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Abstract. In this paper, we give generalization of the results given in [5],[6],[7],[9] and [10] by using second order
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1. Introduction and Preliminaries

Pečarić and Perić (2012) in [11] introduced the notion of n-exponentially convex function

which is in fact generalization of exponentially convex function. In this paper, we use the

same notion of n- exponential convexity and prove it for some important results extracted
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from [5],[6],[7],[9] and [10]. These results are basically extension of weighted Favard’s and

Berwald’s inequalities and majorization type results whose details are as under.

Favard (1933) [2] proved the following result. Let f be a non-negative continuous concave

function, not identically zero on [a,b]⊂ R and φ be a convex function on [0,2 f̃ ]⊂ R, where

f̃ =
1

b−a

∫ b

a
f (x)dx.

Then

1

2 f̃

∫ 2 f̃

0
φ(y)dy ≥ 1

b−a

∫ b

a
φ ( f (x)) dx.

Favard (1933) [2] also proved the following result. Let f be a non-negative concave function on

[a,b]⊂ R. If q > 1, then

1
b−a

∫ b

a
f q(x)dx ≤ 2q

q+1

(
1

b−a

∫ b

a
f (x)dx

)q

.

Some generalizations of the Favard’s inequality and its reverse inequality are also given in [4,

p.412-413]. Moreover, Berwald (1947) [1] proved the following generalization of Favard’s in-

equality [4, p.413-414]. Let f be a non-negative continuous concave function, not identically

zero on [a,b] and ψ be a strictly monotonic continuous function on [0,y0], where y0 is suffi-

ciently large. If α is the unique positive root of the equation

1
α

∫
α

0
ψ(y)dy =

1
b−a

∫ b

a
ψ( f (x))dx,

then for every function φ : [0,y0]→R which is convex with respect to ψ i.e. ϕ ◦ψ−1 is convex,

we have

1
α

∫
α

0
φ(y)dy≥ 1

b−a

∫ b

a
φ( f (x))dx.

Berwald (1947) [1] also proved the following result. If f is a non-negative concave function on

[a,b], then for 0 < r < s we have[
s + 1
b − a

∫ b

a
f s(x)dx

] 1
s

≤
[

r + 1
b − a

∫ b

a
f r(x)dx

] 1
r

.

The following two Theorems are generalizations of discrete weighted Favard’s and Berwald’s

Inequalities proved by Latif et al. (2012) in [5].
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Theorem 1.1. w, a and b be positive n-tuples and ϕ : [0,∞)→ R be a convex function.

Let a/b be a decreasing n-tuple. If a is an increasing n-tuple, then

(A1) Λ1 =
n

∑
i=1

wi ϕ(
bi

∑
n
i=1 biwi

)−
n

∑
i=1

wi ϕ(
ai

∑
n
i=1 aiwi

) ≥ 0.

If b be a decreasing n-tuple then reverse inequality holds in (A1).

Let a/b be an increasing n-tuple. If b is an increasing n-tuple, then

(A2) Λ2 =
n

∑
i=1

wi ϕ(
ai

∑
n
i=1 aiwi

)−
n

∑
i=1

wi ϕ(
bi

∑
n
i=1 biwi

) ≥ 0.

If a be a decreasing n-tuple then reverse inequality holds in (A2).

If f is strictly convex function and a 6= b, then the strict inequality holds in (A1) and (A2) and

their reverse cases.

Theorem 1.2. Let w, a and b be positive n-tuples. Suppose ψ,ϕ : [0,∞)→ R are such that

ψ is a strictly increasing continuous function and ϕ is a convex function with respect to ψ i.e.

ϕ ◦ψ−1 is convex.

Let z1 be such that
n

∑
i=1

wi ψ (z1 bi) =
n

∑
i=1

wi ψ (ai) .

(1) Let a/b be a decreasing n-tuple. If a is an increasing n-tuple, then

(A3) Λ3 =
n

∑
i=1

wi ϕ (z1 bi)−
n

∑
i=1

wi ϕ (ai)≥ 0.

If b is a decreasing n-tuple, then the reverse inequality holds in (A3).

(2) Let a/b be an increasing n-tuple. If b is an increasing n-tuple, then

(A4) Λ4 =
n

∑
i=1

wi ϕ (ai)−
n

∑
i=1

wi ϕ (z1 bi)≥ 0.

If a is a decreasing n-tuple, then the reverse inequality holds in (A4).

If ϕ ◦ψ−1 is strictly convex function and a 6= z1b, then strict inequality holds in (A3) and (A4)

and their reverse cases.

The following theorem is valid (see [9], p.32).

Theorem 1.3. Let ϕ be a convex function on an interval I ⊆ R, w be a positive n-tuple and a,
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b ∈ In satisfying
k

∑
i=1

wi bi ≤
k

∑
i=1

wi ai, k = 1, . . . ,n−1,

and
n

∑
i=1

wi bi =
n

∑
i=1

wi ai.

(1) If b is decreasing n-tuple, then

(A5) Λ5 =
n

∑
i=1

wi ϕ (ai)−
n

∑
i=1

wi ϕ (bi)≥ 0.

(2) If a is increasing n-tuple, then

(A6) Λ6 =
n

∑
i=1

wi ϕ (bi)−
n

∑
i=1

wi ϕ (ai)≥ 0.

If ϕ is strictly convex and a 6=b, then (A5) and (A6) are strict.

The following theorem is a slight extension of Theorem 1 in [7] which is proved by Pečarić and

Abramovich (1997).

