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1. Introduction

The ordinary differential equations is considered the basis of the fractional differential e-

quations. Comparing with integer derivatives, the most important advantage of fractional
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derivatives that it could describes the property of memory and heredity of diverse ma-
terials and processes. For more details about fractional calculus and its applications we
refer the reader to Hilfer [10], Kilbas et al. [13], Miller and Ross [16], Podlubny [17],
Samko et al. [18], and the references given therein. In last decades, measures of non-
compactness became inevitable procedure in nonlinear analysis. They are used in different
fields such as fixed point theory, linear operator theory, theory of differential and integral
equations. Among the theory of measures of noncompactness, the two ones: the Kura-
towski measure of noncompactness and the Hausdorff measure of noncompactness are
considered the most important. Hausdorff measure of noncompactness, in particular, is
often used in many branches of nonlinear analysis and its applications. See for examples

[2,3,4,6,8, 11, 14, 15, 19, 21, 22], and the references given therein.

In recent years, sufficient conditions for the existence and uniqueness of solutions have
been established by Agarwal et al. [1] in the space R for the following fractional boundary

value problems (for short BVP)

cD¥(t) = f(t,y(t)),t € J=1[0,T], ¢ € (0,1],

ay(0)+by(T) = c.
Wang et al. [20] extended the work [1], in abstract spaces X by use more general conditions
on nonlinear function f . Karthikeyan and Trujillo [12] used Banach contraction principle

and Schaefer’s fixed point theorem to study the existence and uniqueness of fractional

integrodifferential equations with boundary condition

DOY(1) = £(1.3(0), Lk(t,8)y(s)ds).t €7 = [0.7], & (0,1),
ay(0) +by(T) =c.

In this paper, we develop the works in [1, 20, 12] by studying the following more

general boundary value problem for fractional integro-differential equation

i “D%x(r) = f(2,x(2),(Sx)(r)),t € J =[0,T],x € (0, 1],
ax(0) +bx(T) =c,
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where ‘D% is the Caputo fractional derivative of order o, f : J x X x X — X is a given
function and a, b, ¢ are real numbers with a+ b # 0 and S is a nonlinear integral operator

given by (Sx)(t) = [y k(t,s,x(s))ds, where k € C(J x J x X, X).

This paper is organized as follows. In Section 2, we recall some preliminaries. Sec-
tion 3, proves main results by using Hausdorff’s measure of noncompactness and Darbo-
Sadovskii fixed point theorem. In Section 4, we establish sufficient conditions for the

stability and uniqueness of solutions of the fractional BVP.

2. Preliminaries

Here in this section, we shall give the following preliminaries that will be used in our future

discussion.

Let X be a Banach space with the norm || - ||. We denote by C(J,X) the space of

X-valued continuous functions on J with the supremum norm
[[xllee := sup{[lx(@)]| : € J}.

1
For measurable functions m : J — R, define the norm ||m||,;r) = ([;|m(2)[Pdt)? ,1 <
p < oo, where LP(J,R) the Banach space of all Lebesgue measurable functions m with

[|m||zp(7r) < eo. Throughout this paper, we denote R = [0, ).

Definition 2.1. The Riemann-Liouville fractional integral of order o0 > 0 of a suitable func-

tion h is defined by

18.h(1) = %a) [ == thisas,

where a € R and T is the Gamma function.
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Definition 2.2. For a suitable function h given on the interval [a,b), the Riemann-Liouville
fractional derivative of order o0 > 0 of h, is defined by

(D h)(1) = ﬁ (%)n/at(t — )" % h(s)ds,

where n = [a] + 1,[c] denotes the integer part of Q..

Definition 2.3. For a suitable function h given on the interval |a,b|, the Caputo fractional
order derivative of order & > 0 of h, is defined by

1

(D0 = gy [ =9~ sy

where n = [at] + 1, [at] denotes the integer part of o.

Remark 2.1. We note that, if h is an abstract function with values in X, then integrals

which appear in Definitions 2.1, 2.2 and 2.3 are taken in Bochner’s sense.

Definition 2.4. A function x € C'(J,X) is said to be a solution of the fractional BVP (1.1)
if x satisfies the equation “D%x(t) = f(t,x(t),(Sx)(t)) a.e. on J, and the condition ax(0) +
bx(T) =c.

For the existence of solutions for the fractional BVP (1.1), we need the following

auxiliary lemma.

