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maps on G-convex spaces. Therefore, our G-convex space theory can be applied to various types of φA-
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1. Introduction

The Knaster–Kuratowski–Mazurkiewicz (simply, KKM) theorem in 1929 provides the

foundations for many of the modern essential results in diverse areas of mathematical

sciences. The KKM theory, first called by the author in 1992, is the study on applications

of numerous equivalent formulations or generalizations of the theorem; see [22-26].
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Since 1993, the author has initiated the study of the KKM theory on generalized convex

spaces (or G-convex spaces) (X,D; Γ) as a common generalization of various general

convexities without linear structures due to many other authors. We have established

within such a frame the foundations of the KKM theory, as well as fixed point theorems

and many other equilibrium results for multimaps. This direction of study has been

followed by a number of other authors.

In the last decade, there have appeared authors who introduced spaces of the form

(X, {ϕA}) having a family {ϕA} of continuous functions defined on simplexes and claimed

that such spaces generalize G-convex spaces without giving any justifications or proper

examples. In fact, a number of modifications or imitations of G-convex spaces have

followed; see [1-6,18,21,27-30,44,52] and other literature. Some authors also introduced

various types of generalized KKM maps and tried to generalize the KKM theorem for their

own settings; see [2-6,18,21,44,52] and the references therein. Most of such generalizations

are disguised forms of known results.

In order to destroy some inadequate concepts and to upgrade the KKM theory, in 2006-

09, we proposed new concepts of abstract convex spaces and the KKM spaces which are

proper generalizations of G-convex spaces and adequate to establish the KKM theory; see

[27-30,32,33,36-44]. Moreover, we noticed that all spaces of the form (X, {ϕA}) can be

unified to φA-spaces (X,D; {φA}A∈〈D〉) or spaces having a family {φA}A∈〈D〉 of singular

simplexes.

In fact, in [28-31,34-36], we showed that various types of φA-spaces can be made into G-

convex spaces in several ways, and various types of generalized KKM maps on φA-spaces

are simply KKM maps on such G-convex spaces. Therefore, our G-convex space theory

can be applied to various types of φA-spaces. As such examples, we obtained KKM type

theorems and very general fixed point theorems on φA-spaces.

However, later in 2009, Khanh et al. [12] introduced another disguised form of φA-spaces

called GFC-spaces, and published several papers on their spaces [7,12-17]. Our aim in the

present paper is to review their works on GFC-spaces and clarify that their basic results

are consequences of previously known ones obtained by the present author. In fact, we



THE KKM THEORY ON φA-SPACES OR GFC-SPACES 357

discuss on the definition of GFC-spaces [7,12-17] (Section 3), artificial terminology adopted

by Khanh et al. [7,12-15] (Section 4), convex subsets of GFC-spaces [7,12-17] (Section 5),

KKM theorems on GFC-spaces [12,13] (Section 6), an example of GFC-spaces in [17]

(Section 7), continuous selection theorems in [17] (Section 8), and weakly KKM theorems

in [17] (Section 9). These basic results are all consequences of previously known ones.

Finally, Section 10 devotes to introduce abstracts and to give further comments on each

of seven papers on GFC-spaces [7,12-17].

2. Abstract convex spaces

We follow our recent works [42,43,47] and the references therein. Let 〈D〉 denote the

set of all nonempty finite subsets of a set D.

Definition 2.1. An abstract convex space (E,D; Γ) consists of a topological space E, a

nonempty set D, and a multimap Γ : 〈D〉 ( E with nonempty values ΓA := Γ(A) for

A ∈ 〈D〉.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for any

N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD
′ ⊂ X.

When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X ∩ D) ⊂ X; in other

words, X is Γ-convex relative to D′ := X ∩D. In case E = D, let (E; Γ) := (E,E; Γ).

Definition 2.2. Let (E,D; Γ) be an abstract convex space and Z a topological space.

For a multimap F : E ( Z with nonempty values, if a multimap G : D( Z satisfies

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D( E is a KKM map

with respect to the identity map 1E.
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A multimap F : E ( Z is called a KC-map [resp., a KO-map] if, for any closed-valued

[resp., open-valued] KKM map G : D ( Z with respect to F , the family {G(y)}y∈D

has the finite intersection property. In this case, we denote F ∈ KC(E,D,Z) [resp.,

F ∈ KO(E,D,Z)].

Definition 2.3. The partial KKM principle for an abstract convex space (E,D; Γ) is

the statement 1E ∈ KC(E,D,E); that is, for any closed-valued KKM map G : D ( E,

the family {G(y)}y∈D has the finite intersection property. The KKM principle is the

statement 1E ∈ KC(E,D,E)∩KO(E,D,E); that is, the same property also holds for any

open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satisfies the (partial)

KKM principle, resp.

Typical examples of KKM spaces can be seen in [42,43] and the references therein.

Recently, Kulpa and Szymanski [19] found some partial KKM spaces which are not KKM

spaces.

Now we have the following diagram for triples (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Convex space =⇒ H-space

=⇒ G-convex space =⇒ φA-space =⇒ KKM space

=⇒ Partial KKM space =⇒ Abstract convex space.

Recall that, in 2010 [43], we derived generalized forms of the Ky Fan minimax inequality,

the von Neumann–Sion minimax theorem, the von Neumann–Fan intersection theorem,

the Fan type analytic alternative, and the Nash equilibrium theorem for partial KKM

spaces. Consequently, our results in [43] unify and generalize most of previously known

particular cases of the same nature.

Moreover, in [42], we clearly derived a sequence of a dozen statements which characterize

the KKM spaces and equivalent formulations of the partial KKM principle. As their

applications, we add more than a dozen statements including generalized formulations of

von Neumann minimax theorem, von Neumann intersection lemma, the Nash equilibrium

theorem, and the Fan type minimax inequalities for any KKM spaces. Consequently,
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[42] unifies and enlarges previously known several proper examples of such statements

for particular types of KKM spaces. Note that [42] contains some incorrectly stated

statements such as (VI), Theorem 4, (XVI), and (XVII). These can be corrected easily.