Theorem 1.4. Let w, a and b be positive n-tuples. Suppose ψ,ϕ : [0,∞)→ R are such that

ψ is a strictly increasing function and ϕ is a convex function with respect to ψ i.e., ϕ ◦ψ−1 is

convex. Suppose also that

k

∑
i=1

wi ψ (bi) ≤
k

∑
i=1

wi ψ (ai) , k = 1, . . . , n−1,

and
n

∑
i=1

wi ψ (bi) =
n

∑
i=1

wi ψ (ai) .

(1) If b is a decreasing n-tuple, then

(A7) Λ7 =
n

∑
i=1

wi ϕ (ai)−
n

∑
i=1

wi ϕ (bi)≥ 0.

(2) If a is an increasing n-tuple, then

(A8) Λ8 =
n

∑
i=1

wi ϕ (bi)−
n

∑
i=1

wi ϕ (ai)≥ 0.
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If ϕ ◦ψ−1 is strictly convex and a 6=b, then (A7) and (A8) are strict.

The following theorem is an extension of Theorem 3 in [10] which is proved by Pečarić and

Abramovich (1997).

Theorem 1.5. Let w be a weight function on [a,b] and let f and g be positive functions on [a,b].

Suppose ϕ : [0,∞)→ R is a convex function.

(1) Let f/g be a decreasing function on [a,b]. If f is an increasing function on [a,b], then

(A9) Λ9 =
∫ b

a
ϕ

(
g(t)∫ b

a g(t)w(t)dt

)
w(t)dt−

∫ b

a
ϕ

(
f (t)∫ b

a f (t)w(t)dt

)
w(t)dt ≥ 0.

If g is a decreasing function on [a,b], then the reverse inequality holds in (A9).

(2) Let f/g be an increasing function on [a,b]. If g is an increasing function on [a,b], then

(A10) Λ10 =
∫ b

a
ϕ

(
f (t)∫ b

a f (t)w(t)dt

)
w(t)dt−

∫ b

a
ϕ

(
g(t)∫ b

a g(t)w(t)dt

)
w(t)dt ≥ 0.

If f is a decreasing function on [a,b], then the reverse inequality holds in (A10).

If ϕ is strictly convex function and f 6= g (a.e.), then the strict inequality holds in (A9) and

(A10) and their reverse cases.

The following theorem is a slight extension of Theorem 2 in [10] which is proved by Pečarić

and Abramovich (1997).

Theorem 1.6. Let w be a weight function on [a,b] and let f and g be positive functions on [a,b].

Suppose ϕ, ψ : [0,∞)→ R are such that ψ is a strictly increasing function and ϕ is a convex

function with respect to ψ i.e., ϕ ◦ψ−1 is convex. Suppose also that∫ x

a
ψ ( f (t)) w(t)dt ≤

∫ x

a
ψ (g(t)) w(t)dt, x ∈ [a,b], and

∫ b

a
ψ ( f (t)) w(t)dt =

∫ b

a
ψ (g(t)) w(t)dt.

(1) If f is a decreasing function on [a,b], then

(A11) Λ11 =
∫ b

a
ϕ (g(t)) w(t)dt−

∫ b

a
ϕ ( f (t)) w(t)dt ≥ 0.

(2) If g is an increasing function on [a,b], then

(A12) Λ12 =
∫ b

a
ϕ ( f (t)) w(t)dt−

∫ b

a
ϕ (g(t)) w(t)dt ≥ 0.
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If ϕ ◦ψ−1 is strictly convex function and f 6= g (a.e.), then the strict inequality holds in (A11)

and (A12).

The following theorem is a slight extension of Lemma 2 in [7] which is proved by Maligranda

et al. (1995).

Theorem 1.7. Let w be a weight function on [a,b] and let f and g be positive functions on [a,b].

Suppose that ϕ : [0,∞)→ R is a convex function and that∫ x

a
f (t)w(t)dt ≤

∫ x

a
g(t)w(t)dt, x ∈ [a,b] and

∫ b

a
f (t)w(t)dt =

∫ b

a
g(t)w(t)dt.

(1) If f is a decreasing function on [a,b], then

(A13) Λ13 =
∫ b

a
ϕ (g(t)) w(t)dt−

∫ b

a
ϕ ( f (t)) w(t)dt ≥ 0.

(2) If g is an increasing function on [a,b], then

(A14) Λ14 =
∫ b

a
ϕ ( f (t)) w(t)dt−

∫ b

a
ϕ (g(t)) w(t)dt ≥ 0.

If ϕ is strictly convex function and f 6= g (a.e.), then (A13) and (A14) are strict.

Theorem 1.8. [7] Let w be a weight function on [a,b] and let f and g be positive functions on

[a,b]. Suppose ϕ, ψ : [0,∞)→ R are such that ψ is a strictly increasing continuous function

and ϕ is a convex function with respect to ψ i.e. ϕ ◦ψ−1 is convex.

Let z1 be such that ∫ b

a
ψ (z1 g(t)) w(t)dt =

∫ b

a
ψ ( f (t)) w(t)dt.

(1) Let f/g be a decreasing function on [a,b]. If f is an increasing function on [a,b], then

(A15) Λ15 =
∫ b

a
ϕ (z1 g(t)) w(t)dt−

∫ b

a
ϕ ( f (t)) w(t)dt ≥ 0.

If g is a decreasing function on [a,b], then the reverse inequality holds in (A15).