Lemma 2.1. (Lemma 3.2,[1]) A function x € C(J,X) is solution of the fractional integral
equation
1 [ b

QD X = L/Ot(t—s)a—lf(s)ds—m m/oT(T—s)a_lf(s)ds—c ,

(o)
if and only if, x is a solution of the following fractional BVP

(2.2) ‘D%x(t) = f(t),t € J=10,T],a € (0,1],

ax(0) +bx(T) = c.
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Consequently, we can prove the following result which is useful in further discussion.

Lemma 2.2. Let f : J X X X X — X be continuous function. Then, x € C(J,X) is a solution

of the fractional integral equation

x(t) = ﬁ /Of(t — )% £ (5,x(s), (Sx)(s))ds
(2.3)
N a—lkb [%a) /OT(T = 5)* 7L f (5,x(s), (Sx)(s)) ds — c] :

if and only if x is solution of the fractional BVP (1.1).

Now, we recall the Hausdorff’s measure of noncompactness Wy () defined by
Yy (B) = inf{r > 0| B can be covered by finite union of balls with radii r}.

for bounded set B in a Banach space Y.

Some basic properties of Wy (-) are presented in the following lemma.

Lemma 2.3. ([2]) Let Y be a real Banach space and B,C C Y be bounded, then the follow-

ing properties are satisfied:

(1) B is precompact if and only if Py (B) = 0,

(2) ¥y (B) = ¥y (B) = Wy(convB) where B and convB mean the closure and convex
hull of B respectively;

(3) ¥y (B) < ¥y (C) when B C C;

(4) Wy(B+C) <W¥y(B)+¥y(C) where B+C ={x+y;x€ B,y € C};

(5) Wy (BUC) < max{¥y(B),¥y(C)};

(6) Wy (AB) = |A|Wy(B) forany A € R;

(7) Ifthe map Q : D(Q) CY — Z is Lipschitz continuous with constant k then ¥z(Q(B)) <
kWy (B) for any bounded set B C D(Q), where Z is Banach space;

(8) Wy(B) = inf{dy(B,C);C CY be precompact } = inf{dy(B,C);C CY be finite val-
ued }, where dy(B,C) means the nonsymmetric (or symmetric) Hausdroff distance
between Band C inY;

9) If {W,,}>_, is decreasing sequence of bounded, closed nonempty subsets of Y and

limy— oo Py (W,,) = 0, then N> W, is nonempty and compact in Y.
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Definition 2.5. The map Q : W C Y — Y is said to be a Wy-contraction if there exists
a positive constant k < 1 such that Yy (Q(S)) < kWy(S) for any bounded closed subset

S C W where Y is a Banach space.

Lemma 2.4. ([2], Darbo-Sadovskii theorem) If W C Y is bounded, closed and convex, the
continuous map Q : W — W is a Wy-contraction, then the map Q has at least one fixed

point in W.

We denote ¥ by the Hausdorff’s measure of noncompactness of X and also denote ‘¥',.

by the Hausdorff’s measure of noncompactness of C(J,X).

Lemma 2.5. ([2]) If W C C([a,b],X) is bounded, then
P(W(r)) < We(W),

forallt € [a,b], where W(t) = {u(t);u € W} C X. Furthermore if W is equicontinuous on

[a, D), then ¥ (W(t)) is continuous on [a,b] and

W (W) = sup{W(W(1)),1 € [a,B]}.

Lemma 2.6. ([11]) If {u,}>_, C L'([a,b],X) is uniformly integrable, then the function
W ({un(t)}y_,) is measurable and

‘P({/Olun(s)ds};_l> §2/Ot‘l’({un(s)},;'°1)ds.

Lemma 2.7. ([2]) If W C C([a,b],X) is bounded and equicontinuous, then ¥(W(t)) is
continuous and
t
0
forallt € [a,b], where [SW(s)ds = { [§ u(s)ds;u € W}.

w( /O tW(s)ds) < / W(W(s))ds,

Lemma 2.8. ([3]) If W is bounded, then for each € > 0, there exists a sequence {u, }, _; C
W, such that
W(W) < 2({u,}y) + €.
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3. Existence of Solutions

To study the existence of solutions, we list the following hypotheses:

e (H1) The function f :J x X x X — X satisfies the Carathéodory-type conditions; i.e.,
f(-,x,y) is measurable for all x,y € X and f(z,-,-) is continuous for a.e t € [0, T].

e (H2) The function k : J x J x X — X satisfies the Carathéodory-type conditions; i.e.,
k(-,-,x) is measurable for all x € X and k(t,s, ) is continuous for a.e s € [0,¢],z € J.

e (H3) There exist constants Ny, N; > 0, such that

1 (£:x(2), (Sx) (0) ) | < N (1+ [|x(@) [+ | (Sx) ()],

I (z,5,x(5)) | < Ne(1+ lx()1])

foreach s € [0,7],r € Jand all x € X.
1
e (H4) There exists a constant a; € (0, o) and real-valued functions m (t),my(t) € L* (J,R),

such that
¥ (f(t,B,C)) <m(t)(¥(B)+¥(0)),
W (k(t,5,C)) <ma(t)¥(C),

for bounded sets B,C C X, a.et € J.