In a previous work [41] of the present author, we obtained three general KKM type

theorems for abstract convex spaces. In a recent works [47,48], we showed that two of

them can be stated for intersectionally closed-valued KKM maps in the sense of Luc et

al. [20]. Each of such KKM type theorems contains a large number of previously known

particular forms. In [48], we recalled some of them due to the present author in order to

give comments or minor corrections of the proofs of them.

Consider the following related four conditions for a multimap G : D( Z:

(a)
⋂
a∈DG(a) 6= ∅ implies

⋂
a∈DG(a) 6= ∅.

(b)
⋂
a∈DG(a) =

⋂
a∈DG(a) (G is intersectionally closed-valued [20]).

(c)
⋂
a∈DG(a) =

⋂
a∈DG(a) (G is transfer closed-valued).

(d) G is closed-valued.

The following is essentially given in [41,48]:

Theorem C. Let (E,D; Γ) be an abstract convex space, Z a topological space, F ∈

KC(E,D,Z), and G : D( Z a map such that

(1) G is a KKM map w.r.t. F ; and

(2) there exists a nonempty compact subset K of Z such that either

(i) K ⊃
⋂
{G(a) | a ∈M} for some M ∈ 〈D〉; or

(ii) for each N ∈ 〈D〉, there exists a Γ-convex subset LN of E relative to some D′ ⊂ D

such that N ⊂ D′, F (LN) is compact, and

K ⊃ F (LN) ∩
⋂
a∈D′

G(a).

Then we have

F (E) ∩K ∩
⋂
a∈D

G(a) 6= ∅.

Furthermore,



360 SEHIE PARK

(α) if G is transfer closed-valued, then F (E) ∩K ∩
⋂
{G(a) | a ∈ D} 6= ∅; and

(β) if G is intersectionally closed-valued, then
⋂
{G(a) | a ∈ D} 6= ∅.

3. G-convex spaces, φA-spaces and GFC-spaces

Let ∆n be the standard n-simplex with vertices {ei}ni=0. For any A ∈ 〈D〉, let |A| be

its cardinality, ∆A := ∆|A|−1 and ∆A
J be the face of ∆A corresponding to J ∈ 〈A〉; that

is, if A = {a0, a1, . . . , an} and J = {ai0 , ai1 , . . . , aik} ⊂ A, then ∆A
J = co{ei0 , ei1 , . . . , eik}.

The following is well-known:

Definition 3.1. A generalized convex space or a G-convex space (X,D; Γ) consists of a

topological space X, a nonempty set D, and a multimap Γ : 〈D〉( X such that for each

A ∈ 〈D〉, there exists a continuous function φA : ∆A → ΓA such that J ∈ 〈A〉 implies

φA(∆A
J ) ⊂ ΓJ .

For details on G-convex spaces, see [23-26,49] and the references therein, where basic

theory was indicated and lots of examples of G-convex spaces were given.

Recently, there have appeared authors of [1,3-6] and many others who introduced spaces

of the form (X, {ϕA}); see [40,50] and the references therein. Some of them tried to rewrite

certain results on G-convex spaces by simply replacing ΓA by ϕA(∆A) everywhere and

claimed to obtain generalizations without giving any justifications or proper examples.

Motivated by such situation, we introduced the following in 2007:

Definition 3.2. A space having a family {φA}A∈〈D〉 or simply a φA-space

(X,D; {φA})

consists of a topological space X, a nonempty set D, and a family of continuous functions

φA : ∆A → X (that is, singular (|A| − 1)-simplexes) for each A ∈ 〈D〉.

It is clear that any G-convex space is a φA-space. Conversely, a φA-space can be made

into a G-convex space [28,31,34-36,39,40] in several ways. The following is one of them:
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Proposition 3.1. Any φA-space (X,D; {φA}) can be made into a G-convex space (X,D; Γ)

with

ΓN :=
⋃
M⊃N

φM(∆M
N ) for each N ∈ 〈D〉

where M is taken in 〈D〉.

In order to apply our theory of abstract convex spaces to φA-spaces, we observed the

following in [50]:

Proposition 3.2. A φA-space (X,D; {φA}) becomes an abstract convex space (X,D; Γ)

with ΓA = Γ(A) = φA(∆A) for A ∈ 〈D〉

The resulting abstract convex space is not a G-convex space in general, but we have

the following in [50]:

Proposition 3.3. Any φA-space (X,D; {φA}) is a KKM space.

Therefore, any φA-space possesses a large number of properties given in [42,43].

In 2005, Ding [4] introduced the following notion of “a finitely continuous” topological

space (in short, FC-space):

Definition 3.3. ([4], Def. 1.1) (Y, {ϕN}) is said to be a FC-space if Y is a topological

space and for each N = {y0, . . . , yn} ∈ 〈Y 〉 where some elements in N may be same,

there exists a continuous mapping ϕN : ∆n → Y . A subset D of (Y, {ϕN}) is said to be a

FC-subspace of Y if for each N = {y0, . . . , yn} ∈ 〈Y 〉 and for each {yi0 , . . . , yik} ⊂ N ∩D,

ϕN(∆k) ⊂ D where ∆k = co{eij : j = 0, . . . , k}.

In our previous comments on FC-spaces [28,29,31-36,44], we criticized this definition in

several points.

Recall that most of modifications or variants of G-convex spaces (X,D; Γ) are based

on the replacement of Γ(N) by the corresponding φN(∆N); see [44]. The following form

of φA-spaces (X,D; {φA}) gives one of such examples:
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Definition 3.4. ([7,12-17]) Let X be a topological space, A be a nonempty set and Φ be

a family of continuous mappings ϕ : ∆n → X, n ∈ N. Then a triple (X,A,Φ) is said to

be a generalized finitely continuous topological space (GFC-space in short) iff, for each

finite subset N = {a0, a1, . . . , an} of A, there is ϕN : ∆n → X of the family Φ. (Later, we

also use (X,A, {ϕN}) to denote (X,A,Φ).)

