xp(n),xq(n)) = ε

Since lim
n→∞

d(T xn,xn) = 0 ∃ k ∈ N s.t.

(3.8) d(xp(n),T xp(n))≤
ε

4

and

(3.9) d(xq(n),T xq(n))≤
ε

4

∀ n≥ k. For this k, we claim that

d(T xp(n),T xq(n)) = ε > 0

∀ n≥ k. Assume that ∃ m≥ k s.t. d(T xp(m),T xq(m)) = 0, i.e

(3.10) d(xp(m)+1,xq(m)+1) = 0

From (3.6) using (3.8), (3.9) and (3.10), we have

ε ≤ d(xp(m),xq(m)) ≤ d(xp(m),xp(m)+1)+d(xp(m)+1,xq(m+1))+d(xq(m)+1,xq(m))
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= d(xp(m),T xp(m))+d(xp(m)+1,xq(m)+1)+d(xq(m),T xq(m))

<
ε

4
+0+

ε

4

=
ε

2

a contradiction. Therefore

d(T xp(n),T xq(n)) = ε > 0

∀ n≥ k. Then by (3.1), ∀ n≥ k

(3.11) F(d(T xp(n),T xq(n)))≤ F(M(xp(n),xq(n)))− τ

where

M(xp(n),xq(n)) = φ
(
max

{
d(xp(n),xq(n)),d(xp(n),T xp(n)),d(xq(n),T xq(n)),

d(xp(n),T xq(n)),d(xq(n),T xp(n))
})

≤ φ
(
max

{
d(xp(n),xq(n)),d(xp(n),T xp(n)),d(xq(n),T xq(n)),

d(xp(n),xq(n))+d(xq(n),T xq(n)),d(xp(n),xq(n))+d(xp(n),T xp(n))
})

= φ(d(xp(n),xq(n))+
ε

4
)

Letting n→ ∞ in (3.11) and using (F1),(F3′),(φ1) and (φ2),

F(ε)≤ F(φ(ε +
ε

4
))− τ

≤ F(φ(2ε))− τ

≤ F(ε)− τ

< F(ε)

a contradiction. Thus {xn}n∈N is a Cauchy.

Since (X ,d) is complete, then ∃ x∗ ∈ X s.t. lim
n→∞

xn = x∗.

Now we shall prove that x∗ is a FP ofT .

By (F3′), we will consider two cases.

Case I : If there exists subsequence {xni}i∈N of {xn}n∈N s.t. xni = T x∗ ∀ i ∈ N, then x∗ =

lim
i→∞

xni = lim
i→∞

T x∗ = T x∗
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Case II : If ∃ no such subsequence of {xn}n∈N, then ∃ n0 ∈ N s.t. xn+1 6= T x∗ ∀ n ≥ n0 i.e

d(T xn,T x∗)> 0 ∀ n≥ n0. Then, by (3.1)

(3.12) τ +F(d(xn+1,T x∗)) = τ +F(d(T xn,T x∗))≤ F(M(xn,x∗))

where

M(xn,x∗) = φ(max{d(xn,x∗),d(xn,T xn),d(x∗,T x∗),d(xn,T x∗),d(x∗,T xn)}

≤ φ(max{d(xn,x∗),d(xn,xn+1),d(x∗,T x∗),

d(xn,x∗)+d(x∗,T x∗),d(x∗,xn+1)}

(3.13)

We know that lim
n→∞

d(xn,x∗) = lim
n→∞

d(xn+1,x∗) = 0, then letting n→ ∞ in (3.13) and using

(φ1) and(φ2), we have

lim
n→∞

Mxn,x∗) = φ(d(x∗,T x∗))

(3.14) ≤ φ(2d(x∗,T x∗))< d(x∗,T x∗)

Letting n→ ∞ in (3.12) and using (F1),(F3′) and (3.14) we have

τ +F(d(x∗,T x∗))≤ F(d(x∗,T x∗))

a contradiction as τ > 0. Hence

d(x∗,T x∗) = 0

that is x∗ is a FP of T .

Now we prove that the FP is unique.

Let x∗1, x∗2 be two FP of T . Suppose, if possible, that x∗1 6= x∗2. Then T x∗1 6= T x∗2. Then from

(3.1)

τ +F(d(x∗1,x
∗
2)) = τ +F(d(T x∗1,T x∗2))

(3.15) ≤ F(M(x∗1,x
∗
2))

where

M(x∗1,x
∗
2) = φ (max{d(x∗1,x∗2),d(x∗1,T x∗1),d(x

∗
2,T x∗2),d(x

∗
1,T x∗2),d(x

∗
2,T x∗1)}})

≤ φ max{d(x∗1,x∗2),d(x∗1,T x∗1),d(x
∗
2,T x∗2),d(x

∗
1,x
∗
2)+d(x∗2,T x∗2),d(x

∗
1,x
∗
2)+d(x∗1,T x∗1)})
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= φ(d(x∗1,x
∗
2))

≤ φ(2d(x∗1,x
∗
2))

< d(x∗1,x
∗
2)

Therefore, from (3.15), we have

τ +F(d(x∗1,x
∗
2))≤ F(d(x∗1,x

∗
2))

which implies that τ ≤ 0, a contradiction. Hence x∗1 = x∗2.
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