For brevity, let M = ||m; +2Tmymy|| 1 )
L% (JR)

e (HS) Suppose that

<1+ |b| >Nf(1—|—NkT)Ta
FER A CE

Now, we are in position to state and prove our main results.

Theorem 3.1. Assume that (HI1)-(HS) hold. If

a—oy 1—ay
bl 1 4m [TT@
(3.1 {1 + — <1,
la+b]| (o) | =&

then, the fractional BVP (1.1) has at least one solution on J.
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Proof. Define the mapping F : C(J,X) — C(J,X) as follows:

—/Ot(t—s)“‘lf(s,x(s), (Sx)(s))ds
sl [T o 90 ] e

(3.2)

From Lemma 2.2, it is clear that the fixed point of the operator F is the solution of the

boundary value problem problem (1.1).

First, we show that F is continuous operator on C(J,X). Let {x,} be a sequence such

that x, — x in C(J,X) as n — . For every ¢ € J and by hypotheses (H1) and (H2), we have

f (.2 (t), (Sxa) (1)) — f(1,x(2), (Sx)(2)).

Using the dominated convergence theorem, we get

[[(F (xa)) (1) = (F (x)) (1)

< ﬁ =% 1 560, (550)(5) = £ (55566), (59))) [ s

6] ! a1
R e LT =95 (5230 (550)5)) — £ (5:205). (59))) | s

< W), (80)() = £ (,30), (9 O)) .
- [(a)

« {/O’(I_S)a—ldsju%/(}T(T_S)a—lds}

re b
S Tla+1) (1+ at b|) o5 (S0 () = £ (30, (89) ) .o

Taking supremum, we get

|Fay =Pl
re b
<ttt (1 g ) Wm0 50) = (30, 59O

Hence,
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|Fxn — Fx||oo — 0 as n — oo.

Therefore, F' is continuous operator.

Set
W” = {X S C(‘LX)) ”wa < r}
for each r € N (the set of all positive integers). Then W, C C(J,X) is bounded and convex.

Now, suppose that for each r € N there is x € W, and ¢ € J such that ||(F(x))(¢)]| > r.
Using (H3), we have

r < [[(F @)@l

1 "
< Fa /0 (£ =) 1| £ (5,x(5), (Sx)(s)) | ds

||
la+b|()

< ﬁ /0 (=)@ N (14 ()] 1(S9) (5)]]) s

+

/OT(T — )% £ (s, x(s), (Sx)(s)) || ds + Pt

0]
la+b|C()
< o [ =)™ Wy (1 [l N1+ )T ) s
~I'(a) Jo ! o Tk *

0]
la+b|T' (@)

Ne(14+7)(1+NT) [? o
< T(0) /O(t—s) Lds

bINt((1+r) (1 +NT) (T o c]

a b (@) /O(T—s) lds+
<Nf(1+r)(1+NkT) o |b|Nj‘(1+l’)(1+NkT) o ’C’
- INo+1) la+b|T(a+1) la+b|

! a—1
! | @ =9 N (15 () + (50 (5) ) s+

T
| =9 NG (1 e+ N )T s+

Then, we get

|| r* ]
3.3 1 Ne(1+7)(1+ N T .
(3-3) r<( +ya+b|>r(a+1) pUH+r)A+NT)+ a+bl
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Dividing by r on both sides of (3.3), we obtain

|
rla+b|

bl \ T I
(3.4) 1<<L+M+M)Na+UNK +1)(14+NT) +

Now taking lim as r — o on both sides of (3.4), we get

1< (1+ w|> T N (4N
la+b]/T(a+1)"7 K

which is contradiction to the hypothesis (HS). Thus there is some r € N such that F(W,) C
W,, thatis, F : W, — W,.

