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Abstract. In this paper, we introduce a q-variant of integral Baskakov operator and study their approximation

properties. We establish point wise and uniform convergence theorems in ordinary approximation. The rate of

weighted approximation by means of Steklov functions in terms of a suitable modulus of smoothness is obtained.
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1. Introduction

A q−integral analogue of the q−Bernstein polynomials

Bn,q( f ,x) =
n

∑
k=0

f
(
[k]q
[n]q

)
pn,k(q;x), f ∈C[0,1],

pn,k(q;x) =
[n

k

]
qxk

∏
n−k−1
r=0 (1− qrx) defined by Phillips [9] was introduced by Derriennic [5]

wherein she established some of their approximation properties. Motivated by the generaliza-

tion in [5] we propose the operators Mn,q( f ,x) as follows:

Let CB(R0) be the class of bounded and continuous functions on R0 = [0,∞). For f ∈CB(R0)
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we define

Mn,q( f ,x) = [n−1]q
∞

∑
k=1

pn,k(q;x)

∞/A∫
0

qk−1 pn,k−1(q;u) f (u)dqu+
f (0)

(1+ x)n+k
q

,

pn,k(q;x) =
[n+k−1

k

]
q

qk(k−1)/2xk

(1+x)n+k
q

whenever the integral exists in Jackson sense of improper integral

[6]. The operators Mn,q are linear and positive.

In what follows, we shall use the notations ϕ2(x) = x(1+ x), N0 = N∪{0} and the weights

w0(x) = 1,wm(x) = (1+ xm)−1,m ∈ N0.

Bm(R0) := { f : wm(x)| f (x)|6M1},

CB(R0) := { f ∈ Bm(R0) : and f iscontinuous},

Cm(R0) :=
{

f ∈Cm(R0) : and lim
x→∞

wm(x) f (x) = M2

}
,

where M1 and M2 depend on f only.

The m−th polynomial weighted spaces C∗m(R0) are defined as follows:

C∗m(R0) = { f : R0→ R|wm f is uniformly continuous and bounded onR0.}

The space Cm(R0) is normed by ‖ f‖m := supx∈R0
wm(x)| f (x)|. It is easy to see that C∗m(R0) ⊂

Cm(R0)⊂CB(R0)⊂ Bm(R0). The set Cm(R0) is a Banach space under the norm ‖.‖m.

We shall use the weighted modulus of continuity Ω( f ,δ ) . This modulus has the advantage over

the usual modulus of continuity ω( f ,δ ) that they tend to zero as δ → 0.

For f ∈C∗m(R0) the first and the second order weighted modulus of continuity are defined by

Ωm( f ,δ ) = sup
|h|6δ ,x∈R0

|
−→
4h f (x)|

(1+ xm)(1+hm)
andΩm,2( f ,δ ) = sup

|h|6δ ,x∈R0

|
−→
42

h f (x)|
(1+ xm)(1+hm)

,

respectively, where
−→
4h f (x) and

−→
42

h f (x) are the first and the second order forward differences

for step size h.

We recall some definitions of q−calculus used in this paper which can be found in [7] and

[10]. Let q be a real number satisfying 0 < q < 1 and N the set of positive integers. For n ∈ N,

we define

[n]q =


1−qn

1−q = 1+q+ ...+qn−1, q 6= 1

n, q = 1.
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[n]q! =

 [n]q[n−1]q[n−2]q.....[1]q, n = 1,2, ......

1, n = 0.

The q− binomial coefficients
[n

k

]
q are given by the quotient [n]q!

[k]q![n−k]q! , 06 k 6 n and
[n

0

]
q = 1.

The q−rising product (a+b)n
q is defined by

(a+b)n
q =

n−1

∏
j=0

(a+q jb).

The q− Jackson integrals and q− improper integrals are given by (see [6], [8])

a∫
0

f (x)dqx = (1−q)a
∞

∑
n=0

f (aqn)qn

and
∞/A∫
0

f (x)dqx = (1−q)
∞

∑
n=−∞

f
(

qn

A

)
qn

A
, A > 0

respectively. It is assumed that the sums converge absolutely. For any arbitrary real function

f : R→ R and q ∈ (0,1) the q− derivative Dq f (t) is defined as

Dq f (t) =
f (t)− f (qt)
(1−q)t

; t 6= 0.