In fact, in 2009, Khanh et al. [12] introduced this definition and that of certain gener-

alized KKM mappings. They noted incorrectly that G-convex spaces are special case of

GFC-spaces and that the G-convex space and the FC-space are incomparable. They also

missed to give any proper examples to support their claims. Actually, their GFC-spaces

are simply our φA-spaces (X,D; {φA}A∈〈D〉) and, hence, are essentially same to G-convex

spaces.

4. Artificial Terminology in GFC-spaces

Since 1995, there have appeared concepts of the compact closure (ccl), compact interi-

or (cint), transfer compactly closed-valued multimap, transfer compactly l.s.c. multimap,

transfer compactly local intersection property, respectively, instead of the basic concepts

of the closure, interior, closed-valued multimap, l.s.c. multimap, and possession of a finite

open cover property. The aim of introducing such unfamiliar terms is to claim theorems

of utmost generality, but, unfortunately, such terms are very difficult to check in practice

and, in many cases, have no proper examples. Therefore they are artificial, impractical,

and useless.

In our previous work [26] in 2000, we showed that we can invalidate many of such

terms on G-convex spaces by replacing the original topology of the underlying space by

a finer topology. However, in the last decade, a number of authors continued to use such

inappropriate terms. Even in 2010, there were authors who were still using such obsolete

terminology.

In a recent paper in 2011 [46], we showed that such adoption of terms is inappropriate

and artificial in the KKM theory of abstract convex spaces. In fact, any theorem with
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a “transfer” attached term is equivalent to the corresponding one without “transfer”.

Moreover, we can invalidate terms with “compactly” attached by giving a finer topology

on the underlying space. In such ways, we obtained simpler formulations of KKM type

theorems, Fan-Browder type fixed point theorems, and other results in the KKM theory

on abstract convex spaces. Consequently, we can upgrade the theory by eliminating the

above-mentioned inappropriate terms and by stating theorems in more elegant forms.

Since 2009, in the works of Khanh et al. [7,12-15] and others, they adopted the above

mentioned artificial terminology. However, later papers of Khanh et al. [16,17] in 2011

did not use such artificial terminology.

5. Definition of convex subsets of GFC-spaces

We have used the following definition:

Definition 5.1. Let (E,D; Γ) be a G-convex space and X ⊂ E, D′ ⊂ D. Then X is

called a Γ-convex subset of (E,D; Γ) relative to D′ if for any J ∈ 〈D′〉, we have ΓJ ⊂ X.

This can be stated for φA-spaces as follows:

Definition 5.2. Let (E,D; {φA}A∈〈D〉) be a φA-space and X ⊂ E, D′ ⊂ D. Then X

is called a Γ-convex subset of the φA-space relative to D′ if for any N ∈ 〈D〉 and any

J ∈ 〈N ∩D′〉, we have φN(∆N
J ) ⊂ X.

Proposition 5.1. The preceding two definitions are equivalent.

Proof. Assume Definition 5.1. We already showed that every φA-space can be made into

a G-convex space (E,D; Γ) such that for each N ∈ 〈D〉, there exists a continuous function

φN : ∆N → ΓN such that J ∈ 〈N〉 implies φN(∆N
J ) ⊂ ΓJ . For any J ∈ 〈N ∩ D′〉, we

assumed ΓJ ⊂ X. Hence φN(∆N
J ) ⊂ X. Therefore, Definition 5.2 holds.

Conversely, as in Proposition 3.1, for each N ∈ 〈D〉, we defined ΓN :=
⋃
M⊃N φM(∆M

N )

such that (E,D; Γ) is a G-convex space. Suppose that X is a Γ-convex subset of the

φA-space relative to D′. Then for any J ∈ 〈D′〉 and M ∈ 〈D′〉 such that M ⊃ J , we
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have φM(∆M
J ) ⊂ X by Definition 5.2. Hence ΓJ :=

⋃
M⊃J φM(∆M

J ) ⊂ X. This means

Definition 5.1. �

In 2006, Ding added the following to [4, Def. 1.1]:

Definition 5.3. ([5, Def. 2.1]) Let (Y, {ϕN}) be an FC-space. If A and B are two subsets

of Y , B is said to be an FC-subspace of Y relative to A if for each N = {y0, . . . , yn} ∈ 〈Y 〉

and for any {yi0 , . . . , yik} ⊂ A ∩ N , ϕN(∆k) ⊂ B where ∆k = co{eij : j = 0, . . . , k}. If

A = B, then B is called an FC-subspace of Y .

Note that, replacing (E,D,X,D′, φ) by (Y, Y,B,A, ϕ), Definition 5.2 reduces to Ding’s

above definition.

Therefore, instead of using the concept of an FC-subspace of (Y, {ϕN}) relative to A

as in Definition 5.3 [5, Def. 2.1], we may use a Γ-convex subset of the G-convex space

(Y,D; Γ) relative to A ⊂ D. Any interested reader can check this matter in all of the

papers on FC-spaces.

Now we consider the following due to Khanh et al.:

Definition 5.4. ([7]) Let (X,A, {ϕN}) be a GFC-space. Let P,Q ⊂ A and S : A→ 2X be

given. P is called an S-subset of A (an S-subset of A w.r.t. Q) if ∀N = {y0, y1, . . . , yn} ∈

〈D〉, ∀{yi0 , yi1 , . . . , yik} ⊂ N ∩ P (N ∩Q, resp.), φN(∆k) ⊂ S(P ), where ∆k is the face of

∆n corresponding to {yi0 , yi1 , . . . , yik}.

We show that this definition is particular to our Definition 5.2. In fact, by putting

E := X, X := S(P ), D := A and D′ := P , S(P ) is a Γ-convex subset relative to P .