Next, let B bounded subset of W,, x € Band 0 < ¢ <1, < T; then by using (H3), we

have

[(F(x))(82) = (F(x)) (1)

< b =9 =0 =9 £ (oux(5) (53)(5) [ s
iy =9 7ot (53) ) s

< Fa b 1= = =) N1+ (o) + (590 s
iy | = N (1 )+ (06 s

% [ (=9 = (0= )% Ny (1-+ o+ N1 + )T

e /f(rz—s)“ N (U el + N (1 ) T)es

< SOOI [ =) = (1 —9)% s
Nf(1+lz)(ixl)+NkT) /,:2 (1 — 5)%ds

CNAANUENT) 0 o

- INo+1)
As t, — t1, the right-hand side of the above inequality tends to zero and since x is an

arbitrary in B, we conclude that F(B) C C(J,X) is bounded and equicontinuous.

Finally, we shall prove that F' is W -contraction on W,. For every bounded subset

B C W,,t € J and every € > 0, there is a sequence {u};_, C B, by using Lemma 2.3,
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Lemma 2.5, Lemma 2.6, Lemma 2.7, Lemma 2.8, (H4) and Holder inequality, we can

obtain
W(F(B(1)))

:‘P(ﬁ/ot(t—s)“1f(s,B(s),(SB)(s))ds

b T o—
e [T (s (), (5B )+ )
t

(a+b)'(@) a+b

1 t
< 211'(%/0 (
b

T
T T o ) F, (St} Jas + ) e

)% s fae(5) Y (STme() Vo)) s

< % /0[<r =) (f (s, ) Y, (S{e(9)}0)) ) ds

%/j(r_s>a—np(f(s,{uk(s>};°_l,(S{Mk(s)};’_l)))ng

< % /ot(f — )% my (s) <‘P({Mk(s)}f:1) +‘P(S{“k(s)}zo:1))>ds

s [0 =97 ) () + H(Sn6))) Jas-+e
S%/Ot(t_syxlml(s)<\P({uk(s)}Z°1)+‘I’</Osk(s,1,{uk(’c)}2°1)d’v>)ds
|| T a—
+|a+4b|bl“(a)/o (T ="
() (P () + 2 ([ k(s w (D) )de) s+ e
< —/Ol(t—s)a_lml(s) (% ({els) ) -|-2/0S‘P<k(s,T,{uk(r)}f_l)di’))ds
|| d a—
+\a+4b\r(a)/o (T =)
s (5) (2 ({9} +z/s\p K(s,7 {uk(r)},"(",l)df)>ds+e
< oo [ =% ) (P()}) +2 [ oo ({2} e ds
45| d a—
+|a+b|l"(a)/0 (T =)

sy (5) (P (o) H) +2 [ o) (ue(0)} iy ) ds + e
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< iy =97 o) (e (B) + 2T ma(5) e (8) ) s

ﬁ% /0 =) i (s) (e (B) +2Tma(s)e(B) )ds + &
< % =57 () +27m (sma ) ) s

% =9 (m(s) + 2T (a5 ds +

Since ¢ is arbitrary, it follows that from the above inequality that

Y .(F(B)) < [% /Ot(t — )1 <m1 (s)+2Tm; (s)mz(s))ds

4[| T o
—f—m/o (T —s) 1<m1(s)+2Tm1(s)m2(s))ds} ¥.(B)

o ([a-9as) - ([ tmio)+2msma(o)as)

4|b| /T a1 N1
S B
+|a+b|r<a><o( ) ds

< ([ mio)+2rmsma(o) as) | wils)

<

a—op \ 11— a—ap \ 11—
am [ amp| [T
< |22 L + - v, (B
Mo | =2 athir(@) | e (8)
a-op \ 1=
|b| ] AM [ T
§[1+ - Y. (B).
[a+b]| T | =2

Using the condition (3.1), we claim that F is a ¥ -contraction on W,. By Lemma 2.4, there

is a fixed point x of F on W,., which is a solution of (1.1). This completes the proof.

In the following theorem, we replace the hypothesis (H3) by
A 1
e (H3) For o; € (0, @), there are real-valued functions @;(¢), () € L% (J,R,) and there

exist a L'-integrable and nondecreasing functions 1, ¥ : [0,00) — [0,0) such that

1 (£.x(2), (Sx) () | < @1 (8) wa ([Ix(@)1]) +[ISx(@)]],
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k(2,5 x()) 11 < @2(0) w2 (IIx(s)]])

foreach s € [0,7], € Jand all x,y € X.