For t = 0 we take Dq f (t) = limt→0 Dq f (t); t = 0. The product formula for q-differentiation is

given by

Dq( f (x)g(x)) = f (qx)Dq(g(x))+g(x)Dq( f (x)).

Analogous to the classical gamma and beta functions the q− gamma and q− beta functions are

introduced. The q−gamma function is given by the integral

Γq(t) =

1/(1−q)∫
0

xt−1E−qx
q dqx.

The q−beta function is given by

Bq(t,s) = K(A, t)

∞/A∫
0

xt−1

(1+ x)t+s
q

dqx, (1.1)
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where the function K(x, t) is defined by

K(x, t) =



1
1+xxt(1+ 1

x )
t
q(1+ x)1−t

q ; t ∈ R

1; t = 0

q
t(t−1)

2 ; t ∈ N.

The functions Γq(t) and Bq(t,s) satisfy certain properties similar to those of Γ(t) and B(t,s)

e.g. Bq(t,s) =
Γq(t)Γq(s)

Γq(t+s) etc. and reduce to Γ(t) and B(t,s) respectively in the limit q→ 1.

We discuss the convergence results with the help of Korovkin type approximation theorems.

In the end section we obtain error estimates of weighted approximation in certain polynomial

weighted space. Henceforth, we shall simply use [n] in place of [n]q unless otherwise stated.

Moreover, M will be a constant different at each occurrence and will be independent of n always,

but may depend on q.

2. Preliminaries and Lemmas

Lemma 1. Let us define µn,m(x) = Mn,q(tm,x). Then, we have

µn,0(x) = 1,µn,1(x) =
[n]x

q[n−2]
and µn,2(x) =

[n][n+1]x2 +2q[n]x
q4[n−2][n−3]

.

Further, The following recurrence relation holds for n > m+2:

µn,m+1(qx) =

(
[n]x+

(
[m+1]q−1−1

))
µn,m(qx)+ϕ2(x)Dqµn,m(x)

qm[n−m−2]
. (2.1)

Proof. Making use of the q−Taylor’s formula g(z) = ∑
∞
k=0

(z−x)k
q

[k]!

(
Dk

qg(z)
)

z=x for the function

g(z) = 1
(1+z)n+1

q
at z = 0 together the relation (−x)k

q = qk(k−1)/2(−1)kxk we obtain

1 = g(0) =
∞

∑
k=0

[n+ k]...[n+1]
[k]!

qk(k−1)/2 xk

(1+ x)n+k+1
q

=
∞

∑
k=0

[
n+ k

k

]
q
qk(k−1)/2 xk

(1+ x)n+k+1
q

.

(2.2)
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Therefore, we get from definitions of µn,m(x) and (1.1)

µn,0(x) = [n−1]
∞

∑
k=1

qk−1 pn,k(q,x)

∞/A∫
0

pn,k−1(q, t)dqu+
1

(1+ x)n+k
q

= [n−1]
∞

∑
k=1

[
n+ k−1

k

]
q

xk

(1+ x)n+k
q

[
n+ k−2

k−1

]
q

Bq(k,n−1)
K(A,k)

qk(k−1)

+
1

(1+ x)n+k
q

=
∞

∑
k=0

[
n+ k−1

k

]
q
qk(k−1)/2 xk

(1+ x)n+k
q

=
∞

∑
k=0

pn,k(q,x) = 1.

Similarly, we get

µn,1(x) =
∞

∑
k=0

qk−1
[

n+ k−1
k

]
q

xk

(1+ x)n+k
q

qk(k−1)/2

∞/A∫
0

pn,k−1(q, t)t dqt

=
∞

∑
k=1

qk−1
[

n+ k−1
k

]
q

xk

(1+ x)n+k
q

qk(k−1)/2 [k]q
−2k+1

[n−2]

=
x

q[n−2]

∞

∑
k=1

qk(k−1)/2 [n+ k]!
[k]![n−1]!

xk

(1+ x)n+1+k
q

=
[n]x

q[n−2]
.

