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1. INTRODUCTION
The numerical radius w (T) of an operator T on H is given by [15, p. 8]:
(1.1) w(T) =sup{|A|,A e W(T)} =sup{|[(Tx,x)|,||x|| =1}.

It is well known that w (-) is a norm on the Banach algebra % (H ) of all bounded linear operators
T : H — H. This norm is equivalent with the operator norm. In fact, the following more precise

result holds [15, p. 9]:

Theorem 1 (Equivalent norm). For any T € 9 (H) one has

(1.2) w(T) < |IT|| < 2w(T).
Some improvements of (1.2) are as follows:

Theorem 2 (Kittaneh, 2003 [20]). For any operator T € % (H) we have the following refine-
ment of the first inequality in (1.2)

(1.3) w(T) <3

(i 721").

From a different perspective, we have the following result as well:
Theorem 3 (Dragomir, 2007 [6]). For any operator T € 8 (H) we have
(1.4) w2 (T) g%[w(rz)ﬂmﬂ.

The following general result for the product of two operators holds [15, p. 37]:

Theorem 4 (Holbrook, 1969 [17]). If A, B are two bounded linear operators on the Hilbert s-
pace (H,(-,-)),thenw (AB) <4w (A)w (B) . Inthe case that AB= BA, then w (AB) < 2w (A)w (B).

The constant 2 is best possible here.
The following results are also well known [15, p. 38].

Theorem S (Holbrook, 1969 [17]). If A is a unitary operator that commutes with another op-

erator B, then

(1.5) w(AB) <w(B).
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If A is an isometry and AB = BA, then (1.5) also holds true.

For other results on numerical radius inequalities see [1], [3]-[7], [9]-[12], [14] and [18]-[23].
Let X be a linear space over the real or complex number field K and let us denote by .77 (X)
the class of all positive semi-definite Hermitian forms on X, or, for simplicity, nonnegative

forms on X, i.e., the mapping (-,-) : X x X — K belongs to 7 (X) if it satisfies the conditions

(i) (x,x) >0 for all x in X;

(
(i) (ax+PBy,z) = a(x,z)+ B (y,z) forallx,y € X and a, B € K;
(iii) (y,x) = (x,y) for all x,y € X.

If (-,-) € 5 (X), then the following equivalent versions of Schwarz’s inequality hold:

(1.6) P IYI* > [P or (x| y] > [(xy)]

for any x,y € X.
1
A simple consequence of the Schwarz inequality is the functional ||-|| = (+,-)2 is a semi-norm

on X, i.e. we have the properties

(n) ||x|| > 0 for all x in X;
(nn) ||ox|| = || ||x|| for all x € X and o € K;

(nnn) ||x+y|| < ||x|| 4 ||y|| for all x,y € X (the triangle inequality).

Now, let us observe that 77 (X) is a convex cone in the linear space of all mappings defined

on X2 with values in K, i.e.,
©) (+,);,(), € #(X) implies that (-,-); + (+,-), € #(X);

(ee) a >0and (-,-) € 7 (X) implies that o (-,-) € 7 (X).

For various properties and new results for nonnegative Hermitian forms, see the book [8]

In this paper, by the use of some nonnegative Hermitian forms defined for n-tuple of bounded
linear operators on the Hilbert space (H; (-,-)) we establish some new numerical radius and op-
erator norm inequalities for sums and sum of products of operators. Applications for functions
defined by power series of operators are given. Some applications related for the exponential
function, trigonometric functions and the functions f (z) := (1 —z)" ' and g(z) ;= In(1 —z)~!

are also provided.
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2. INEQUALITIES FOR SUMS

Following Popescu’s work [24], we can consider the following norm on B (H )(") :=B(H) x
- X B(H), by setting
(2.1) (Th,....T)|,:=  sup  ||MTi+---+ AT
(A’ls“'vln)eBn
where B,, is the closed unit ball in C".

Notice that ||-||, is a norm on B (H )(") and

(2.2) ||(T17'-'7Tn)||e:||(T1*7"'7Tn*)||

.-
Now, if we denote by ||[T7,...,T,]|| the square root of the norm ||}} | ;T¥||, i.e.,

1
2

(2.3) WTi,...,T,]|| ==

bl

Y 1y
i=1

then we can present the following result due to G. Popescu [24] concerning some sharp inequal-

ities between the norms ||[T1,...,T;]|| and ||(T1,..., Th)]|,:
Theorem 6 (Popescu, 2004). If (Ti,...,T,) € B(H)™ | then

(2.4) (T, L < (T, T, < T -~ Tl |

=l
Vn
where the constants \[ and 1 are best possible in (2.4).