(2) Let f/g be an increasing function on [a,b]. If g is an increasing function on [a,b], then

(A16) Λ16 =
∫ b

a
ϕ ( f (t)) w(t)dt−

∫ b

a
ϕ (z1 g(t)) w(t)dt ≥ 0.

If f is a decreasing function on [a,b], then the reverse inequality holds in (A16).
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If ϕ ◦ψ−1 is strictly convex function and f 6= z1 g (a.e.), then the strict inequality holds in

(A15) and (A16) and their reverse cases.

This paper is divided into four sections. In “Introduction and Preliminaries” section, we have

extracted some important results from [5],[6],[7],[9] and [10]. With the help of these results

we have defined positive linear functionals Λ1, . . . ,Λ16 in A1, . . . ,A16 resp. In “n-Exponential

Convexity” section, we give some definitions from [11] and we prove n-exponential convexity

of the functionals by using different classes defined in D1,D2,D3, D́1, D́2, D́3 etc. In third sec-

tion, we discuss Cauchy means for a few linear functionals. The last section is of “Examples”,

in this section we use different classes of functions and prove exponential convexity of linear

functionals for these classes and also construct some means in terms of weighted power means.

2. n-Exponential Convexity

The following definitions and results are extracted from [11]. Throughout this section J is an

interval of R and n ∈ N.

Definition 2.1. A function φ : J → R is n-exponentially convex in the Jensen sense on the

interval J if
n

∑
k,l=1

αkαlφ

(
xk + xl

2

)
≥ 0

holds for αk ∈ R and xk ∈ J; k = 1,2, . . . ,n.

A function φ : J→ R is n-exponentially convex if it is n-exponentially convex in the Jensen

sense and continuous on J.

Remark 2.2. From the definition it is clear that 1-exponentially convex functions in the Jensen

sense are in fact nonnegative functions. Also, n-exponentially convex functions in the Jensen

sense are m-exponentially convex in the Jensen sense for every m ∈ N,m≤ n.

Proposition 2.3. If φ : J→ R is an n-exponentially convex function in the Jensen sense on J,

then the matrix
[
φ
(xk+xl

2

)]m

k,l=1
is a positive semi-definite matrix for all m ∈ N,m≤ n. Partic-

ularly,

det
[

φ

(
xk + xl

2

)]m

k,l=1
≥ 0
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for all m ∈ N, m≤ n.

Definition 2.4. A function φ : J→ R is exponentially convex in the Jensen sense on J if it is

n-exponentially convex in the Jensen sense for all n ∈N. A function φ : J→R is exponentially

convex if it is exponentially convex in the Jensen sense and continuous.

Definition 2.5. A function φ : J→ R+, is said to be log-convex if logφ is convex, or equiva-

lently if for all x,y ∈ J and all λ ∈ [0,1],

φ (λx+(1−λ )y)≤ φ(x)λ
φ(y)1−λ .

Proposition 2.6. If φ : J→ R+ is exponentially convex function, then φ is a log-convex func-

tion.

Remark 2.7. It is easy to show that φ : J→ R+ is log-convex in the Jensen sense if and only if

α
2
φ(x)+2αβφ

(
x+ y

2

)
+β

2
φ(y)≥ 0

holds for every α,β ∈ R and x,y ∈ [a,b]. It follows that a function is log-convex in the Jensen-

sense if and only if it is 2-exponentially convex in the Jensen sense. Also, using basic convexity

theory it follows that a function is log-convex if and only if it is 2-exponentially convex.

Remark 2.8. If convex functions in Jensen sense are continuous then these are convex and this

is also true for log i.e., if log-convex functions in Jensen sense are continuous then these are

log-convex.

Definition 2.9. [12, p.2] A function ψ is convex on an interval J ⊆ R, if

(x3− x2)ψ(x1)+(x1− x3)ψ(x2)+(x2− x1)ψ(x3)≥ 0

holds for every x1 < x2 < x3; x1, x2, x3 ∈ J.

Let f be a real-valued function defined on [a,b], a second order divided difference of f at

distinct points z0,z1,z2 ∈ [a,b] is defined (as in [12, p.14]) recursively by

[zi; f ] = f (zi), f or i = 0,1,2;

[zi,zi+1; f ] =
f (zi+1)− f (zi)

zi+1− zi
, f or i = 0,1;
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and

[z0,z1,z2; f ] =
[z1,z2; f ]− [z0,z1; f ]

z2− z0
.

The value [z0,z1,z2; f ] is independent of the order of the points z0,z1, and z2. By taking limits

this definition may be extended to include the cases in which any two or all three points coincide

as follows: ∀z0, z1, z2 ∈ [a,b]

[z0,z0,z2; f ] = lim
z1→z0

[z0,z1,z2; f ] =
f (z2)− f (z0)− f

′
(z0)(z2− z0)

(z2− z0)
2 , z2 6= z0

given that f ′ exist on [a,b] and

[z0,z0,z0; f ] = lim
zi→z0

[z0,z1,z2; f ] =
f
′′
(z0)

2
for i = 1,2

provided that f
′′

exist on [a,b].

Let us define some classes to be used in the following theorem and let us denote Domain of ft

by D( ft) where D( ft) varies from functional to functional.

For an interval J ⊆ R.

D1 = { ft : t ∈ J} be a class of functions such that the function t 7→ [z0,z1,z2; ft ] is n-exponentially

convex in the Jensen sense on J for every three mutually distinct points z0,z1,z2 ∈ D( ft).

