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Abstract. In this paper, the results in [11] have been improved upon and a new simpler proof is given in dimen-

sional form.
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1. INTRODUCTION

The following interesting classical theorem is well known(see [4]):

Theorem A. Let f (x) be a non-negative p-integrable function defined on (0,∞), and p > 1.

Then, f is integrable over the interval (0,x) for each x and the following inequality is true:

(1.1)
∫

∞

0

(
1
x

(∫ x

0
f (y)dy

))p

dx≤
( p

p−1

)p ∫ ∞

0
f (x)pdx

provided the right hand side of this inequality is finite.
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Some integral inequalities related to Hardy’s inequality known as Hardy-type inequalities

have been established by many authors [1, 2, 3, 5, 7, 8, 10, 13]. Recently, [11] gave a refined

form of [1] and the following result was proved:

Theorem B. Let g(x) be continuous and non-decreasing on [0,∞] with g(0) = 0, g(x) > 0,

g(∞) = ∞. ∑
n
i=1 ui = u and ∑

n
i=1 vi = v where x,u and v are all positive. Also, let f : [a,b]→

R(a < b), be continuous and convex on the real interval [a,b]. Assume ∏
n
i=1 αiβi ≥ 0 with

∑
n
i=1(α+β)> 0 for all i ∈ N.

Then, the following inequality holds:

(1.2)
∫

∞

0
g(x)−1

[∫ b

a

∫ b

a
f (

n

∑
i=1

(αiui +βivi))uα−1dudv
]p

dg(x)≤ Lp
∫

∞

0
G(x)dg(x)

where, L = (α−1β )(b−a)(bα −aα)(k+1) and G(x) = f (x)pg(x)−1.

The left side of (1.1) and (1.2) exists when the right hands sides do.

This work is, therefore, devoted to Hardy-type inequalities and to some modifications and

consequences contained in [11, 12]. The aim is to determine conditions on the data of our

problem, i.e. on the domain and parameters, under which those inequalities hold on some

classes of functions and to some new extension, generalization to multidimensional cases by

making one of the weight functions a power function.

Throughout this paper, p > 1 except otherwise stated, we shall use f to be integrable when-

ever f is measurable and
∫
| f (x)|dx < ∞. Hence, if f is an integrable function, then

∫
f (x)dx

exists whenever f is measurable and
∫
| f (x)|dx < ∞.

The multidimensional generalized Hardy-Polya type inequality described by convex func-

tions would be discussed in the next section. Throughout the section, we use the notation∫ b1

t1
. . .
∫ bn

tn
=:
∫ b

t

and we have similar expressions for∫ b

0
,
∫ x

0
,
∫ ∞

0
and

∫
X

where bi’s, xi’s and vi’s are the components of b, x and v for all i = 1, . . . ,n ∈ Z+ respectively.

All functions are measurable except otherwise stated. Based on the methods in [11], [6] and [9],
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we further make some new generalizations of multidimensional Hardy-type integral inequalities

by introducing real function g(x). Some multidimensional Hardy-type integral inequalities are

obtained. Some applications are also considered.

2. MULTIDIMENSIONAL HARDY-TYPE INEQUALITIES WITH WEIGHTS

In this section, we prove the following theorems which are more general than the results

contained in [11]. We shall first give some lemmas which are crucial to prove certain inequalities

in our context. This first and second of this are from [6] and [9].

Lemma C. Let 0 < bi≤∞, i = 1,2 . . . ,n∈Z+,−∞≤ a < c≤∞ and let Φ be a positive function

[a,c].

If Φ is convex (respectively concave), then∫ b

0
Φ

(
1

x1 . . .xn

∫ x

0
f (t)dt

)
dx

x1 . . .xn

is less than or equal to (respectively greater than or equal to)∫ b

0
Φ( f (x))

(
1− x1

b1

)
. . .

(
1− xn

bn

)
dx

x1 . . .xn

for every function f on (0,b) such that a < f (x) < c.