Let (Ti,...,T,) € B(H) x ... x B(H) := 2" (H) be an n-tuple of bounded linear operators
on the Hilbert space (H;(-,-)) and (p1,...,pn) € R an n-tuple of nonnegative weights not all
of them equal to zero. For an x € H, x # 0 we define
(2.5) (1,v), ij (Tjx,Vix) ZPJV Tj | x,x

J=1 J=1
where T = (Ti,...,T,) ,V = (V4,...,V,)) € B (H) .

We can then state the following result:

Lemma 1. For any x € H, x # 0 and (p\, ..., pn) € RY" we have that (-,-) , . is a nonnegative

Hermitian form on ") (H).
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Proof. We have that

(2.6) (T,T),,= < (Z pjTj*Tj) x,x> - < (Z P \T,-f) x,x> >0,
j=1 j=1

for any T = (T1,...,T,) € B (H), where the operator modulus is defined by |A|* = A*A,
Ac A (H).

The functional (-,-), . is linear in the first variable and

p

2.7 <V,T>p7x = < < pjTj*Vj) x,x> = <x, ( pjTj*Vj) x>
=1 =1
— < <Z pJT]*VJ> x,x> = < (Z pJV]*TJ> x,x> = <T7V>p,x
=1 =1

forany T = (Ty,...,T,),V = (Vi,...,V,)) € B (H). O

If p=(1,...,1), then we denote (-,-)p}x by (-,-),.

Theorem 7. Forany T = (T1,...,T;) ,V = (V1,...,V,,)) € B (H) we have the inequalities

Y v

J=1

(2.8) w? <Zn: vjn) <

J=1

! 2
Y |7
=1

and

1/2
<

1/2
+

1/2
(2.9)

n n n
Y |7 +vi| Y |7’ Y vil®
j=1 j=1 j=1

Proof. Let x € H, x # 0. Writing the Schwarz inequality for the nonnegative Hermitian form

<))

(-,-), we have

(2.10) ‘ < (Z VjTj> x,x>
j=1
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Taking the supremum over x € H, ||x|| = 1 we have

#(Bn) - ((£7) )
() ((Er)=)
< (Er))

u 20| || & 2
=1 T Vil
j=1 j=1

2

and the inequality (2.8) is obtained.
Let x € H, x # 0. Utilising the triangle inequality for the nonnegative Hermitian form (-, )

we also have

" 1/2
@.11) <<Z|Tj+vj\2)x,x>
j=1
n 1/2 n 1/2
<((Enf)es) +((Ewr)os) -
j=1 j=1
Taking the supremum over x € H, ||x|| = 1 we have
1/2 " 1/2
- {(Emeuf)ns)
Ixl=1\ \j=1
n 1/2 " 1/2
< sup < (Z |Tj‘2) x,x> + < (Z {Vj’2> x,x>
[[x]|=1 j=1 =
n 1/2 " 1/2
< sup <<Z |TJ‘2> x,x> + sup <<Z ‘Vj‘2> x,x>
[[x]|=1 j=1 |x]|=1 j=1

1/2 . 1/2
Y |5l Y vl

j=1 j=1

n
) \Tj+Vj|2

j=1

which proves the inequality (2.9). 0
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Corollary 1. Forany T = (Ty,...,T,) ,V = (V1,...,V,) € B" (H) with Yo ‘Tj+Vj|2 # 0 we

have the following refinement of the triangle inequality

1/2
(2.12)
(z;l NS )+w< " ]Tf‘vj+2;%:1\vj}2>
i ]
" 1/2 " 1/2
Z|TJ\2 + Z|V,-|2
j=1 j=1

Proof. Utilising (2.8) we have

2.13) Z\T,Jrv,]z) :w<Z(T*—|—V ) (T +v))
j=1 j=1
=w zn:(T+V T+ Zn:(TJrV) v)
<w zn: T;+V;) ) ( (T;+V))" v)
1/2
2
and since
(z ') - (2|T,~\2+2v;n~)
j=1 =1 j=1
and
(Z (T;+V)) )_w<ZTV+Z\V\)
then by dividi ’]l:l}Tj—f—Vj‘zH = 0 we deduce the desired result (2.12) OJ