D2 = { ft : t ∈ J} be a class of differentiable functions such that the function t 7→ [z0,z0,z2; ft ] is

n-exponentially convex in the Jensen sense on J for any two distinct points z0,z2 ∈ D( ft).

D3 = { ft : t ∈ J} be a class of twice differentiable functions such that the function t 7→ [z0,z0,z0; ft ]

is n-exponentially convex in the Jensen sense on J for any point z0 ∈ D( ft).

We use an idea from [3] to give an elegant method of producing an n-exponentially convex

functions and exponentially convex functions applying the functionals Λk, k = 1, . . . ,16 on a

given family with the same property.

Theorem 2.10. Let Λk be linear functionals for k= 1,2,5,6,9,10,13,14 as defined in (A1),(A2),(A5),(A6),(A9),(A10),(A13),(A14).

Let J be an interval in R and ft ∈D j; j = 1,2,3; t ∈ J. Then the following statements are valid

for Λk; k = 1,2,5,6,9,10,13,14:

(a) The function t 7→ Λk( ft) is an n-exponentially convex function in the Jensen sense on J.

(b) If the function t 7→ Λk( ft) is continuous on J, then the function t 7→ Λk( ft) is an n-

exponentially convex function on J.
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Proof.

(a) Fix k = 1,2,5,6,9,10,13,14.

Let us define the function

Ω(z) =
n

∑
l,m=1

blbm f tl+tm
2

(z),

where tl+tm
2 ∈ J; bl ∈ R; l = 1,2, . . . ,n.

Since the function t → [z0,z1,z2; ft ] is n-exponentially convex in the Jensen sense, we

have

[z0,z1,z2;Ω] =
n

∑
l,m=1

blbm[z0,z1,z2; f tl+tm
2

]≥ 0,

which implies that Ω is convex function on D( ft) and therefore we have Λk(Ω)≥ 0.

Hence
n

∑
l,m=1

bkblΛk( f tl+tm
2

)≥ 0.

We conclude that the function t→ Λk( ft) is an n-exponentially convex function on J in

Jensen sense.

(b) This part is easily followed by definition of n-exponentially convex function.

As a consequence of the above theorem we can give the following corollaries for different class-

es of functions.

D1 = { ft : t ∈ J} be a class of functions such that the function t 7→ [z0,z1,z2; ft ] is an exponen-

tially convex in the Jensen sense on J for every three mutually distinct points z0,z1,z2 ∈ D( ft).

D2 = { ft : t ∈ J} be a class of differentiable functions such that the function t 7→ [z0,z0,z2; ft ] is

an exponentially convex in the Jensen sense on J for any two distinct points z0,z2 ∈ D( ft).

D3 = { ft : t ∈ J} be a class of twice differentiable functions such that the function t 7→ [z0,z0,z0; ft ]

is an exponentially convex in the Jensen sense on J for any point z0 ∈ D( ft).

Corollary 2.11. Let Λk be linear functionals for k= 1,2,5,6,9,10,13,14 as defined in (A1),(A2),(A5),(A6),(A9),(A10),(A13),(A14).

Let J be an interval in R and ft ∈D j; j = 1,2,3; t ∈ J. Then the following statements are valid

for Λk; k = 1,2,5,6,9,10,13,14:

(a) The function t 7→ Λk( ft) is an exponentially convex function in the Jensen sense on J.
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(b) If the function t 7→ Λk( ft) is continuous on J, then the function t 7→ Λk( ft) is an expo-

nentially convex function on J.

Proof. Proof follows directly from Theorem 2.10 and Proposition 2.3.

D̂1 = { ft : t ∈ J} be a class of functions such that the function t 7→ [z0,z1,z2; ft ] is 2-exponentially

convex in the Jensen sense on J for every three mutually distinct points z0,z1,z2 ∈ D( ft).

D̂2 = { ft : t ∈ J} be a class of differentiable functions such that the function t 7→ [z0,z0,z2; ft ] is

2-exponentially convex in the Jensen sense on J for any two distinct points z0,z2 ∈ D( ft).

D̂3 = { ft : t ∈ J} be a class of twice differentiable functions such that the function t 7→ [z0,z0,z0; ft ]

is 2-exponentially convex in the Jensen sense on J for any point z0 ∈ D( ft).

Corollary 2.12. Let Λk be linear functionals for k= 1,2,5,6,9,10,13,14 as defined in (A1),(A2),(A5),(A6),(A9),(A10),(A13),(A14).

Let J be an interval in R and ft ∈ D̂ j; j = 1,2,3; t ∈ J. Then the following statements are valid

for Λk; k = 1,2,5,6,9,10,13,14:

(a) For t1, . . . , tm ∈ I, the matrix
[
Λk

(
f ti+t j

2

)]m

i, j=1
is a positive semi-definite for all m ∈

N,m≤ n. Particularly,

det
[

Λk

(
f ti+t j

2

)]m

i, j=1
≥ 0

for all m ∈ N, m≤ n.

(b) If the function t 7→ Λk( ft) is strictly positive continuous on J, then it is 2-exponentially

convex on J and thus log convex function.

(c) If the function t 7→ Λk( ft) is strictly positive and differentiable on J, then for every

s, t,u,v ∈ J, such that s≤ u and t ≤ v, we have

(1) µs,t(Λk, D̂ j)≤ µu,v(Λk, D̂ j)

where

(2) µs,t(Λk, D̂ j) =


(

Λk( fs)
Λk( ft)

) 1
s−t

, s 6= t,

exp
(

d
ds Λk( fs)
Λk( fs)

)
, s = t

for fs, ft ∈ D̂ j for j = 1,2,3.