Moreover, by putting E := X, X := S(P ), D := A and D′ := P , S(P ) is a Γ-convex

subset relative to Q.

Remark. 1. In Definition 5.4, Khanh et al. followed Definition 5.3 of FC-subspace due

to Ding [“If, in addition, S is the identity map then an S-subset of X coincides with

an FC-subspace of X” [13]. This statement seems to be an evidence of the artificial

generalization.].
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2. Khanh et al. [17] stated that their (S(P ), P,Φ) is a GFC-space. However, in

Definition 5.4, the map S is hard to construct even in simplest cases. For example,

a G-convex space (E,D; Γ) := (∆n, {ei}ni=0; co) has a Γ-convex subset (X,D′; Γ′) :=

(∆n−1, {ei}n−1
i=0 ; co). How could they construct S : D′ ( X such that S(D′) = X in

this case? They could adopt S(ei) := X = ∆n−1 trivially for each i, 0 ≤ i ≤ n − 1, but

this is no use as they said in [17].

6. KKM theorems of GFC-spaces in [12]

In our previous work [28] and others, we obtained the following:

Proposition 6.1. For a φA-space (X,D; {φA}), any map T : D( X satisfying

φA(∆J) ⊂ T (J) for each A ∈ 〈D〉 and J ∈ 〈A〉

is a KKM map on a G-convex space (X,D; Γ).

The following has a quite long history in the KKM theory developed by ourselves:

Definition 6.1. Let (E,D; Γ) be a G-convex space and Z a topological space. For a

multimap F : E ( Z with nonempty values, if a multimap G : D( Z satisfies

F (ΓA) ⊂ G(A) :=
⋃
a∈A

G(a) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D( E is a KKM map

with respect to the identity map 1E.

As in Proposition 5.1, this definition is easily seen to be equivalent to the following

generalization of Proposition 6.1:

Definition 6.2. Let (E,D; {φA}) be a φA-space and Z a topological space. For a

multimap F : E ( Z with nonempty values, if a multimap G : D( Z satisfies

F (φN(∆N
J )) ⊂ G(J) :=

⋃
a∈J

G(a) for all N ∈ 〈D〉 and J ∈ 〈N〉,

then G is called a KKM map with respect to F . A KKM map G : D( E is a KKM map

with respect to the identity map 1E.
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Khanh et al. gave the following:

Definition 6.3. ([13]) (i) Let (X, Y ; Φ) be a GFC-space and Z be a topological space.

Let F : Y → 2Z and T : X → 2Z be set-valued mappings. F is called a generalized KKM

mapping w.r.t. T (T -KKM mapping in short) if, for each N = {y0, y1, . . . , yn} ∈ 〈Y 〉 and

each {yi0 , yi1 , . . . , yik} ⊂ N , one has T (φN(∆k)) ⊂
⋃k
j=0 F (yij), where ∆k is as above.

(ii) We say that a set-valued mapping F : X → 2Z has the generalized KKM property if

for each T -KKM mapping F : Y → 2Z , the family {F (y) : y ∈ D has the finite intersection

property. By KKM(X, Y, Z) we denote the class of all the mappings F : X → 2Z which

enjoy the generalized KKM property.

Note that (i) is the same to Definition 6.2 and that KKM(X, Y, Z) is our KC(X, Y, Z).

The following KKM theorem of Khanh et al. follows from our Theorem C:

Theorem 6.2. ([12]) Let (X, Y,Φ) be a GFC-space, Z be a topological space, S : Y →

2X , T : X → 2Z and F : Y → 2Z be multifunctions, where T ∈ KKM(X, Y, Z). assume

that

(i1) for each compact subset D ⊂ X, T (D) is compact;

(i2) there is a compact subset K of Z such that for each N ∈ 〈Y 〉, there is an S-subset

LN of Y , containing N with S(LN) or S(LN) being compact and

T (S(LN)) ∩
⋂
y∈LN

cclF (y) ⊂ K;

(ii) F is T-KKM and transfer compactly closed-valued.

Then

T (S(Y )) ∩
⋂
y∈Y

F (y) 6= ∅.

For a long time, the present author and many followers used to denote that LN is a

Γ-convex subset of the whole space X. But, in Theorem 6.2, S(LN) is a Γ-convex subset

of X in our sense. Note that S seems to be an artificial extension of the identity map on

X = Y in Ding’s FC-spaces.
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Proof using Theorem C. We can replace the topology of X by its compactly generated

extension; see [26,46]. In order to apply Theorem C(α), consider the 6-tuple

(E,F,G,D,D′, LN))

instead of

(S(Y ), T, F, Y, LN , S(LN)).

From T ∈KKM(X, Y, Z) = KC(X, Y, Z), it is known that T |S(Y ) ∈ KC(S(Y ), Y, Z) and

hence F ∈ KC(E,D,Z). Note that (ii) implies (1) in Theorem C. We show that (i1) and

(i2) imply condition (ii) of Theorem C. Since S(LN) or S(LN) is compact, T (S(LN)) =

F (LN) is compact by (i1). [The proof of Theorem C works for compact F (LN) !] Then

by (i2), we have

T (S(LN)) ∩
⋂
y∈LN

cclF (y) ⊂ K;

which implies

K ⊃ F (LN) ∩
⋂
y∈D′

G(y).

Then by our Theorem C(α), we have

F (E) ∩K ∩
⋂
y∈D

G(y) 6= ∅.

or

T (S(Y )) ∩K ∩
⋂
y∈Y

F (y) 6= ∅.

This conclusion is slightly better than that of Theorem 6.2. �

From the seminal works of Ky Fan, this kind of whole intersection property can be

reformulated to many equivalent forms like coincidence theorems or geometric forms.

This was done several earlier works of the present author et al.