Corollary 2. Forany T = (Ti,...,T,) € ") (H) we have the inequalities

(2.14) w2 (Z sz) <
j=1 j=1

71
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and
. 1/2 . 1/2 . 1/2
2 ]2
(2.15) L (1+77) 2|7l L |77
j=1 j=1 j=1
Remark 1. If we take V; =1 for all j € {1,...,n} in (2.8) then we get
n
(2.16) w Y T ) <n
j=1 j=1
forany (Ty,...,T,) € " (H).
_ At Aj—A% ) )
Also, if we take T s and V;:= =5 forall j € {1,...,n}, in (2.9), then we get

1/2 1/2 1/2

(2.17)

TS

=1

forany (Ay,...,A,) € B™ (H).

Remark 2. If we take T = (A,B) and V = (B*,+A*) in (2.8), where A,B € % (H), then we

have
1/2 1/2
(2.18) w(BAiAB)gH\A]2+|B|2H H\A*\z—i—|B*|2H
In particular, for B= A" we get
(2.19) w(A*"A+AAY) < H|A|2+ |A*|2H.
If we take T = (A,A*) and V = (A*,A) in (2.9), where A,B € % (H), then we have
* 2 2|2
lA+a%] < V2| AP+ AP

which is equivalent with

AP+ |A*?

A+A* |
(2.20) H ara >

2

Similarly, if we take T = (A,—A*) and V = (—A*,A) in (2.9), where A,B € #(H), then we

have

A]” + 4%

A— A%
221 -7
(2.21) H >

2
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Now, if we apply the inequality (2.8) for T = (C,I) and V = (I,+D*) where C,D € A (H),

then we get
) 1/2 5 1/2
(2.22) w(C£D) < H|C| +1H H|D*y +1H
and by taking in this inequality C = BA and D = AB where A,B € % (H), then we get
5 1/2 5 1/2
(2.23) w(BA£AB) < H|BA\ +1H H|B*A*] +1H
and, in particular, for B =A*
1/2 1/2
w(A*AiAA*)SH]A|4+IH H\A*\4+1H .
If we choose T = (B,I) and V = (A*,(AB)") in (2.8), where A, B € % (H), then we get
2 2 x(2 *|2
4w? (AB) < H|B| +1H H|A 2+ |(AB)’| H

Since
A"+ |(AB)*|* = AA* + ABB*A" = A (1+ |B*|2) A*

then we have

I+ 1B 1/2 T 1/2
(2.24) w(4B) < || 18 ||A< “2 ’)A*
forany A,Bc % (H).
If we take in (2.24) A = I, then we have
1/2 5 (11/2
I+ |BJ? 1+ |B*|
2.25 B) <
2.29) W) < |2 :
forany B #(H).
If we choose A = B in (2.24) then we get
1/2 ) 1/2
1+ |B)? 1+|B*|
2.26 B?) < B B*
(2.26) w(B) < | —, 2
while for A = B* we get
1/2 ) 1/2
1+ |BJ? [+ |B*
@27 I8P <|| “HEE B*< i ')B

forany Bc % (H).
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Remark 3. Let C = A +iB be the Cartesian decomposition of the operator C. Then A and B

are selfadjoint and

1 1
AP+ B = 2 (C°C+CC) = (|C!2+ yc*|2> .
Moreover
C+cC* C-C*
A = B — .
> and %

If we apply the inequality (2.8) for T = (A,il),V = (I, B) then we get

(228) w(©) < a1 s 1]

For an n-tuple of operators T = (T1,...,T,) € B™ (H) we consider the weighted s-norms

defined as follows:

(2.29) T

" 1/s
S .
e (Enlrl) ez
=1
where ||-|| is the usual operator norm on % (H) and p = (p1,..., p,) € R¥" is a given sequence.

Proposition 1. The mapping ||(-, ..., )|, ;: B (H) — [0,00) defined by

1/2
n
2
1Tl e = 1T Tl = || X 24 | T3
=1
is a norm on " (H) and
(2.30) max {p 2T} < IT] 0 < I
kefl,...n} I G

Proof. The factthat [|aT||, ,:= |a|[|T| , , follows by the definition while the triangle inequality
can be obtained from (2.9) written for the sequences /p; T} and /piVi, k € {1,...,n}.

We observe that
n
2
Y pi|Ti|” = px 73|
j=1
in the operator order of A (H) for any k € {1,...,n}. This implies

n
ZPj!Tj}z > Hpk|Tk|2H = pi|| T
=1
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for any k € {1,...,n}, which implies that

n
Y. pj
j=1

and the first inequality in (2.30).