Proof.
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(a) Direct consequence of Proposition 2.3.

(b) It follows directly form Theorem 2.10 and Remark 2.7.

(c) From the definition of convex function φ , we have the following inequality [12, p.2]

(3)
φ (s) − φ (t)

s − t
≤ φ (u) − φ (v)

u − v
,

∀s, t,u,v ∈ J such that s≤ u, t ≤ v, s 6= t, u 6= v.

Since by (b), Λk( fs) is log-convex, so set φ(x) = logΛk( fx) in (3) we have

(4)
logΛk( fs) − logΛk( ft)

s− t
≤ logΛk( fu)− logΛk( fv)

u− v

for s≤ u, t ≤ v, s 6= t, u 6= v, which equivalent to (2). The cases for s = t, and / or u = v

are easily followed from (4) by taking respective limits.

D́1 = { ft : t ∈ J} be a class of functions such that the function

t 7→ [z0,z1,z2; ft ◦ψ−1] is n-exponentially convex in the Jensen sense on J for every three mutu-

ally distinct points z0,z1,z2 ∈ [0,∞) where the function ψ is strictly increasing (and continuous

also for functionals Λk, k = 3,4,11,12 ).

D́2 = { ft : t ∈ J} be a class of differentiable functions such that the function

t 7→ [z0,z0,z2; ft ◦ψ−1] is n-exponentially convex in the Jensen sense on J for any two distinct

points z0,z2 ∈ [0,∞) where the function ψ is strictly increasing (and continuous also for func-

tionals Λk, k = 3,4,11,12 ).

D́3 = { ft : t ∈ J} be a class of twice differentiable functions such that the function t 7→ [z0,z0,z0; ft ◦

ψ−1] is n-exponentially convex in the Jensen sense on J for any point z0 ∈ [0,∞) where the func-

tion ψ is strictly increasing (and continuous also for functionals Λk, k = 3,4,11,12 ).

Theorem 2.13. Let Λk be linear functionals for k= 3,4,7,8,11,12,15,16 as defined in (A3),(A4),(A7),(A8),(A11),(A12),(A15),(A16).

Let J be an interval in R and ft ∈ D́ j; j = 1,2,3; t ∈ J. Then the following statements are valid

for Λk; k = 3,4,7,8,11,12,15,16:

(a) The function t 7→ Λk( ft) is an n-exponentially convex function in the Jensen sense on J.

(b) If the function t 7→ Λk( ft) is continuous on J, then the function t 7→ Λk( ft) is an n-

exponentially convex function on J.

Proof.
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(a) Fix k = 3,4,7,8,11,12,15,16.

Let us define the function

Ω(z) =
n

∑
l,m=1

blbm f tl+tm
2

(z),

where tl+tm
2 ∈ J; bl ∈ R; l = 1,2, . . . ,n.

which implies that

Ω◦ψ
−1(z) =

n

∑
l,m=1

blbm f tl+tm
2
◦ψ
−1(z),

Since the function t→ [z0,z1,z2; ft ◦ψ−1] is n-exponentially convex in the Jensen sense,

we have

[z0,z1,z2;Ω◦ψ
−1] =

n

∑
l,m=1

blbm[z0,z1,z2; f tl+tm
2
◦ψ
−1]≥ 0,

which implies that Ω◦ψ−1 is convex function on [0,∞) and therefore we have

Λk(Ω)≥ 0.

Hence
n

∑
l,m=1

bkblΛk( f tl+tm
2

)≥ 0.

We conclude that the function t→ Λk( ft) is an n-exponentially convex function on J in

Jensen sense.

(b) This part is easily followed by definition of n-exponentially convex function.

As a consequence of the above theorem we can give the following corollaries for different class-

es of functions.

D̀1 = { ft : t ∈ J} be a class of functions such that the function

t 7→ [z0,z1,z2; ft ◦ψ−1] is an exponentially convex in the Jensen sense on J for every three mutu-

ally distinct points z0,z1,z2 ∈ [0,∞) where the function ψ is strictly increasing (and continuous

also for functionals Λk, k = 3,4,11,12 ).

D̀2 = { ft : t ∈ J} be a class of differentiable functions such that the function

t 7→ [z0,z0,z2; ft ◦ψ−1] is an exponentially convex in the Jensen sense on J for any two distinct

points z0,z2 ∈ [0,∞) where the function ψ is strictly increasing (and continuous also for func-

tionals Λk, k = 3,4,11,12 ).
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D̀3 = { ft : t ∈ J} be a class of twice differentiable functions such that the function t 7→ [z0,z0,z0; ft ◦

ψ−1] is an exponentially convex in the Jensen sense on J for any point z0 ∈ [0,∞) where the

function ψ is strictly increasing (and continuous also for functionals Λk, k = 3,4,11,12 ).

Corollary 2.14. Let Λk be linear functionals for k= 3,4,7,8,11,12,15,16 as defined in (A3),(A4),(A7),(A8),(A11),(A12),(A15),(A16).

Let J be an interval in R and ft ∈ D̀ j; j = 1,2,3; t ∈ J. Then the following statements are valid

for Λk; k = 3,4,7,8,11,12,15,16:

(a) The function t 7→ Λk( ft) is an exponentially convex function in the Jensen sense on J.