For brevity, let ®; = <fj (o1 (s))"%)az, D, = <fj (‘PZ(S))%)OQ.

Theorem 3.2. Assume that (HI), (H2), ( H3 ) and (H4) hold. If the condition (3.1) satisfied.

Then the fractional BVP (1.1) has at least one solution on J.

Proof. The continuous operator F : C(J,X) — C(J,X) is defined as in Theorem 3.1. Let

W, ={xe C(J,X),|x|l~ < r}, where
a—ay -
T2 N |c| <
—~ <r
s la+Db|

3.5
q)lllll (r) Tq)zlflz(r) ‘b’(blllll (r) T|b]d>zl//2(r)
Then W, C C(J,X) is bounded and convex. For each x € W, and ¢ € J, by using (P/I\3),

I'a) I'a) la+bl'(a) |a+b|l'(@)

(3.5) and Holder inequality, we have

IFE)0)
< ﬁ/o (t—5)* £ (s,x(5), (Sx)(s)) || ds
A T B
b [T (s (5900 s+ L

< ﬁ /Ot<r—s>°“l (01(5) v (Ix(s)1) + 15x(s) | ) s

0] €]

! a—1
sy €9 (e ) sl as o

1

< Fa) /Ot(t _5)o] <<p1 () Wi (IIxll) + T pa(s) 1//2(||x||w))ds
i T “ ¢]
+W/o (T —s) 1<<P1(S) Vi (||x]les) + T a(s) ‘VZ(HX||oo)>ds+ PRy

vilr) ' e Ty (r) (' e
Sm/o (t—s) l(pl(s)dS—FW/o (t—s) l(pz(s)ds
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188
lyi (r) (T o—1 Tblya(r) (T a—1 ¢
arbia o T wds s [T s+ 0y
Py (r) (1 et TR Touwn(r) [ et \1T®
< — 1- - 7 _ 1-a
= T(a) /O(I s)1-% ds + a) /O(t s)1=% dsg
|b|q)lllll(r) r lai 1= T|b|¢)21[/2(7‘) T 1ozél -
R _ —o . s
ja+b|T(a) /o(T )RS | T (a) /O(T s) " ds
Ll
la+ b|
a-ap \ 1= a—oy \ 1—0
< Dy (}”) T!-® n TPy, (7‘) T1-%
- T\ = Mlo) |\ £2
a—ap 1—ap a—ay 11—
by (r) [ TT +T|b\<1>21,/2(r) re L e
la+b|C(a) \ =22 la+b|T(a) | $=22 la+Db|

amp\ 1-@
Tlfaz + |c’
a—0h ’a+b’

1—on

iy (r) | TPyn(r) | [blP1yi(r) | TIb|D2ya(r)
C(a)  Ja+bT(a)  |a+b|T(c)

Thus, ||F(x)|| < r and we conclude that for allx e W,, F(W,) CW, thatis, F : W, — W,.

Next, let B bounded subset of W,, x € Band 0 <t; <, <T; then by using (If1\3) and

Holder inequality, again we have

I'a)
+r%> / (12— )| (s.2(5), (S2)(5)) | ds

gﬁ 0“ (2= = (11 =)' (@1() ya (Jx(s) ) + 11Sx(s)1] ) ds
+r%> /tf(tz_s)a—l(@ms) v (Ix(s)1) + 1Sx(s) | ) ds

< L (12— 5)*7" = (1 — 5)*7] ((01(8) Wi ([[xll) + T 02(s) wa( ’xH‘”))ds
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+ ﬁ /zz(tz — )%t (fpl (8) w1 ([xlle) + T p2(s) l/fz(Hme))ds

n

ll/l(r) n o— ll/l(r) i o—
< F(oc)/o (tr—s) 1<p1(s)ds—m/o (1 —5)% 11 (5)ds

Ty (r) [n a- Ty(r) [ o-
e i ACRUARCOLEE vy MUBDARL O
i (r) Ty (r)

~H [0 s T2 [F =9 s
< 21w (1) (/Otl (tr— )T ds)l_az _Pwn(r) </O“ (t—s) i@ ds)l_o62

I'a) (o)
+—T¢F2(lf)(r) ( /O ! (tz—s)f’_oclzds>1“2 _ _Tq;z(lls)(r) ( /0 (=) fx_oclza's)laz
B a ) IR PP
- aay \ 1—00

< D, Y (r) (l‘z — tl)w l‘2 B D, Y (r) —l‘lliwz

BERAC) s M) | =@
a—o a—op 170[2 a—op 1*0{2
To2ya(r) [ (1) t, Tdwys(r) -1
He) == Mo) | =2
a-0 17062 a—oy 17062
Lo (r) [ =ltz=t1) " n T (r) [ —(—1) T
[(a) 8- T(a) =n

As tp — t1, the right-hand side of the above inequality tends to zero and since x is an
arbitrary in B, we conclude that F(B) C C(J,X) is bounded and equicontinuous. The re-
maining proof can be completed as in the proof of previous Theorem 3.1 and hence we

omit the details.