Lemma D. Let b ∈ (0,∞], −∞≤ a < c≤∞ and Φ be a positive function on [a,c]. Suppose that

the weight function u defined on (0,b) is nonnegative such that u(x)
x2

1...x
2
n

is locally integrable on

(0,b) and the weight function v is defined by

v(t) = t1 . . . tn
∫ b

t
u(x)

x2
1 . . .x

2
n

dx, t ∈ (0,b).

If Φ is convex (respectively concave), then∫ b

0
u(x)Φ

(
1

x1 . . .xn

∫ x

0
f (t)dt

)
dx

x1 . . .xn

is less than or equal to (respectively greater than or equal to)∫ b

0
v(x)Φ( f (x))

dx
x1 . . .xn

holds for every function f on (0,b) such that a < f (x1, . . . ,x1)< c.
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Theorem 2.1. If Φ is positive and continuous on [0,∞), f and h are a non-negative functions

on [0,b], 0 < xi < bi ≤ ∞ (i = 1 . . .n ∈ Z+) and λ is non-decreasing on [0,∞], assume

0 <
∫ b

0
g(x)−p

Φ( f (x))dg(x1) . . .dg(xn)< ∞

for each continuous and non-decreasing function g on [0,∞) and v∈ Rn such that 0 < vi < ∞

with,

Φ convex (respectively concave), then∫ b

0
g(x)−p

Φ

(
L−1

∫ x

0
( f (v1, . . . ,vn)h(v1, . . . ,vn))dλ (v1) . . .dλ (vn)

)
dg(x1) . . .dg(xn)

is less than or equal to (respectively greater than or equal to)(∫ b

0
g(x)−p

Φ( f (x))dg(x1) . . .dg(xn)

)(∫ b

0
g(x)−p

Φ(h(x))dg(x1) . . .dg(xn)

)
where L =

∫∞
0 dλ (v1) . . .dλ (vn)

Proof. Applying the iterative integrals of functions h and f on measurable set X with measure

λ and Y with measure µ (σ -finite) then,∫
X

h(y1, . . . ,yn)

(∫
Y

f (x)dλ1 . . .dλn

)
dµ1 . . .dµn

=
∫
(X1...Xn)×(Y1...Yn)

f (x)×h(y1, . . . ,yn)(dµ1 . . .dµn×dλ1 . . .dλn)

=
∫
(Y1...Yn)

h(x)
(∫

(X1...Xn)
f (y1, . . . ,yn)dµ1 . . .dµn

)
dλ1 . . .dλn

Since Φ is convex, L =
∫∞
0 (dλ (v1) . . .dλ (vn)) and by imploring Fubini’s theorem, then,∫ b

0
g(x)−p

Φ

(
L−1

∫ x

0
f (v1, . . . ,vn)h(v1, . . . ,vn)dλ (v1) . . .dλ (vn)

)
dg(x1) . . .dg(xn)

≤ L−1
∫ ∞

0
g(x)−pdg(x1) . . .dg(xn)

∫ x

0
Φ( f (v1, . . . ,vn)h(v1, . . . ,vn))dλ (v1) . . .dλ (vn)

≤ L−1
∫ ∞

0
dλ (v1) . . .dλ (vn)

∫ b

0
g(x)−p

Φ( f (x)h(x))dg(x1) . . .dg(xn)

=
∫ b

0
Φ( f (x)h(x))g(x)−pdg(x1) . . .dg(xn)

≤

(∫ b

0
g(x)−p

Φ( f (x))dg(x1) . . .dg(xn)

)(∫ b

0
g(x)−p

Φ(h(x))dg(x1) . . .dg(xn)

)
The proof of Φ concave is now easily obtained from the above by reversing the inequalities. �
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Corollary 2.2. If p > 1, f ,h ≥ 0, g(x) = x is continuous, non-decreasing on [0,∞). Let Φ be

positive and continuous on [0,∞), and define dλ (v1) . . .dλ (vn) by (vα−1
1 . . .vα−1

n )dv1 . . .dvn on

[0,1] and 0 for v > 1, 1 < α ≤ n and n ∈ Z+. Assume

∫ b

0
Φ(( f (x)h(x))p)dx < ∞

with,

Φ convex (respectively concave), then

∫ b

0
g(x)−p

Φ

((∫ 1

0
f (v1, . . . ,vn)h(v1, . . . ,vn)dλ (v1) . . .dλ (vn)

