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1. Introduction 

The topic of moment inequalities is prominent in Probability and Statistics. For example, 

such inequalities determine the conditions under which random variables on a given range 

with given moments exist. For given moments up to the order four, the solution to this 

existence problem is found in Jansen et al. (1986), Hürlimann (2008), Theorem I.4.1. A 

general proof for the existence of random variables with known moments up to a given order 

is in De Vylder (1996), II.3.3. It is important to discuss the relationship between skewness 

and kurtosis in more specific but still general classes of distributions. From a practical point 

of view, the application of such inequalities to statistical inference is useful because it yields 
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necessary conditions under which a given statistical model can be fitted to data. In the realm 

of Quantitative Finance, where skewness and kurtosis play a key role, one is interested in 

large classes of non-Gaussian distributions, which are able to supersede the ubiquitous 

Black-Scholes model. A first choice is the normal variance-mean (NVM) mixture model, 

which has even been proposed as theoretical foundation for a semi-parametric approach to 

financial modelling (e.g. Bingham and Kiesel (2001)). In particular, the NVM model includes 

two five parameter families of distributions, namely the generalized hyperbolic (GH) 

distribution and the normal tempered stable (NTS) distribution. Important members of the 

GH distribution are the normal-inverse Gaussian (NIG), the hyperbolic (HYP), the 

variance-gamma (VG) and the hyperbolic skew t (HST). The NTS family also includes the 

NIG distribution. As a main result, we show that the ratio of squared skewness to kurtosis for 

the NVM model is bounded above by the same ratio for the mixing distribution. A short 

account of the content follows. 

Section 2 recalls the normal variance-mean (NVM) mixture model and briefly discusses the 

moment equations associated to it. Section 3 derives the general inequality between skewness 

and kurtosis for the NVM class. Section 4 is devoted to selected examples and a comparative 

study of such inequalities. 

 

2. Moment equations for the normal variance-mean mixture model 

The normal variance-mean (NVM) random variable is defined to be the mixture of a normal 

random variable of the type (e.g. Barndorff-Nielsen et al. (1982)) 

 

RZWWX   ,, ,         (2.1) 

 

where  )1,0(~ NZ   is a standard normal random variable,  W   is a non-negative mixing 

random variable with cumulant generating function (cgf)  )(tCW , and  WZ ,   are 

independent. We assume that the first four cumulants of  W   exist and summarize them 

into a vector  ),,,( 4321   . A short hand notation for the random variable (2.1) is  
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),,(~ NVMX . One knows that the cgf of the NVM model is given by (e.g. Feller 

(1971), Section II.5) 

 

).()( 2

2
1 ttCttC WX        (2.2) 

 

The mean, standard deviation, skewness and excess kurtosis of  X   are denoted throughout 

by  KS,,, . Through differentiation of the cgf (2.2) one obtains the moment equations 
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A concrete specification of the cgf  )(tCW  and the vector  )(    depends upon a 

multi-parameter vector 2),,...,,( 21  mm , and equivalently to the above one writes  

),,(~ NVMX . Since the degree of freedom of the system (2.3) is  2m , a solution to 

it will necessarily depend upon  2m   of the parameters  i , say  2,...,1  mii . 

For short-hand notation we set  ),...,,( 221  m . In applications, one parameter, say  

0m ,  will be a scale parameter such that the distribution and cgf of  mW /   is 

independent of  m . We assume this and rename the remaining parameters as  

mm   

2

1, . The moment problem for the NVM model consists to find necessary and 

sufficient conditions so that the system of equations (2.3), with known  KS,,,   and 

arbitrary but fixed     in the feasible parameter space, has a unique solution  ),,,(  . 

In the following, a simple general strategy to solve (2.3) is presented. 

   First of all, taking into account the mean equation, it suffices to determine  ),,(  . 

Then, one has   1 .  Let  0)/( 2

12     be an auxiliary unknown 

parameter chosen such that the variance equation reads  2

1)1(   . Inserting into the 
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squared skewness equation, one finds the expression 
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Similarly, the kurtosis equation can be rewritten as 
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Now, consider the functions of the parameter vector  ),,(     defined by 
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Since     is a scale parameter, these functions depend only on  ),(    and (2.4), (2.5) is 

equivalent to the following system of two equations in the unknowns  ),(  : 
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In general, the second equation is quadratic in     and it has the unique positive solution 
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Insert this into the first equation in (2.7) to get an implicit equation for     (by fixed   ). 

Therefore, the NVM moment problem reduces to find the necessary and sufficient conditions 

such that the latter non-linear equation has a unique solution. In case     has been found 
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numerically, the remaining parameters  ),(    are obtained from the definition of the 

parameter     and the variance equation as 
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This strategy yields even closed-form solutions for the variance-gamma (VG) distribution 

(reformulation of Theorem 3.1 in Hürlimann (2013)), as well as for the normal inverse 

Gaussian (NIG) distribution. A more complex example, for which this strategy is successful, 

is the generalized skew t (GST) distribution (see Proposition 2.5 in Ghysels and Wang 

(2011)). A further discussion of the general moment problem is postponed to later. The focus 

of the present note is solely on a simple general relationship between skewness and kurtosis 

in the NVM model. 