Now, using qkϕ2(x)Dq[pn,k(q;x)] =
(
[k]−qk[n]x

)
pn,k(q;qx), (see [4]) we obtain

ϕ
2(x)Dqµn,m(x)+ [n]xµ(qx)

= [n−1]
∞

∑
k=0

q−k[k]pn,k(q;qx)

∞/A∫
0

qk−1 pn,k(q;u)um dqu

= I1 + I2 + I3 say,

where we have written the quantity [k] as qk +
(
[k−1]−qk−2[n]t

)
+ qk−2[n]t and I1, I2 and I3

correspond to these three quantities used in above integral. Clearly I1 = µ(qx), I3 = [n]q−2µm+1(qx).
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The transformation t→ qu is valid in q−integration, therefore, we get

I2 = qm
∞

∑
k=1

pn,k(qx)

∞/A∫
0

(
[k−1]−qk−1[n]u

)
pn,k−1(qu)um dqu

= qm
∞

∑
k=1

pn,k(qx)

∞/A∫
0

qk−1
ϕ

2(u)um
(

Dq pn,k−1(u)
)

dqu

= qm
∞

∑
k=1

pn,k(qx)

∞/A∫
0

qk−1 (um+1 +um+2)(Dq pn,k−1(u)
)

dqu.

Using q−integration by parts we get

∞/A∫
0

um+1
(

Dq pn,k−1(u)
)

dqu = um+1 pn,k−1(u)

∣∣∣∣∣
∞/A

0

−
∞/A∫
0

pn,k−1(qu)
(

Dqum+1
)

dqu

= −[m+1]

∞/A∫
0

pn,k−1(qu)um dqu.

Hence,

I2 = −
(
[m+1]q−1

µm(qx)+ [m+2]q−2
µm+1(qx)

)
.

Combining these expressions we obtain (2.1). From this recurrence relation µn,2 is easily ob-

tained. �

Lemma 2. The quantity

An = 2q[n]− [n][n+1]−2q3[n][n−3]+q4[n−2][n−3]

is negative for all q and n> 4.

Proof. We have

A4 = 2q[4]− [4][5]−2q3[4]+q4[2]

= −1−q2−4q3−3q4−4q5−4q6−q7 < 0.
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Suppose the lemma holds true for a certain n. We write An as follows

An = 2q[n]− ([3]+q3[n−3])([3]+q3[n−2])−2q3([2]+q2[n−2])[n−3]

+ q4[n−2][n−3]

= 2q[n]− [3]2− [3]q3[n−3]− [3]q3[n−2]−q4(1−q)2[n−2][n−3]

so that

An+1−An = 2qn+1− [3]qn− [3]qn+1−q4(1−q)2[n−2]([n−1]− [n−3])

= −(1+2q2 +q3)qn−qn+1(1−q)2[n−2](1+q)

which is negative. This completes the proof. �

Lemma 3. For the functions ψm(q,x) defined by ψm(q,x) = Mn,q((t− x)m,x), we have

ψ0(q,x) = 1, ψ1(q,x) =
(1+qn−1)x

q[n−2]
(2.3)

and there holds

ψ2(q,x)6
4

q4[n−2]
δ

2
n (x), ∀x ∈ R0, n > 3,

where δ 2
n (x) =

(
ϕ2(x)+ 3

[n−3]

)
.

Proof. Since, Mn,q( f ,x) are linear, (2.3) follows from (2.1) and direct calculations. Now, using

the values of µn,0(x),µn,1(x) and µn,2(x) we get

ψ2(q,x) =
c0x2 + c1x

q4[n−2][n−3]
=

c0ϕ2(x)+(c1− c0)x
q4[n−2][n−3]

,

where c0 and c1 are the coefficients in numerator given by c0 = [n][n+ 1]− 2q3[n][n− 3] +

q4[n−2][n−3] and c1 = 2q[n]. From lemma 2 we have c1− c0 = An < 0. And we can write

c0 = a0 +a1q+a2q2 + ...+a2n−1q2n−1.

It is observed that a j 6 2 : j = 1,2....2n−1. Hence,

c0 6 2(1+q+q2......+q2n−1) = 2[2n].
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Now, [2n] = (1+qn−3)[n−3]+q2n−6[6]. This gives

ψ2(q,x) 6
2
q4

(
1+qn−3

[n−2]
+

[6]q2n−6

[n−2][n−3]

)
ϕ

2(x)

6
4

q4[n−2]
δ

2
n (x).