(b) If the function t 7→ Λk( ft) is continuous on J, then the function t 7→ Λk( ft) is an expo-

nentially convex function on J.

Proof. Proof follows directly from Theorem 2.13 and Proposition 2.3.

D̃1 = { ft : t ∈ J} be a class of functions such that the function

t 7→ [z0,z1,z2; ft ◦ψ−1] is 2-exponentially convex in the Jensen sense on J for every three mutu-

ally distinct points z0,z1,z2 ∈ [0,∞) where the function ψ is strictly increasing (and continuous

also for functionals Λk, k = 3,4,11,12 ).

D̃2 = { ft : t ∈ J} be a class of differentiable functions such that the function

t 7→ [z0,z0,z2; ft ◦ψ−1] is 2-exponentially convex in the Jensen sense on J for any two distinct

points z0,z2 ∈ [0,∞) where the function ψ is strictly increasing (and continuous also for func-

tionals Λk, k = 3,4,11,12 ).

D̃3 = { ft : t ∈ J} be a class of twice differentiable functions such that the function t 7→ [z0,z0,z0; ft ◦

ψ−1] is 2-exponentially convex in the Jensen sense on J for any point z0 ∈ [0,∞) where the func-

tion ψ is strictly increasing (and continuous also for functionals Λk, k = 3,4,11,12 ).

Corollary 2.15. Let Λk be linear functionals for k= 3,4,7,8,11,12,15,16 as defined in (A3),(A4),(A7),(A8),(A11),(A12),(A15),(A16).

Let J be an interval in R and ft ∈ D̃ j, j = 1,2,3, t ∈ J.Then the following statements are valid

for Λk; k = 5,6,7,8,13,14,15,16:

(a) For t1, . . . , tm ∈ I, the matrix
[
Λk

(
f ti+t j

2

)]m

i, j=1
is a positive semi-definite for all m ∈

N,m≤ n. Particularly,

det
[

Λk

(
f ti+t j

2

)]m

i, j=1
≥ 0
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for all m ∈ N, m≤ n.

(b) If the function t 7→ Λk( ft) is strictly positive continuous on J, then it is 2-exponentially

convex on J, and thus log convex function.

(c) If the function t 7→ Λk( ft) is strictly positive and differentiable on J, then for every

s, t,u,v ∈ J, such that s≤ u and t ≤ v, we have

(5) µs,t(Λk, D̃ j)≤ µu,v(Λk, D̃ j)

where

(6) µs,t(Λk, D̃ j) =


(

Λk( fs)
Λk( ft)

) 1
s−t

, s 6= t,

exp
(

d
ds Λk( fs)
Λk( fs)

)
, s = t

for fs, ft ∈ D̃ j for j = 1,2,3.

Proof.

(a) Direct consequence of Proposition 2.3.

(b) It follows directly form Theorem 2.13 and Remark 2.7.

(c) Similar to the proof of part-(c) of Corollary 2.12.

3. Cauchy Means

For the sake of completion we only state here two theorems which will be used in our exam-

ples. For the idea of the proof of the theorems see [11].

Theorem 3.1. Let Λk be linear functionals for k = 5,6 as defined in (A5),(A6) and ϕ ∈C2(I),

where I is a compact interval in R. Then there exist ξk ∈ I such that

Λk(ϕ) =
ϕ ′′(ξk)

2
Λk(ϕ0), where ϕ0(x) = x2; k = 5,6.

Theorem 3.2. Let Λk be linear functionals for k = 5,6 as defined in (A5),(A6) and ϕ,θ ∈

C2(I), where I is a compact interval in R. Then there exist ξk ∈ I such that

Λk(ϕ)

Λk(θ)
=

ϕ ′′(ξk)

θ ′′(ξk)
; k = 5,6.

provided that the denominator of the left-hand side is non-zero.
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Remark 3.3. If the inverse of ϕ ′′

θ ′′ exists, then from the above mean value theorems we can give

generalized means

(7) ξk =

(
ϕ ′′

θ ′′

)−1(
Λk(ϕ)

Λk(θ)

)
; k = 5,6.

Remark 3.4. For the functionals Λk; k = 1,2,3,4,7,8, ..,16 (as defined in

(A1),(A2),(A3),(A4),(A7)(A8), . . . ,(A16)) similar results as given in Theorems 3.1 and 3.2

can be find in [5] and [6]. In the similar way, we can use Remark 3.3 for these functionals as

well.

4. Examples

In this section we will vary on choice of a family D = { ft : t ∈ J} in order to construct

different examples of exponentially convex functions and construct some means. Let us define

Ms(x) for x = (x1, . . . ,xi, . . . ,xn) as follows:

Ms(x) :=


(∑n

i=1 wixs
i )

1
s , s 6= 0;

n
∏
i=1

xwi
i , s = 0.

This mean will be used in all examples.

Example 4.1. Let

D̃1 = {ψt : R→ [0,∞) : t ∈ R}

be a family of functions defined by

ψt(x) =

 1
t2 etx, t 6= 0;
1
2 x2, t = 0.

Here we observe that ψt is convex with respect to ψ(x) = x which is strictly increasing and

continuous. Since, ψt(x) is a convex function on R and t → d2

dx2 ψt(x) is exponentially convex

function [3]. Using analogous arguing as in the proof of Theorems 2.10 and 2.13, we have that

t 7→ [y0,y1,y2;ψt ] is exponentially convex (and so exponentially convex in the Jensen sense).