 

3. An inequality between squared skewness and kurtosis 

Under the technical conditions of Lemma 3.1 below, the ratio of squared skewness to kurtosis 

for the NVM model is bounded above by the same ratio for the mixing distribution. To derive 

this upper bound, let us divide the first and second equations in (2.7) to get the expression 
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To derive the maximum of this ratio, an analysis of the function  )(f   is required.  

 

Lemma 3.1.  If the quantities  23 23 QQA    and  2

34243 3 QQQQQB    are 

non-negative, then the function  )(f   is strictly monotone increasing for all  0 . 

Proof.  The derivative of the function  )(f   is of the form 
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It follows that 

 

.3,23

,53})3(2){1()()()(

),(
)()1(

)(2
)('

2

3424323

32

332

2

2

2

34232

22

QQQQQBQQA

BQAQQQQQQQQqph

h
q

p
f


















 

Now, if  0, BA   then  0)(' f   for all  0   because  0,, 432 QQQ  

(non-degenerate random variable  0W ).  ◊ 

 

Theorem 3.1. (NVM inequality between skewness and kurtosis) Let  ),,(~ NVMX   

be a normal variance-mean mixture with finite first four cumulants  ),,,( 4321     of 

the non-negative mixing random variable  W . Assume the conditions of Lemma 3.1 hold. 

Then, the skewness and kurtosis pair  ),( KS   of  X   satisfies the inequality 
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where  ),( WW KS   is the skewness and kurtosis pair of the mixing distribution. 
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4. Selected examples and comparisons 

The inequality between skewness and kurtosis is illustrated at three NVM mixture models, 

namely the NVM model with log-normal mixing distribution, the normal tempered stable 
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(NTS) distribution, and the generalized hyperbolic (GH) distribution. The GH has been 

widely discussed (e.g. Eberlein and Keller (1995), Prause (1999). Eberlein (2001), Eberlein 

and Prause (2002), Bibby and Sorensen (2003), Eberlein and Hammerstien (2004), McNeil et 

al. (2005), etc.). In particular, the variance-gamma (VG) subfamily of the GH is very popular 

in Finance. It has been introduced by Madan and Seneta (1990) (see also Madan and Milne 

(1991), Madan et al. (1998), Madan (2001), Carr et al. (2002), Geman (2002), Fu et al. (2006), 

etc.). 

 

Example 4.1: Log-normal (lnN) mixing distribution 

Let  ),(ln~ 2mNW   be a log-normal mixing random variable with skewness and excess 

kurtosis 

632,1)2(
22222 234   eeeKeeS WW .  (4.1) 

A calculation shows that 

663

)2(
222

2

23

22










eee

e

K

S

W

W .      (4.2) 

 

The maximum of the ratio (4.2) is determined by the function 
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On the other hand one has 
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is non-negative over a limited range of volatilities   max,0   . In this situation, the 

inequality (3.2) will hold. A first application of this mixing distribution is Clark (1973). A 

recent application of the (generalized) log-normal mixing distribution within the context of 

the semi-parametric multivariate NVM mixture model is found in Cui (2012). 

 

Example 4.2: Classical tempered stable (CTS) mixing distribution 

The classical tempered stable (CTS) subordinator  ),,(~ CTSW   is determined by the 

cgf 
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The corresponding NVM mixture is called normal tempered stable (NTS) model. A 

calculation shows that 
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are fulfilled. Therefore, the NTS distribution satisfies the inequality 
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The special case  1   of the normal inverse Gaussian (NIG) is well-known from the 
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literature (e.g. de Beus et al. (2003), Appendix 1, Ghysels and Wang (2011), Proposition 2.3, 

Hürlimann (2013), Appendix 3) (see also Example 4.3). 

 

Example 4.3: Generalized inverse Gaussian (GIG) mixing distribution 

An important class of NVM models is the generalized hyperbolic (GH) distribution. It 

belongs to the generalized inverse Gaussian (GIG) mixing random variable  

),,(~ GIGW   with cgf 

 

,
)(

)2(
ln

2
ln

2

1
)(

2

2

2











 


























K

tK

t
tCW  

 

where  )(xK   is the modified Bessel function of the third kind. The domain of variation 

of the parameters depends upon three cases. 

Case 1:  generic GH distribution with  0,0,    

Case 2:  variance-gamma (VG) distribution with  0,0,0      

Case 3:  skew hyperbolic t (SHT) distribution with  0,0,0    

In the limiting Case 2 the mixing distribution reduces to a gamma distribution and in Case 3 

one has an inverse gamma distribution. We discuss the three cases separately. 