�

Lemma 4. For n > 2m+1, we have

Mn,q

(
(t− x)2

wm(x)
,x
)
6M (ψ4(q,x))

1/2 (1+ x2m)1/2
.

Proof. Since µm(q,x) are polynomials of degree exactly m we can write µm(q,x) = ∑
m
k=0 am

k xk.

Using in the recurrence relation (2.1) we get

qm[n−m−2]
m+1

∑
k=0

am+1
k (qx)k

= (x+ x2)
m

∑
k=0

am
k [k](x)

k−1 +
(
[n]x+

(
[m+1]q−1−1

)) m

∑
k=0

am
k (qx)k

=
m

∑
k=0

am
k

{(
[k]+

(
[m+1]q−1−1

)
qk
)

xk +[n+ k]xk+1
}
.

Comparing coefficients on both sides, we get

am
m =

1
qm2

m−1

∏
j=0

(
[n+ j]

[n− j−2]

)
which is the largest coefficient with respect to power of [n]. Similarly,

am+1
m =

(
[2m]+qm−1(1−q)

)
am

m +[n+m−1]am
m−1

q2m[n−m−2]

etc. So that

am
m−1 =

[n][n+1]...[n+m−2]
[n−2][n−3]...[n−m−1]

Mm(q).

Hence, we can write

µm(q,x) 6 M

(
xm +

[n][n+1]...[n+m−2]
[n−2][n−3]...[n−m−1]

m−1

∑
j=0

b jx j

)

6 M

(
xm +

1
[n−m−1]

m−1

∑
j=0

b jx j

)
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which implies

µ2m(x)6M
(

x2m +O
(

1
[n−2m−1]

))
.

Therefore, using Hölders inequality we get

Mn,q

(
(t− x)2

wm(x)
,x
)
6

(
Mn,q

(
(t− x)4,x

))1/2 (
Mn,q

(
(1+ xm)2,x

))1/2

6 M (ψ4(q,x))
1/2 (1+ x2m)1/2

.

�

Remark 1. For m < m′ ∈ N, we have

‖Mn,q(w−1
m ,x)‖m′ = sup

x∈R0

Mn,q(1+ xm,x)
(1+ xm′)

6 sup
x∈R0

(
1+ xm +O

(
1

[n+m−1]

))
(1+ xm′)

6M′(m,q).

Therefore, in view of the properties of positive linear operators (see [3])it follows that Mn,q

maps Cm(R0) into Bm′(R0).

In order to test the convergence of the operators Ln : Cm→ Bm in weighted approximation we

will use the following Korovkin type theorem.

Theorem 1. [1] Let Ln :Cm→Bm be a sequence of positive linear operators such that limn→∞ ‖Ln(er)−

er‖m = 0 for er = tr,r = 0,1,2. Then,

lim
n→∞
‖Ln( f )− f‖m = 0

for f ∈C∗m(R0).

The following theorem due to Pop [11] will be used in our asymptotic results.

Theorem 2. Let I ⊂ R be an interval, x ∈ I,r ∈ N and the function f : I → R, f is r times

derivable in x. According to Taylor’s expansion theorem for the function f around x, we have

f (t) =
r

∑
k=0

(t− x)k

k!
f (k)(x)+(t− x)r

µ(t− x),

where µ is a bounded function and limt→xµ(t− x) = 0. If f (r) is a continuous function on I,

then for any δ > 0 |µ(t− x)|6 1
r!

(
1+δ−2(t− x)2)ω ( f (r),δ

)
.
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3. Convergence

It is obvious from Lemma 1 that the operators Mn,q do not satisfy the conditions of the

Bohman-Korovkin theorem in case 0 < q < 1. To make this theorem applicable we can choose

a sequence (qn) in place of the number q such that limn→∞ qn = 1. With this modification we

obtain following Korovkin type theorem.

Theorem 3. Let (qn), 0 < qn < 1 be a real sequence. Then, the sequence Mn,qn( f ,x) converge

uniformly to f for any f ∈CB(R0) iff limn→∞ qn = 1.