By the triangle inequality for the operator norm we also have

n n n
Y o1l < X ||p | = X7
=1 =1 =1

1/2 i 1/2
< (Eninr)
]:

and the corollary is proved. (]

which implies that

Remark 4. We observe that for p = (1,...,1) we have
1/2

(T, Tl e =77 T
D,

with the notation from (2.3), which satisﬁes the inequalities (2.4).
We have the alternative inequality as follows:
Theorem 8. Forany T = (Ty,...,T;) ,V = (V1,...,V,,)) € B (H) we have the inequalities

(2.31) w <Z vj*T,-) <
j=1

and

T;+V;
(2.32) +

I B

Proof. Let x € H, x # 0. Taking the square root in (2.10) and utilising the arithmetic mean-

5+l ‘

geometric mean inequality we have

‘< (ZlVT> > < < (Zl \le2> x7x>l/z < (Zl W) x’x>1/z
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Taking the supremum over x € H, ||x|| = 1 we obtain the desired inequality (2.31).

Now, if we take the square in the inequality (2.11) we get

((Blevr)es)
(B )y ")) |
(Bl el (i) ) ()
{(870)) " ((g)-)
< <<; [\Tj|2+;vj;2]>x,x>.
(o)) (gl

forany x € H, x # 0.

then we get

Taking the supremum over x € H, ||x|| = 1 we obtain the desired inequality (2.32).

Corollary 3. Forany T = (Ti,...,T,) € " (H) we have the inequalities

2 2
(2.33) w ZlTj < Z#
]:

and

7 +\T*

Tj:T*

(2.34)

hiEs

|
||M

Remark 5. If we take V; =1 for all j € {1,...,n} in (2.31) then we get

(2.35) w<zn: T,-) zn‘,’ T+
j=1 j=1

forany (Ty,...,T,) € ™ (H).

IN
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Remark 6. If we take T = (A,B) and V = (B*,£A") in the inequality (2.31), where A,B €
% (H), then we get

A]” + 1A+ B]® + B[

(2.36) w(BA+AB) < .

Y

which was obtained in [21] as a particular case of a different result. In particular, for B = A*

we recapture (2.19).

Now, if we apply the inequality (2.31) for T = (C,I) and V = (I,£D*), where C,D € % (H),

then we get

CP + D7

(2.37) w(C£D) < 5

+1

and by taking in this inequality C = BA and D = AB, where A,B € % (H), then we get

BA|> + |B*A*|?
(2.38) w(BA+AB) < || BA +2| -
and, in particular, for B =A*
(2.39) w(A*A+AA*) < MH .

If we choose T = (B,I) and V = (A*, (AB)") in (2.31), where A, B € % (H) , then we get

|B)> +1+|A*> +|(AB)*
4

2
(2.40) w(AB) < |

or, equivalently

I+|B]*+A <I+|B*|2>A*

(2.41) w(AB) < 4 ,
forany A,B€ A (H).
If we choose A =1 in (2.41), then we get
1 |B?+|B*]
(2.42) w(B) < |51+ % ,

for any B € 4 (H), while, if we choose B = I in the same inequality, then we have

[+]A%?
w(A) < %

Y
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for any A € A (H). If in this inequality we take A* instead of A and use the fact that w(A) =

w(A*), then we get

2

(2.43) w(A) < min {

}

2

forany A € #4(H).

Moreover, if we take A = B in (2.41), then we get

I+|B|2+B<I+|B*|2>B
(2.44) w(B?) < i :

while if we take A = B* in the same inequality, then we have

1/2
I+|B]+B* (I—HB*]z)B

4 )

(2.45) 1B]| <

forany B #(H).

3. APPLICATIONS FOR FUNCTIONS OF NORMAL OPERATORS

From the inequalities (2.8) and (2.9) we have the weighted inequalities

n n
3.1) w? (Z ijjTj> <X p
=1 =1

and

1/2 1/2 1/2

12
1

ay +)v*

Zp,—,

n
Loyl
j=

(3.2)

Y

n
Y pi |13
=

while from the inequalities (2.31) and (2.32) we have

n n |T ‘ —+ ‘V*
(3.3) w (Z ijjTj) Zp, —
j=1

and

n T+V*
Y=t

J=1

(3.4)

where T = (T1,...,T,,) ,V = (V1,..., V) € B") (H), (p1,-.., pn) € R
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These inequalities will be used in the follows to obtain some results for functions of normal

operators.