 

Case 1:  generic case 

It is convenient to re-parameterize the GIG by setting  0  . Then the cgf rewrites as 
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The special case  
2
1   is the normal inverse Gaussian (NIG) and  1   is the 

hyperbolic (HYP) distribution. Let us first discuss the simple NIG case. 
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Normal inverse Gaussian (NIG) 

The cgf (4.6) simplifies to  ttCW
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are fulfilled. Therefore, the NIG distribution satisfies the inequality (known to be strict) 
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General case 

For fixed    , the moments of the GIG mixing distribution are (e.g. Paolella 

(2007)) 
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Applying the relationships between moments and cumulants one obtains 
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The associated quantities (2.6) are independent from the scale parameter     and given by 
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In general, not much is known about the analytical properties of the preceding quantities. The 

HYP special case might illustrate what can happen. 

 

Hyperbolic distribution (HYP) 
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shows the HYP inequality 
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Case 2:  variance-gamma (VG) 

The cumulants of the gamma distributed mixing random variable  ),(~ 2 W   are  
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2
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The conditions 0423 1

23  QQA , 023 22

34243  QQQQQB , are 

fulfilled. Therefore, the VG distribution satisfies the inequality 

 

3

2
22
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W

W

K

S

K

S
.       (4.9) 

 

This inequality is sharp (e.g. Hürlimann (2013), Case 2 of Theorem 3.1). The present simple 

proof of this inequality is new. A different derivation, which is valid for the more general 

bilateral gamma (BG) convolution is Hürlimann (2013), Theorem A2.2. 

 

Case 3:  skew hyperbolic t (SHT) 

The cumulants of the inverse gamma distributed mixing random variable  ),(~ 2IW   

exist only for  4   and are given by 
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It follows that 
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Since the conditions of Theorem 3.1 are fulfilled one obtains the inequalities 
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Let us conclude this note with a brief comparison of some skewness and kurtosis inequalities. 

 

Comparison with the domain of maximum size 

Recall the general inequality between skewness and kurtosis for arbitrary distributions on  
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),(  , namely 

KK

S 2
1

2

 ,        (4.11) 

 

which is sharp and attained at a biatomic random variable with support   1,    , 

where  )4(
2

1 2SS   (Pearson (1916), Wilkins (1944), Guiard (1980), Hürlimann 

(2008), Theorem I.4.1). A family of distributions, which is able to model any admissible pair  

),( KS , is the Johnson system introduced in Johnson (1949) (see also Johnson et al. (1994), 

George (2007) among others). Note that for distributions with a finite range  

   BABA ,, , the inequality (4.11) extends to a two-sided inequality (further 

information is found in Hürlimann (2008), Chap.I.4). Clearly, the domain of variation of 

skewness and kurtosis for the selected examples is more restricted than the domain of 

maximum size prescribed by the inequality (4.11). The selected examples have a maximum 

ratio of squared skewness to kurtosis equal to 2/3 for the gamma mixing distribution (VG 

special case of the GH). This ratio is also closely approximated by a CTS mixing distribution 

with  0 . The maximum ratio of 2/3 coincides with the corresponding ratio for the five 

parameter bilateral gamma (BG) convolution in Hürlimann (2013), Theorem A2.2. In fact, 

the BG bound  KS
3
22    is sharp and attained for limiting left- and right-tail gamma 

distributions (op.cit.). 

Comparison of the VG, HYP, NIG and SHT boundaries 

The domain of variation between skewness and kurtosis is larger for the VG/HYP than for the 

NIG. Indeed, the NIG domain  KS
5
32    is contained in the VG/HYP domain  KS

3
22  . 

For the VG this result is also found in Ghysels and Wang (2011), p.8. These authors also 

show that the NIG domain contains the feasible domain of the skew hyperbolic t (SHT), 

called generalized skew t by them (applications of the SHT are found in Frecka and 

Hopwood (1983), Theodossiu (1998), Aas and Haff (2006), Hürlimann (2009), etc.). 
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Comparison of the VG with Hansen’s generalized t 

Hansen (1994) considers another generalization of the Student t distribution, simply called 

generalized t (GT) by Jondeau and Rockinger (2003). The boundaries of maximum skewness 

by given kurtosis for the VG are delimited by the two curves  KS
3
2 . In this situation, 

let  KKSVG 3
22 )(    denote the maximum squared skewness as a function of K . The GT 

skewness and kurtosis boundary has been determined in Jondeau and Rockinger (2003), 

Section 2.2, Fig. 5 (note that the excess kurtosis is obtained by subtracting the constant 3 

from the expression (3) in Section 2.1). Let  )(2 KSGT   denote the corresponding maximum 

squared skewness. The GT domain is contained in the VG domain for kurtosis higher than 

some relatively moderate value: 

 

.),()(,774.2),()( 0

22

0

22 KKKSKSKKKSKS GTVGGTVG     (4.12) 
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