Proof. Suppose there holds the limit limn→∞ qn = 1. Then, from the definition of q−integers

we get limn→∞[n]qn = ∞. Therefore, limn→∞ ψm(q,x) = 0,m = 0,1,2. Thus, using Bohman-

Korovkin theorem it follows that Mn,qn( f ,x)⇒ f (x). Let, if possible limn→∞ qn 6= 1. Since

(qn) is monotonically increasing and bounded by 1, it has a subsequence (qnk) converges to

some q0 in (0,1). Also we get limn→∞[n]qn =
1

1−q0
. Consequently, it follows that

lim
n→∞

µ2(q,x) = lim
n→∞

[n]qn[n+1]qnx2

q4
n[n−1]qn[n−2]qn

+
2qn[n]qn

q4
n[n−1]qn [n−2]qn

x

= q−4
0 x2 +

2(1−q0)

q3
0

x 6= x2

which is contradiction. This completes the proof. �

Theorem 4. Let (qn), 0< qn < 1 be a real sequence such that limn→∞ qn = 1. Then, the sequence

Mn,qn( f ,x) converge uniformly to f for any f ∈CB(R0) in ρm norm.

Proof. Clearly, we have ‖Mn,qne0−e0‖m=0 and we have Mn,qn(e1,x)−e1 =ψ1(qn,x)= 1
qn[n−1]qn

+

([2]qn−qn
n)x

q2
n[n−1]qn

so that

‖Mn,qne1− e1‖m = sup
x∈R0

1
qn[n−1]qn

(
1

1+ xm +
([2]qn−qn

n)x
1+ xm

)

6
1

qn[n−1]qn

(
1+

([2]qn−qn
n)(m−1)1−1/m

m

)
,m 6= 1.

Consequently,

‖Mn,qne1− e1‖m→ 0.
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Next, we have Mn,qn(e2,x)− e2 =
[2]qnq3

n
q4

n[n−1]qn [n−2]qn
+

qn[2]2qn [n]qnx
q4

n[n−1]qn [n−2]qn
+
(

[n]qn [n+1]qn
q4

n[n−1]qn [n−2]qn
−1
)

x2.

Therefore, we get

‖Mn,qn(e2,x)− e2‖m

6
[2]qn

qn[n−1]qn[n−2]qn

+
qn[2]2qn

[n]qn(m−1)1−1/m

mq4
n[n−1]qn[n−2]qn

+

∣∣∣∣ [n]qn[n+1]qn

q4
n[n−1]qn[n−2]qn

−1
∣∣∣∣ 22/m(m−2)1−2/m

m

6
[2]qn

qn[n−1]qn[n−2]qn

+
qn[2]2qn

[n]qn(m−1)1−1/m

mq4
n[n−1]qn[n−2]qn

+

∣∣∣∣∣ [2]2qn

q4
n[n−1]qn[n−2]qn

+
[2]qn

q2
n[n−1]qn

+
[2]qn

q2
n[n−2]qn

∣∣∣∣∣ 22/m(m−2)1−2/m

m

Hence,

‖Mn,qn(e2,x)− e2‖m→ 0.

Therefore, the proof follows from these limits and Theorem 1. �

Theorem 5. (Voronovskaya-type) If f , f ′, f ′′ ∈CB(R0), and qn be a sequence in (0,1) such that

limn→∞ qn = 1, then we have

lim
n→∞

(
Mn,qn( f ,x)− f (x)

)
= x f ′(x)+ x2 f ′′(x).

Proof. The proof follows from limn→∞ Mn,qn((t − x) j,x), j = 1,2. Using Theorem 2 and the

limit limqn→1[n]qn = n, we get

lim
n→∞

(
Mn,qn( f ,x)− f (x)−ψ1(qn,x) f ′(x)− 1

2
ψ2(qn,x) f ′′(x)

)
= lim

n→∞
Mn,qn((t− x)2

µ(t− x),x).