Using Corollary 2.11 and 2.14 we conclude that t 7→ Λk(ψt); k = 1, . . . ,16 are exponentially

convex in the Jensen sense. It is easy to see that these mappings are continuous, so they are
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exponentially convex.

Assume that t 7→ Λk(ψt)> 0 for k = 1,2, . . . ,16. By using convex functions ψt in (7) we obtain

the following means:

For k = 1,2, . . . ,16

Ms,t(Λk, D̃1) =


1

s−t ln
(

Λk(ψs)
Λk(ψt)

)
, s 6= t;

Λk(id.ψs)
Λk(ψs)

− 2
s , s = t 6= 0;

Λk(id.ψ0)
3Λk(ψ0)

, s = t = 0.

In particular for k = 1 we have

Ms,t(Λ1, D̃1) =
1

s−t ln

(
t2

s2 .
∑

n
i=1 wie

s(
bi

M1(b)
)
−∑

n
i=1 wie

s(
ai

M1(a)
)

∑
n
i=1 wie

t(
bi

M1(b)
)
−∑

n
i=1 wie

t(
ai

M1(a)
)

)
; s 6= t;s, t 6= 0;

Ms,s(Λ1, D̃1) =
∑

n
i=1 wi(

bi
M1(b)

)e
s(

bi
M1(b)

)
−∑

n
i=1 wi(

ai
M1(a)

)e
s(

ai
M1(a)

)

∑
n
i=1 wie

s(
bi

M1(b)
)
−∑

n
i=1 wie

s(
ai

M1(a)
)

− 2
s ; s 6= 0;

Ms,0(Λ1, D̃1) =
1
s . ln

 2
s2 .

∑
n
i=1 wie

s(
bi

M1(b)
)
−∑

n
i=1 wie

s(
ai

M1(a)
)

M2
2 (b)

M2
1 (b)
−

M2
2 (a)

M2
1 (a)

 ; s 6= 0,

M0,0(Λ1, D̃1) =
1
3 .

M3
3 (b)

M3
1 (b)
−

M3
3 (a)

M3
1 (a)

M2
2 (b)

M2
1 (b)
−

M2
2 (a)

M2
1 (a)

.

Since Ms,t(Λk, D̃1) = ln µs,t(Λk, D̃1) (k = 1,2, . . . ,16), so by (1) these means are monotonic.

Example 4.2. Let

D̃2 = {ϕt : (0,∞)→ R : t ∈ R}

be a family of functions defined by,

(8) ϕt(x) =


xt

t(t−1) ; t 6=0,1;

− lnx; t=0;

x lnx, t=1.

Since ϕt(x) is a convex function for x ∈ R+ and t → d2

dx2 ϕt(x) is exponentially convex, so by

the same arguments given in previous example we conclude that Λk(ϕt); k = 1,2, . . . ,16 are

exponentially convex. We assume that Λk(ϕt)> 0; k = 1,2, . . . ,16.
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For this family of convex functions we can give the following means:

For k = 1,2, . . . ,16

Ms,t(Λk, D̃2) =



(
Λk(ϕs)
Λk(ϕt)

) 1
s−t ; s 6= t;

exp
(

1−2s
s(s−1) −

Λk(ϕ0ϕs)
Λk(ϕs)

)
; s = t 6= 0,1;

exp
(

1− Λk(ϕ0
2)

2Λk(ϕ0)

)
; s = t = 0;

exp
(
−1− Λk(ϕ0ϕ1)

2Λk(ϕ1)

)
; s = t = 1.

In particular for k = 1 we have

Ms,t(Λ1, D̃2) =

 t(t−1)
s(s−1) .

Ms
s (b)

Ms
1(b)
−Ms

s (a)
Ms

1(a)
Mt

t (b)
Mt

1(b)
−Mt

t (a)
Mt

1(a)

 1
s−t

; s 6= t;s, t 6= 0;

Ms,s(Λ1, D̃2) = exp

(
∑

n
i=1 wi(

bi
M1(b)

)s ln( bi
M1(b)

)−∑
n
i=1 wi(

ai
M1(a)

)s ln( ai
M1(a)

)

Ms
s (b)

Ms
1(b)
−Ms

s (a)
Ms

1(a)

− 2s−1
s(s−1)

)
; s 6= 0,1;

Ms,0(Λ1, D̃2) =

(
1

s(1−s) .

Ms
s (b)

Ms
1(b)
−Ms

s (a)
Ms

1(a)

∑
n
i=1 wi ln( bi

M1(b)
)−∑

n
i=1 wi ln( ai

M1(a)
)

) 1
s

; s 6= 0,1;

Ms,1(Λ1, D̃2) =

(
1

s(s−1) .

Ms
s (b)

Ms
1(b)
−Ms

s (a)
Ms

1(a)

∑
n
i=1 wi(

bi
M1(b)

) ln( bi
M1(b)

)−∑
n
i=1 wi(

ai
M1(a)

) ln( ai
M1(a)

)

) 1
s−1

; s 6= 0,1;

M0,0(Λ1, D̃2) = exp

(
1
2 .

∑
n
i=1 wi ln2(

bi
M1(b)

)−∑
n
i=1 wi ln2(

ai
M1(a)

)

∑
n
i=1 wi ln( bi

M1(b)
)−∑

n
i=1 wi ln( ai

M1(a)
)
+1

)
;

M1,1(Λ1, D̃2) = exp

(
1
2 .