7. An example of GFC-spaces in [17]

The authors of [17] stated as follows:
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“The class of GFC-spaces contains a large number of spaces with various kinds of

generalized convexity structures such as FC-spaces, G-convex spaces. Recall that a G-

convex space of Park is a triple (X,A,Γ), where X and A are as Definition 3.4 and

Γ : 〈A〉 ( X is such that, for each N ∈ 〈A〉 with cardinality |N | = n + 1, there exists

a continuous map ϕN : ∆n → Γ(A) such that, for each M ∈ 〈N〉, ϕN(∆M) ⊂ Γ(M). A

G-convex space (X,A,Γ) is called trivial iff, for all N ∈ 〈A〉, Γ(N) = X. Of course, any

above-mentioned space can be made into a trivial G-convex space, but a trivial G-convex

space has no use. In [29] it is asserted that any GFC-space is a (nontrivial) G-convex

space, i.e., the latter is more general. However, in fact, the notion of a GFC-space is

properly more general than that of a G-convex space as shown by an example.”

Comments to the example in [17]. 1. This is an example of a GFC-space which is a

‘trivial’ G-convex space.

2. We showed that any φA spaces can be made into G-convex spaces in several ways;

see [28,29,31,34-36].

3. We did not say that any GFC-space is a ‘nontrivial’ G-convex space. Actually, we

did not exclude ‘trivial’ G-convex spaces.

Contrary to the claim in [17], we have the following:

Proposition 7.1. A φA-space (X,D; {φA}) is a G-convex space (X,D; Γ) iff it has a

KKM map G : D( X.

Proof. Suppose that (X,D; {φA}) has a KKM map G : D( X. Then we have

φA(∆A
J ) ⊂ G(J) for each A ∈ 〈D〉 and J ∈ 〈A〉.

Define a map Γ : 〈D〉 ( X by Γ(J) := G(J) =
⋃
{G(a) | a ∈ J} for each and each

J ∈ 〈A〉. Then we have

φA(∆A
J ) ⊂ Γ(J) for each A ∈ 〈D〉 and J ∈ 〈A〉.

Therefore (X,D; Γ) is a G-convex space.
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Conversely, suppose that (X,D; {φA}) is a G-convex space (X,D; Γ). By putting

G(z) := Γ({z}) for z ∈ D, we have a KKM map G : D ( X as above. In fact, for

each A ∈ 〈D〉, we have a continuous function φA : ∆A → G(A) =: Γ(A) such that

J ∈ 〈A〉 implies φA(∆A
J ) ⊂ G(J) =: Γ(J). Hence φA(∆A

J ) ⊂ Γ(J) ⊂ G(J) for each

A ∈ 〈D〉 and J ∈ 〈A〉. Therefore G : D( X is a KKM map on (X,D; {φA}). �

Let us say that a KKM map G : D ( X is ‘trivial’ if G(z) = X for all z ∈ D. Then

the above proposition shows that

Proposition 7.2. A φA-space (X,D; {φA}) is a trivial G-convex space (X,D; Γ) iff it

has a trivial KKM map G : D( X.

Proposition 7.3. A φA-space (X,D; {φA}) is a nontrivial G-convex space (X,D; Γ) iff

it has a nontrivial KKM map G : D( X.

As expressed in [17], of course, any GFC-space without nontrivial KKM map has no use

in the KKM theory. Consequently, in order to show that GFC-spaces properly generalize

G-convex spaces, the authors of [17] should give an example of a GFC-space with a

nontrivial KKM map that is not G-convex. This is impossible by Proposition 7.3.

8. Continuous selection theorems in [17]

Let X be a topological space. The following originates from Horvath [8,9]:

Definition 8.1. For a G-convex space (Y,D; Γ), a multimap T : X ( Y is called a

Φ-map provided that there exists a companion multimap S : X ( D satisfying

(a) for each x ∈ X, J ∈ 〈S(x)〉 implies ΓJ ⊂ T (x); and

(b) X =
⋃
{IntS−(a) | a ∈ D}.

We can define the following equivalent:

Definition 8.2. For a φA-space (Y,D;φA), a multimap T : X ( Y is called a Φ-map

provided that there exists a companion multimap S : X ( D satisfying
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(a) for each x ∈ X, each N ∈ 〈D〉 and each J ∈ 〈N ∩ S(x)〉, we have φN(∆A
J ) ⊂ T (x);

and

(b) X =
⋃
{IntS−(a) | a ∈ D}.

We begin with the following modification of [49, Lemma 3.1]:

Lemma 8.1. Let X be a normal space, (Y,D; {φA)} a φA-space, and S : X ( D a

multimap such that

X =
⋃
{IntS−(a) | a ∈ A}.

for some A ∈ 〈S(X)〉. Then there exist a continuous map s : X → φA(∆A) such that

s(x) ∈ φA(∆A
A∩S(x)) for all x ∈ X.

Proof. Let A := {a0, a1, . . . , an} ∈ 〈D〉 such that X =
⋃n
i=0 IntS−(ai). Note that

ai ∈ S(X) for all i. Since (Y,D; {φA}) is a φA-space, there exists a continuous map φA :

∆A → Y . Let {αi}ni=0 be a partition of unity subordinated to the cover {IntS−(ai)}ni=0

of the normal space X; that is,

(1) for each i, αi : X → [0, 1] is continuous;

(2) Suppαi ⊂ IntS−(ai) for each i; and

(3) for each x ∈ X,
∑n

i=0 αi(x) = 1.

Define a continuous map p : X → ∆A by

p(x) =
n∑
i=0

αi(x)ei =
∑
ai∈Ax

αi(x)ei for x ∈ X,

where {ei}ni=0 are vertices of ∆n,

ai ∈ Ax ⊂ A⇐⇒ αi(x) 6= 0 =⇒ x ∈ IntS−(ai) =⇒ ai ∈ S(x)

and hence Ax ∈ 〈A ∩ S(x)〉 and p(x) ∈ ∆A
Ax

. Therefore,

(φA ◦ p)(x) ∈ φA(∆A
Ax

) ⊂ φA(∆A
A∩S(x))

and s := φA ◦ p : X → Y is a continuous map such that s(x) ∈ φA(∆A
A∩S(x)). �
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Corollary 8.2. ([49, Lemma 3.1]) Let X be a normal space, (Y,D; Γ) a G-convex space,

and S : X ( D a multimap such that

X =
⋃
{IntS−(a) | a ∈ A}.

for some A ∈ 〈S(X)〉. Then there exist a continuous map s : X → ΓA such that s(x) ∈

Γ(A ∩ S(x)) for all x ∈ X.