)p)
dx

is less than or equal to (respectively greater than or equal to)

n

∏
i=1

(αi−1)−p

(∫ b

0
Φ( f (x)p)dx

)(∫ b

0
Φ(h(x)p)dx

)

Proof. The integral of two or more variables of a summable functions can generally be obtained

by successive integrations with respect to each variable separately or by pairs that is an iterative

integral and with Φ convex, then

∫ b

0
g(x)−p

Φ

((∫ 1

0
(vα−1

1 . . .vα−1
n ) f (v1, . . . ,vn)h(v1, . . . ,vn)dv1 . . .dvn

)p)
dx

≤
∫ b

0
Φ(( f (x)h(x))p)

(∫ 1

0
g(v1, . . . ,vn)

−1(vα−1
1 . . .vα−1

n )dv1 . . .dvn

)p

dx

by substituting and integrating the inner integral on [0,1] by single step of integration by part,

we have ∫ b

0
Φ(( f (x)h(x))p)

(∫ 1

0
g(v1, . . . ,vn)

−1(vα−1
1 . . .vα−1

n )dv1 . . .dvn

)p

dx

≤
n

∏
i=1

(αi−1)−p

(∫ b

0
Φ( f (x)p)dx

)(∫ b

0
Φ(h(x)p)dx

)
Also, if there exist a continuous inverse which is necessarily concave on function Φ then the

proof is easily obtained using similar method with inequalities reversed. The results also hold

if we assume g(x) = xk whenever 1 < k < α ≤ n ∈ Z+. �
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Corollary 2.3. If p > 1, f and h are continuous, non-decreasing on [0,b]. Let Φ be positive

and continuous on [0,∞), and define dλ (v1) . . .dλ (vn) by (vα−1
1 . . .vα−1

n )dv1 . . .dvn on [0,1],

α ∈ R and λ is non-decreasing on [0,1]. Assume

0 <
∫ ∞

0
Φ(( f (x)h(x))p)dx < ∞

if Φ is convex, then,

∫ b

0
g(x)−p

Φ

((∫ 1

0
f (v1, . . . ,vn)h(v1, . . . ,vn)dλ (v1) . . .dλ (vn)

)p)
dx

≤ (α(1− k))−np

(∫ b

0
Φ( f (x)p)dx

)(∫ b

0
Φ(h(x)p)dx

)

whenever g(x) = xk is a decreasing function over [0,1] and 1 < k ∈ Z+.

Proof. Since g is decreasing on [0,1], then we obtain, by using Chebyshev’s integral inequality

on ∫ b

0
Φ(( f (x)h(x))p)

(∫ 1

0
g(v1, . . . ,vn)

−1(vα−1
1 . . .vα−1

n )dv1 . . .dvn

)p

dx

≤
∫ b

0
Φ(( f (x)h(x))p)

(∫ 1

0
g(v1, . . . ,vn)

−1dv1 . . .dvn

)p

×

(∫ 1

0
(vα−1

1 . . .vα−1
n )dv1 . . .dvn

)p

dx

≤ (α(1− k))−np

(∫ b

0
Φ( f (x)p)dx

)(∫ b

0
Φ(h(x)p)dx

)
since g and λ are not similarly ordered, otherwise the inequality is reversed. Also, the inequality

is reversed if they are not similarly ordered and p lies between 0 < p < 1. See ([4], Theorem

43, see also section 5.8 page 123).

We distingused some valid cases for this inequality as follows:
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p α,k,n

p < 0 α > 0 k < 1 n < 0

p > 0 α > 0 k > 1 n = 0

p = 0 α > 0 k > 0 n > 0

p = 0 α > 0 k < 0 n > 0

p = 0 α > 0 k > 0 n = 0

odd α > 0 k > 1 even

even α > 0 k > 1 odd

�

We obtain the corresponding reverse inequalities if Φ has a continuous inverse which is nec-

essarily concave. Similar results were obtained for refined form of Theorem 1 in [11] and

Theorem 3.1 of the current paper.
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