∑
n
i=1 wi(

bi
M1(b)

) ln2(
bi

M1(b)
)−∑

n
i=1 wi(

ai
M1(a)

) ln2(
ai

M1(a)
)

∑
n
i=1 wi(

bi
M1(b)

) ln( bi
M1(b)

)−∑
n
i=1 wi(

ai
M1(a)

) ln( ai
M1(a)

)
−1

)
;

M1,0(Λ1, D̃2) =
∑

n
i=1 wi(

bi
M1(b)

) ln( bi
M1(b)

)−∑
n
i=1 wi(

ai
M1(a)

) ln( ai
M1(a)

)

∑
n
i=1 wi ln( ai

M1(a)
)−∑

n
i=1 wi ln( bi

M1(b)
)

; .

Since Ms,t(Λk, D̃2) = µs,t(Λk, D̃2) (k = 1,2, . . . ,16), so by (1) these means are monotonic.

Example 4.3. Let

D̃3 = {θt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be family of functions defined by

θt(x) =
e−x
√

t

t
.

Since t → d2

dx2 θt(x) = e−x
√

t is exponentially convex, being the Laplace transform of a non-

negative function [3]. So by same argument given in Example 4.1 we conclude that Λk(θt); k =

1,2, . . . ,16 are exponentially convex. We assume that Λk(ϕt)> 0; k = 1,2, . . . ,16.
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For this family of functions we have the following possible cases of µs,t(Λk, D̃3):

For k = 1,2, . . . ,16

µs,t(Λk, D̃3) =


(

Λk(θs)
Λk(θt)

) 1
s−t

, s 6= t;

exp
(
− Λk(id.θs)

2
√

s Λk(θs)
− 1

s

)
, s = t;

In particular for k = 1 we have

µs,t(Λ1, D̃3) =

(
t
s .

∑
n
i=1 wie

−( bi
M1(b)

)
√

s
−∑

n
i=1 wie

−( ai
M1(a)

)
√

s

∑
n
i=1 wie

−( bi
M1(b)

)
√

t
−∑

n
i=1 wie

−( ai
M1(a)

)
√

t

) 1
s−t

, s 6= t;

µs,s(Λ1, D̃3) = exp

− 1
2
√

s .
∑

n
i=1 wi(

bi
M1(b)

)e
− bi

M1(b)
√

s
−∑

n
i=1 wi(

ai
M1(a)

)e
−( ai

M1(a)
)
√

s

∑
n
i=1 wie

−( bi
M1(b)

)
√

s
−∑

n
i=1 wie

−( ai
M1(a)

)
√

s
− 1

s

 .

Monotonicity of µs,t((Λk, D̃3)) is followed by (1). By (7)

Ms,t(Λk, D̃3) =−(
√

s+
√

t) ln µs,t(Λk, D̃3) (k = 1,2, . . . ,16)

defines a class of means.

Example 4.4. Let

D̃4 = {φt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be family of functions defined by

φt(x) =


t−x

(ln t)2 , t 6= 1;

x2

2 , t = 1.

Since d2

dx2 φt(x) = t−x = e−xlnt > 0, for x > 0, so by same argument given in Example 4.1 we

conclude that t → Λk(φt); k = 1,2, . . . ,16 are exponentially convex. We assume that Λk(φt) >

0; k = 1,2, . . . ,16.

For this family of functions we have the following possible cases of µs,t(Λk, D̃4):

For k = 1,2, . . . ,16

µs,t(Λk, D̃4) =



(
Λk(φs)
Λk(φt)

) 1
s−t

, s 6= t;

exp
(
− Λk(id.φs)

sΛk(φs)
− 2

s lns

)
, s = t 6= 1;

exp
(
− 1

3
Λk(id.φ1)

Λk(φ1)

)
, s = t = 1;
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In particular for k = 1 we have

µs,t(Λ1, D̃4) =

(
(ln t)2

(lns)2 .
∑

n
i=1 wis

−( bi
M1(b)

)
−∑

n
i=1 wis

−( ai
M1(a)

)

∑
n
i=1 wit

−( bi
M1(b)

)
−∑

n
i=1 wit

−( ai
M1(a)

)

) 1
s−t

; s 6= t; s, t 6= 1;

µs,s(Λ1, D̃4) = exp

−1
s .

∑
n
i=1 wi(

bi
M1(b)

)s
−( bi

M1(b)
)
−∑

n
i=1 wi(

ai
M1(a)

)s
−( ai

M1(a)
)

∑
n
i=1 wis

−( bi
M1(b)

)
−∑

n
i=1 wis

−( ai
M1(a)

)
− 2

s lns

 ; s 6= 1,

µs,1(Λ1, D̃4) =

 2
(lns)2 .

(∑n
i=1 wis

−( bi
M1(b)

)
−∑

n
i=1 wis

−( ai
M1(a)

)
)

M2
2 (b)

M2
1 (b)
−

M2
2 (a)

M2
1 (a)

 1
s−1

,

µ1,1(Λ1, D̃4) =−1
3 .

M3
3 (b)

M3
1 (b)
−

M3
3 (a)

M3
1 (a)

M2
2 (b)

M2
1 (b)
−

M2
2 (a)

M2
1 (a)

.

Monotonicity of µs,t(Λk, D̃4) is followed by (1). By (7)

Ms,t(Λk, D̃4) =−L(s, t) ln µs,t(Λk, D̃4) (k = 1,2, . . . ,16)

defines a class of means, where L(s, t) is Logarithmic mean defined as:

L(s, t) =

 s−t
lns−ln t , s 6= t;

s, s=t.
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