Proof. Since (Y,D; Γ) is G-convex, there exists a continuous map φA : ∆A → Y such that

φA(∆A) ⊂ ΓA and φA(∆A
J ) ⊂ ΓJ for each J ∈ 〈A〉. Therefore, by Lemma 8.1, there exists

s : X → φA(∆A) ⊂ ΓA such that s(x) ∈ φA(∆A
A∩S(x)) ⊂ Γ(A ∩ S(x)) for all x ∈ X. �

Some history of Corollary 8.2 was given in [49].

The following extends a part of [49, Theorem 1]:

Theorem 8.3. Let X be a normal space, (Y,D; {φA}) a φA-space, T : X ( Y a Φ-map

with a companion map S : X ( D such that

X =
⋃
{IntS−(a) | a ∈ A}.

for some A ∈ 〈S(X)〉.

Then we have the following:

(i) T has a continuous selection f : X → Y such that f(X) ⊂ φA(∆A). More precisely,

there exist two continuous maps p : X → ∆A and φA : ∆A → φA(∆A) ⊂ Y such that

f = φA ◦ p.

(ii) If g : Y → X is a continuous map, then there exists a y0 ∈ Y such that y0 ∈

T (g(y0)).

(iii) If R : X ( Y is a map such that R− has a continuous selection, then R and T

have a coincidence point x0 ∈ X; that is, R(x0) ∩ T (x0) 6= ∅.

Proof. (i) By Lemma 8.1, there exist a continuous map f = s : X → Y such that

f = φA ◦ p and

f(x) ∈ φA(∆A
A∩S(x)) ⊂ φA(∆A) for all x ∈ X.
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Since T is a Φ-map, φA(∆A
A∩S(x)) ⊂ T (x) and hence f is the required continuous selection

of T .

(ii), (iii) just follow of the proofs of corresponding parts of [48, Theorem 3.2]. �

Note that if (Y,D; {φA)} is a G-convex space, Theorem 8.2 reduces to [49, Theorem

3.2.]. Moreover, we have the following from Theorem 8.3(i):

Corollary 8.4. ([17, Theorem 2.1]) Let Z be a normal (topological) space, (X,A; {ϕN})

a GFC-space and G : Z ( X. Assume that there be F : Z ( A such that the following

conditions hold

(i) for each z ∈ Z, each N = {a0, . . . , an} ⊂ A and each {ai0 , . . . , aik} ⊂ N ∩ F (z) one

has ϕN(∆k) ⊂ G(z), where ∆k is the simplex formed by {ei0 , . . . , eik};

(ii) Z =
⋃m
i=0 IntF−(ai) for some {a0, . . . , am} ⊂ A.

Then G has a continuous selection g of the form g = ϕ ◦ ψ for some continuous maps

ϕ : ∆m → X and ψ : Z → ∆m.

Theorem 8.5. Let X be a normal space, (Y,D; {φA}) a φA-space, T : X ( Y a Φ-map

with a companion map S : X ( D such that

(1) the cover {IntS−(a) | a ∈ D} of X has a locally finite refinement; and

(2) for each A,B ∈ 〈D〉 with B ⊂ A implies φB = φA|∆B .

Then T has a continuous selection f : X → Y .

Proof. The proof of [49, Theorem 3.5] works with a slight modification of the last part

as follows: Since S is a companion of the Φ-map T , we have φN(∆N) ⊂ T (x). Since

f(x) ∈ φN(∆N), we have f(x) ∈ T (x). This completes our proof. �

Note that [49, Theorem 3.5] is a G-convex space version of Theorem 8.5. From Theorem

8.5, we immediately have the following:

Corollary 8.6. ([17, Theorem 2.3]) Suppose Z be a paracompact space, (X,A, {ϕN}) be

a GFC-space and G : Z ( X. Assume that there be F : Z → A such that

(i) for all z ∈ Z, all N = {a0, . . . , an} ⊂ A and all {ai0 , . . . , aik} ⊂ N ∩ F (z), one has

ϕN(∆k) ⊂ G(z);
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(ii) Z =
⋃
a∈A IntF−(a).

Then G is locally continuously selectionable.

For the history of selection theorems in the KKM theory, see our recent work [49],

where we showed that our previous selection theorems with a few generalized forms of

them contain certain selection theorems in more than a dozen papers of other authors.

9. Weakly KKM maps

The following is given in 2008 [37]:

Definition 9.1. Let (E,D; Γ) be an abstract convex space and Z a set. For a multimap

F : E ( Z with nonempty values, if a multimap G : D( Z satisfies

F (x) ∩G(A) 6= ∅ for all A ∈ 〈D〉 and all x ∈ Γ(A),

then G is called a weakly KKM map with respect to F .

Clearly each KKM map with respect to F is weakly KKM, and a weakly KKM map

G : D( E with respect to the identity map 1E is simply a KKM map.

In [37], particular forms of Definition 9.1 for vector spaces, G-convex spaces, and FC-

spaces were given. Later, the following particular form appeared in 2011:

Definition 9.2. ([17, Definition 1.3]) Let (X,A,Φ) be a GFC-space and Y be a nonempty

set. Let T : X ( Y, F : A( Y be two set-valued mappings. F is called a weak KKM

mapping (KKM mapping, resp.) with respect to (wrt, for short) T , shortly, weak T -KKM

mapping [T -KKM mapping, resp.] iff, for each N = {a0, . . . , an} ⊂ A, {ai0 , . . . , aik} ⊂ N

and x ∈ ϕN(∆k), T (x) ∩
⋃k
j=0 F (aij) 6= ∅ [T (ϕN(∆k)) ⊂

⋃k
j=0 F (aij), resp.].