Now, we have ∣∣∣Mn,qn((t− x)2
µ(t− x),x)

∣∣∣
6 M1ψ

1/2
4 (q,x)

(
Mn,qn(µ

2(t− x),x)
)1/2

.
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Since µ(t− x) ∈CB(R0) it follows that limn→∞ Mn,qn

(
(µ2(t− x),x)

)
= µ2(x− x) = 0. There-

fore, limn→∞ Mn,qn((t− x)2µ(t− x),x) = 0 implies

lim
n→∞

(
Mn,qn( f ,x)− f (x)

)
= lim

n→∞

(
ψ1(qn,x) f ′(x)+

1
2

ψ2(qn,x) f ′′(x)
)
. (3.1)

We obtain

lim
n→∞

ψ1(qn,x) = lim
n→∞

[n]qnx
qn[n−2]qn

= lim
n→∞

[2]qn

qn[n−2]qn

+qnx = x
(3.2)

and

lim
n→∞

ψ2(qn,x)

== lim
n→∞

(
µ2(x)−2xµ1(x)+ x2

µ0(x)
)

= lim
n→∞

[
[n]qnx

(
[n+1]qnx+2qn

)
q4

n[n−2]qn [n−3]qn

−2x
[n]qnx

qn[n−2]qn

+ x2

]

= lim
n→∞

[{
1+[3]qnqn−3

n

(
1

q3
n[n−2]qn

+
1

q4
n[n−2]qn

)
+

q2n−5
n [3]2qn

q4
n[n−2]qn[n−3]qn

}
x2

+
2
(
[3]qnqn−3

n +[n−3]qn

)
q3

n[n−2]qn[n−3]qn

x−
2
(
[3]qnqn−3

n +[n−3]qn

)
q4

n[n−2]qn[n−3]qn

x2 + x2 = 2x2.

(3.3)

Therefore, the proof follows from (3.1) to (3.3). �

4. Local Approximation

The error estimates similar to those in [4], can be obtained by methods used therein. In order

to make the paper complete, we mention two of them without proof.

Theorem 6. Let f ∈CB(R0), q ∈ (0,1) and n> 3. We have

|Mn,q( f ,x)− f (x)|6Mω2

(
f ,

δn√
q4[n−2]

)
+ω

(
f ,

(
1+qn−1)x
q[n−2]

)
.

for every x ∈ [0,∞) and f ∈CB(R0).



ON THE q-VARIANT OF INTEGRAL BASKAKOV OPERATORS 13

Theorem 7. Let f ∈ LipMα, α ∈ (0,1] for x ∈ [0,A] A > 0. Then,

|Mn,q( f )− f |6M

(
2δn(x)√
q4[n−2]

)α/2

.

5. Weighted Approximation

Theorem 8. For f ∈C∗m(R0),m ∈ N0,n> 3 there holds

wm(x)
∣∣Mn,q( f ,x)− f (x)

∣∣ 6 8

(
1+

(
2m−1δn(x)√

q4[n−2]

)m)
Ωm

(
f ,

2m−1δn(x)√
q4[n−2]

)
.

Proof. We use Steklov functions fh =
2
h

h/2∫
0

f (x+ u)du as members of interpolation space be-

tween C∗m(R0) and Cm(R0).

wm(x)
(
Mn,q( f ,x)− f (x)

)
= wm(x)

[(
Mn,q( f − fh,x)

)
+
(
Mn,q( fh,x)− fh(x)

)
+( fh(x)− f (x))

]
= E1 +E2 +E3, say.

It is sufficient to compute E2 because wm(x)|E1|6 wm(x)|E3|6 ‖ fh− f‖m. Using the smooth-

ness of fh by writing fh(t) = fh(x)+(t− x) f ′h(θ) where θ lies between t and x we get

wm(x)|E2| = wm(x)
∣∣Mn,q

(
(t− x) f ′h(θ),x

)∣∣
6 ‖ f ′h‖mMn,q (|t− x|,x)6

√
4

q4[n−2]
δn(x)‖ f ′h‖m.

By direct calculations we get ‖ fh− f‖m6 2(1+hm)Ωm( f ,h) and ‖ f ′h‖m6 2m

h (1+hm)Ωm( f ,h).

Therefore, we obtain

wm(x)
∣∣Mn,q( f ,x)− f (x)

∣∣6(4(1+hm)+
2m

h
(1+hm)δn(x)

√
4

q4[n−2]]

)
Ωm( f ,h)

6 4(1+hm)

(
1+

2m−1

h
δn(x)

√
1

q4[n−2]

)
Ωm( f ,h).