4. Stability of solutions

In this section, we study the uniform stability of solution of the fractional BVP (1.1). For

more details one can see [5, 7, 9, 23].
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Let x(¢) a solution of the fractional BVP

cD%x(t) = f(t,x(1),(Sx)(t)),t € J =[0,T], ¢ € (0, 1],
“4.1)

ax(0) +bx(T) =r.
Definition 4.1. The solution of the fractional BVP (1.1) is called uniformly stable, if for
any € > 0, there exists 6(€) > 0, such that for any two solutions x(t) and X(t) of fractional
BVP (1.1) and (4.1) respectively, one has |c —¢| < 6(€), then ||x(t) —X(t)|| < &, for all

reld.

Theorem 4.1. Assume that (HI)-(H5) hold. Also suppose that
1
e (H6) There exists a constant o3 € (0, o) and real-valued functions ny (t),ny(t) € L% (J,R),

such that

1S (8, x1,5%2) = f(t,y0,32) | < na(0) ([lx1 =1l + 2 = y2l),
1k (2,8,20) = k(2,8,31) | < na(t)|lxr =y,

foreachs € [0,t],t € J and all x1,x2,y1,y2 € X.

e (H7)
a—a3\ l—o3
b 1N [TT®
(42) [1 + |a+b| F(Oc) oa—03 < 17

1—o03

where, N = ||ny +Tnina|| 1 )
L% (JR)

Then, the solution of fractional BVP (1.1) is uniformly stable.

Proof. Let x(7) and X(¢) be the solutions of the fractional BVP (1.1) and (4.1) respectively.

Then for any ¢ € J, from (2.3), (4.2) and Holder inequality, we have

Ix(r) —%(0)|
< gy 9 100 (590) = £ (5760, (59)0) s
e e =9 (9. (596) = 75560, (90 s+
la+b|T(a) Jo ,x(8), X(s), o=

1

< m/o (t—S)“’Inl(S)QIX(S)—f(S)H+H(SX)(S)—(S?C(S))(S)\Dds
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b o =9 ) (1) ~3+1($906) - (ST s
o=
la+ Db
< a7 =91 ) (1) =6) |+ T ) =06 s
s [ =9 ) (1(6) ~56) |+ T ) 360 s
e
la+ b
< HXFZOCX)HM/O(I 5)% 1<n1(s)—|—Tn1(s)n2(s)>ds
pllr—3le 7 e e
+|a+b|F(a)/() (T —s) 1(nl(s)+Tnl(s)nz(s)>ds+|a_l_b|

a3

< bl ( [ —s>*"—°%ds) o ( [ (m +Tm<s>n2<s>)“13ds)

+ % (/OT(T —s)la_‘”lSds> o (/Ot <n1(s) —{—Tnl(s)nz(s)) O%ds)

lc—7¢|
la+b|

a—o -3 a-ag\ -0
Nx e [ 17 N|b| [ — T [ TT lc—7¢]
< o—o + o—o +
INa) 3 la+b|T' () 3 la+b|

1—o3 1—o03

a-oz\ 1-03
[y Jo I N=Fe (178 ) e
B la+b|] T(a) @ la+b|

l—og

a3

%)

Thus, we get

a—og 1-03
_ B ] N [T c—7]
—X||e | 1= |1 < ,
b= [+|a+b| Ma) | =& = Ja+bl

1—o3

and

17(13

a—og 1-o03
b N T -« 1
el < 1= 1412 _Of lc—gl.
la+b]| D(a) | &= la+b|

191
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Thus, for each € > 0, we can find

1—o3

a0
|b] N [T's
r

1 —1
o =11-—|1 -
o=t ) e =7 () ©

such that ||x — X||. < € whenever |c —¢| < &(¢€). This proves that the solution x(¢) is uni-

formly stable.

Remark 4.1. The above Theorem 4.1 proves not only uniformly stable solution but also

uniqueness of solution.
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