In 2008, we obtained the following:

Theorem 9.1. ([37, Theorems 4.3 and 4.7]) Let (X,D; Γ) be a KKM space, Y a nonempty

set, and F : X ( Y and G : D( Y maps such that

(1) G is weakly KKM map with respect to F ; and

(2) for each a ∈ D, the set {x ∈ X | F (x) ∩G(a) 6= ∅} is closed.
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Then the following statements hold:

(i) if X is compact, there exists an x0 ∈ X such that F (x0)∩G(a) 6= ∅ for each a ∈ D.

(ii) for each A ∈ 〈D〉 there exists an x0 ∈ Γ(A) such that F (x0) ∩ G(a) 6= ∅ for all

a ∈ A.

For the case (ii), closedness in (2) can be replaced by openness also.

In [17], its authors obtained the following weak KKM theorem and then applied it to

minimax inequalities. Note that by Propositions 3.2 and 3.3, a GFC-space is a KKM

space with ΓN = ϕN(∆N). Hence, from Theorem 9.1, we have the following:

Corollary 9.2. ([17, Theorem 4.1]) Let X be a Hausdorff space, (X,A, {ϕN}) a GFC-

space, Y a nonempty set, T : X ( Y and H : A( Y . Assume that

(i) H be a weak T-KKM mapping;

(ii) for each a ∈ A, the set {x ∈ X : T (x) ∩H(a) 6= ∅} be closed.

Then the following statements hold:

(a) if, additionally, X is compact, then there exists a point x̄ ∈ X such that T (x̄) ∩

H(a) 6= ∅ for each a ∈ A;

(b) for each finite subset N = {a0, . . . , an} of A, there exists a point x̄ ∈ ϕN(∆n) such

that T (x̄) ∩H(ai) 6= ∅ for each i ∈ {0, 1, . . . , n}.

In Corollary 9.2, the Hausdorffness is redundant. In [17], its authors needed it because

they are based on certain selection method.

As an example of applications of Theorem 9.1(1), we give the following:

Theorem 9.3. ([37, Theorem 4.11]) Let (X,D; Γ) be a compact KKM space, Y a topo-

logical space. Let T : X ( Y be a u.s.c. map, ψ : D × Y → R, ϕ : X × Y → R two

functions and β = infx∈X supy∈T (x) ϕ(x, y). Suppose that

(1) for each a ∈ D, ψ(a, ·) is u.s.c. on Y ;

(2) for any λ < β and y ∈ T (x), we have coΓ{a ∈ D | ψ(a, y) < λ} ⊂ {x ∈ X | ϕ(x, y) <

λ}.
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(a) Then the following holds:

inf
x∈X

sup
y∈T (x)

ϕ(x, y) ≤ sup
x∈X

inf
a∈D

sup
y∈T (x)

ψ(a, y).

(b) Further, if T is compact-valued, then there exists an x0 ∈ X such that

inf
x∈X

sup
y∈T (x)

ϕ(x, y) ≤ inf
a∈D

sup
y∈T (x0)

ψ(a, y).

As in [37], particular forms or variants of Theorem 9.3 on G-convex spaces, FC-spaces,

or GFC-spaces are possible. There is a variant in [17].

10. Comments on works on GFC-spaces

In a sequence of papers [7,12-17], Khanh et al. introduced GFC-spaces which were

claimed to include properly both the incomparable G-convex spaces and FC-spaces with-

out any justification nor any example. Their works do not reflect or they ignored recent

studies on the KKM theory of abstract convex spaces or φA-spaces.

In the previous sections, we showed that actually their GFC-spaces are our φA-spaces

given more early and can be made into G-convex spaces. We noted that they adopted

artificial terminology, inadequate concept of subspaces or convex subset, KKM theorems

with artificial coercivity condition, and an inadequate example. Their basic results in-

cluding KKM theorems, continuous selection theorems and weakly KKM theorems are

shown to be all consequences of known ones by the present author.

In the present section, abstracts and further comments on each of seven papers on

GFC-spaces are given. Recently, basic results in the KKM theory are extended to our

class of abstract convex spaces. Many results on GFC-spaces can be extended to this new

class.

10.1 Khanh–Quan–Yao [12] NA 71 (2009)

Abstract: “We define a generalized KKM mapping, called T-KKM mapping, and the

corresponding generalized KKM property, which include many counterparts existing in
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the literature. KKM-type theorems, coincidence theorems and geometric section theorems

are established to generalize recent known results.”

Comments: In this paper, the authors adopted inadequate definition of S-subsets or

subspaces of GFC-spaces, artificial terminology, and inadequate coercivity conditions in

their KKM theorems. Moreover, they ignored earlier concepts of abstract convex spaces

and φA-spaces. Most of their results are modifications of earlier works in the literature

and can be easily deduced or generalized by applying the material on abstract convex

spaces in [39] in 2008.

10.2 Hai–Khanh–Quan [7] NA 71 (2009)

Abstract: “We establish a maximal element theorem, an intersection theorem and

a coincidence-point theorem in product GFC-spaces. As examples of wide ranges of

applications, we first deduce sufficient conditions for the solution existence of a mixed

system of inclusions. Then using this we obtain existence results for systems of vector

quasi-optimization problems and for multiobjective mathematical programs constrained

by systems of inclusions. Our results are shown to improve and include recent ones in the

literature.”

Comments: This paper also adopts artificial terminology and S-subsets. Moreover, a

modified form of our early class B of better admissible multimaps and a trivial map in

the class KC that is not in their B is given. Furthermore, the adoption of S-subsets lets

all the results be complicated.