The proof follows by choosing h = 2m−1δn(x)√
q4[n−2]

. �
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Theorem 9. If f ∈C∗m(R0),m ∈ N0 and n> 3 then, there holds

wm(x)
∣∣Mn,q( f ,x)− f (x)

∣∣
6 M (1+‖ψm

1 ‖)
(

3Ωm( f ,‖ψ1‖)+
9
h2

(
ψ2(q,x)+

ψ2
1 (q,x)

2
+
√

ψ4(q,x)
)

Ωm,2( f ,‖ψ1‖)
)
,

where M = M(q,m).

Proof. Let f2,h be the Steklov function of order two corresponding to f given by

f2,h(x) =
4
h2

h/2∫
0

h/2∫
0

(2 f (x+ s+ t)− f (x+2s+2t)) dsdt.

It is known that ([2])

‖ f ′′2,h‖m 6
9
h2 (1+hm)Ωm,2( f ,h)

and

‖ f − f2,h‖m 6 2(1+hm)Ωm( f ,h).

We define the operator M q,n( f ,x) = Mq,n( f ,x)− f (x+ψ1(q,x))+ f (x) so that we can write

Mq,n( f ,x)− f (x) = [M q,n( f − f2,h,x)]+ [M q,n( f2,h,x)− f2,h]

+ [ f (x+ψ1(q,x))− f (x)],

Using the smoothness of f2,h we write

f2,h(t) = f2,h(x)+(t− x) f ′2,h +R2( f2,h, t,x),

R2( f2,h, t,x) =
t∫

x

(t−u) f ′′2,h(u)du.

It follows that

M q,n( f2,h,x)− f2,h(x) = Mq,n
(
R2( f2,h, t,x),x

)
−

x+ψ1(q,x)∫
x

(x+ψ1(q,x)−u) f ′′2,h(u)du.
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Therefore,

wm(x)
∣∣M q,n( f2,h,x)− f2,h(x)

∣∣ 6 wm(x)
∣∣Mq,n

(
R2( f2,h, t,x),x

)∣∣
+ wm(x)

∣∣∣∣∣∣
x+ψ1(q,x)∫

x

(x+ψ1(q,x)−u) f ′′2,h(u)du

∣∣∣∣∣∣
= F1 +F2, say.

Now, using Lemma 3 and Lemma 4, we get

F1 = wm(x)
∣∣Mq,n

(
R2( f2,h, t,x),x

)∣∣
6 wm(x)Mq,n

∣∣∣∣∣∣
t∫

x

(t−u) f ′′2,h(u)du

∣∣∣∣∣∣ ,x


6 ‖ f ′′2,h‖mMq,n

((
1+

wm(x)
wm(t)

)
(t− x)2,x

)
6 ‖ f ′′2,h‖m

(
ψ2(q,x)+wm(x)Mq,n

(
(t− x)2

wm(t)
,x
))

6 M1‖ f ′′2,h‖m

(
ψ2(q,x)+wm(x)

(
(ψ4(q,x))

(
1+ x2m))1/2.

)
6 M2‖ f ′′2,h‖m

(
ψ2(q,x)+

√
ψ4(q,x)

)
.

And

F2 6
1
2
‖ f ′′2,h‖m (ψ1(q,x))

2 .

Next

wm(x)| f (x+ψ1(q,x))− f (x)| 6 wm(x) sup
ψ1(q,x)

∣∣∣−→∆ ψ1(q,x) f (x)
∣∣∣

1+ψm
1 (q,x)

(1+ψ
m
1 (q,x))

6 (1+ψ
m
1 (q,x))Ωm( f ,ψ1(q,x)).

Combining these estimates we obtain

wm(x)
∣∣Mn,q( f ,x)− f (x)

∣∣
6 M3‖ f − f2,h‖mΩm( f ,h)+

9
h2 (1+hm)×

× Ωm,2( f ,h)
(

ψ2(q,x)+
ψ2

1 (q,x)
2

+
√

ψ4(q,x)
)
+(1+‖ψm

1 ‖)Ωm( f ,‖ψ1‖).
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Choosing h = ‖ψ1(q,x)‖, gives

wm(x)
∣∣Mn,q( f ,x)− f (x)

∣∣
6 M4 (1+‖ψm

1 ‖)
(

3Ωm( f ,‖ψ1‖)+
9
h2 ×

×
(

ψ2(q,x)+
ψ2

1 (q,x)
2

+
√

ψ4(q,x)
)

Ωm,2( f ,‖ψ1‖)
)
.

This completes the proof. �
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