10.3 Khanh–Quan [13] Optim. 59 (2010)

Abstract: “We propose a definition of GFC-spaces to encompass G-convex spaces,

FC-spaces and many recent existing spaces with generalized convexity structures. Inter-

section, coincidence and maximal-element theorems are then established under relaxed

assumptions in GFC-spaces. These results contain, as true particular cases, a number of

counterparts which were recently developed in the literature.”
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Comments: In this paper, its authors also adopted artificial terminology, inadequate S-

sets, and inconvenient coercivity conditions. The so-called T-KKM map is originated by

ourselves not by Chang and Yen. Since our definition of the class B of better admissible

multimaps appeared first in 1997, it is extended to G-convex spaces and absolute convex

spaces. A number of authors imitated the concept and, here, Khanh and Quan defined a

particular type of the original B. All of the results are generalizations of known results

for G-convex spaces. Note that the basic Theorem 2.2 is a very particular form of our

KKM theorem C. Finally, it is routine to reformulate the KKM theorem to coincidence

theorems, maximal element theorems, and many others.

10.4 Khanh–Quan [14] NA 72 (2010)

Abstract: “We establish general theorems on maximal elements, coincidence points and

nonempty intersections for set-valued mappings on GFC-spaces and show their equiva-

lence. Applying them we derive equivalent forms of alternative theorems. As applications,

we develop in detail general types of minimax theorems. The results obtained improve or

include as special cases several recent ones in the literature.”

Comments: This paper begins with the routine introduction of artificial terminology.

The authors took the wrong way to generalize FC-spaces not G-convex spaces. In fact,

in order to generalize FC-subspaces, the author defined S-subsets, SGFC-subsets, “pre”

GFC-spaces, “full” GFC-spaces, and GFC-hull w.r.t. S of a GFC-space (X, Y,Φ) without

giving any practical examples. Note that their GFC-hull is a subset of Y . Moreover, the

authors claimed that a GFC-hull w.r.t. S of a subset extends the notion of an FC-hull

of a set in an FC-space and a G-convex hull of a set in a G-convex space. Recall that a

Γ-convex hull of a set D′ ⊂ D in a G-convex space (or abstract convex space) (E,D; Γ)

is a subset of E not of D, and hence their GFC-hull can not extends Γ-convex hulls. The

authors seem to confuse with the particular case E = D as in FC-spaces. This is why we

said that they took wrong way, and makes all of the arguments complicated and difficult

to understand. If the authors followed simply Definition 2.1, then all of the above artificial

definitions would not necessary.
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In [14], Theorem 3.3 (Nonempty intersection theorem) is a simple consequence of our

Theorem C, and Theorems 3.1 (Maximal elements) and Theorem 3.2 (Coincidence points)

are routine equivalents of Theorem 3.1. Furthermore, all other results can be stated for

abstract convex spaces by eliminating artificial concepts related to S-sets.

10.5 Khanh–Quan [15] JOTA 146 (2010)

Abstract: “Applying generalized KKM-type theorems established in our previous paper

[7], we prove the existence of solutions to a general variational inclusion problem, which

contains most of the existing results of this type. As applications, we obtain minimax

theorems in various settings and saddle-point theorems in particular. Examples are given

to explain advantages of our results.”

Comments: After repeating artificial terminology with “compactly”, the authors de-

fined GFC-spaces and S-subsets with the routine claim that their definitions encompasses

both of FC-spaces and G-convex spaces. They did not quote any of abstract convex spaces

or φA-spaces. Theorem 3.1 is the KKM theorem in [12], which is a consequence of our

Theorem C as mentioned already. Then they defined artificial (k, T, rα)-quasiconcavity

related to four multimaps H, T, h, k and α ∈ {α1, α2}, r ∈ {r1, r2, r3, r4}, where it is

unclear what α and r are.

Section 2 devotes to give some examples of such (k, T, rα)-quasiconcave maps. In

Section 3, besides (X, Y,Φ), Z, Ω, D, H, T, h, k, hrα, let multimaps S1, S2, f, g

be given additionally, and the authors claimed to prove the existence of a generalized

variational inclusion problem and some applications. The possibility of existence of a

problem related so many things is quite doubtful. Moreover, the proofs in Section 3 are

beyond of our understanding.

10.6 Khanh–Quan [16] JOTA 148 (2011)

Abstract: “We propose the definition of T-KKM points and consider generic stability

of T-KKM mappings and essential components of sets of T-KKM points. As applications,

using a unified approach, we derive from these results the existence of essential components

of solution sets to various optimization-related problems. We do this in two steps. First,
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we deduce the corresponding results for variational inclusions, which are new. Then

we obtain, as consequences, the existence of essential components of solutions to other

problems, which are new or include recent ones in the literature.”

Comments: This paper does not reflect recent studies on the KKM theory. The authors

claim that their GFC-spaces include properly both the incomparable G-convex spaces and

FC-spaces without any justification nor any example. Actually their GFC-spaces are φA-

spaces due to Park more early in 2007-2009. The better admissible class of multimaps due

to Park is cited to other author (Ding 2005) who used to imitate the concept sometimes

incorrectly. More early in 2006, basic results in the KKM theory are extended to the class

of abstract convex spaces by Park. Many results in this paper can be extended to this

new class.

10.7 Khanh–Long–Quan [17] JOTA 151 (2011)

Abstract: “We prove theorems on continuous selections, collectively fixed points, col-

lectively coincidence points, weak Knaster-Kuratowski-Mazurkiewicz mappings and pro-

vide their applications in various optimization-related problems. Each of our theorems is

demonstrated by using its preceding assertions. The results contain and improve a num-

ber of existing ones in the recent literature. They are shown to be also more advantageous

in applications in optimization.”

Comments: The authors repeated to define S-subsets of GFC-spaces and gave an i-

nappropriate example of their spaces; see Sections 6 and 7 in the present paper. Then

continuous selection theorems were given; see Section 8 of the present paper. Some so-

lutions of the problems (CPP), (SVR), (MPIC), and (SVOP) are given. Finally, a weak

KKM theorem and minimax inequalities are given; see Section 9 in the present paper.
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