Theorem 9. Let f (z) := Z;":O p jzj a power series with nonnegative coefficients and convergent
on the open disk D(0,R),R > 0. If T and V are two normal and commuting operators with

IT||?,|VI]* < R, then we have the inequalities

G5 wirovry < | (me) | (v
and
36 () vy peryep (wp) |

<[ (re) [+ (vr)
and the inequalities

(3.7) w(f(VT)) < f(mz) ;Lf(lwz)

and

F(IrP)+rovny+r ey +r (VP |7 (17P) +r (vP)

(3.8) 2 5

Proof. If we use the inequality (3.1) for the powers of operators we have

(3.9) w? (i ijjTj> <3 |
=0 =0

for any m > 1.

‘ 2

il’j ’(V*)j
=0

‘ , 12 ,
Since V and T are normal we have }Tf‘z = |T|* and ’(V*)]‘ = |V[¥ for any j € {0,...,m}
and by the commutativity of V and T we also have V/T/ = (VT) for any j € {0,...,m}.

Therefore from (3.9) we have

(3.10) w? (

m
j=

pj (VT)j> <

Y pilT¥
=0

Y pilv¥
j=0

0

for any m > 1.
Since all the series whose partial sums are involved in the inequality (3.10) are convergent

then by letting m — oo in (3.10) we get (3.5).
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By the normality and commutativity of V and T we have

m . .12 m . . . .
Y|+ v = Y p [T Ty (T v ).
j=0 j=0
Then from (3.6) we have
. 1/2
3.11) Y o [T+ (VY 4 (viT) v ]
j=0
. V2, 1/2
2j 2j
<X P + || X pilVIY
j=0 j=0

forany m > 1.
Since all the series whose partial sums are involved in the inequality (3.11) are convergent
then by letting m — o in (3.11) we get (3.6).

The other two inequalities follow in a similar way and the details are omitted. U

Corollary 4. Let f (z) := Yiop jzj a power series with nonnegative coefficients and convergent
on the open disk D(0,R) ,R > 0. If T and V are two selfadjoint and commuting operators with

IT|1%,|IV||* < R, then we have the inequalities

(3.12) LFvl < |lf ()] 1 (v
and
(3.13) 17 () +20 vT) +£ (V)72 < |l (@)) 24 |1 (3],

and the inequalities

2 2
(.14) ron < |20 );f (%) ‘
and
(3.15) Hf (%) +2f <4VT>+f(V2) | S Hf(Tz);f(vz)
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Proof. If T and V are two selfadjoint and commuting operators, then
n . : n 2
* — ; , Il =1 : J
frvr) = | lim ;)p] (VT) lim ;Op] ((VT) )
= nlgnzp] vT)")’ —llmZpJ T*V*)/
n ) n
— , J_
= ,}grgojzz)pj (TV) = ; fvT)

showing that f (VT) is selfadjoint. Then w(f (VT)) = ||f(VT)|| and by Theorem 9 we get the

desired results. O

4. OTHER APPLICATIONS FOR POWER SERIES

Now, by the help of power series f(z) = Y,_;a,z" we can naturally construct another power
series which will have as coefficients the absolute values of the coefficient of the original series,
namely, f, (z) := Y, |an|Z". It is obvious that this new power series will have the same radius

of convergence as the original series. We also notice that if all coefficients a,, > 0, then f, = f.

Theorem 10. Lez f (z) := Y7 =04 ]zf be a power series with complex coefficients and convergent

on the open disk D (0,R) ,R > 0. IfA € A (H) is such that

I+ A2 ||1+A
4.1) |l || <R
then
, I+ |A*] 1+|A)?
4.2) w(f(A)) <minq f, — yJa e :

Proof. Let m > 1. Utilising the properties of the numerical radius we have

m m m
4.3) wil Y and" | <Y anlw(A") < Y Jas|w" (A)
n=0 n=0 n=0
On making use of the inequality (2.43) we have
| }

I+ AP
2

I+ |A*?
2

Y

w'(A) < min{
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which implies

I+|AP
2

I+ A%
2

Y

!

Utilising the elementary inequality for nonnegative numbers p;,c;,d; with j € {0,...,m} ,m >

(4.4) Z lan|w" (A) < Z |an|m1n{

n=0

1

m s a

2 pymin{cj,di} <mind ¥ pje;, } pidj ¢

= j=0 j=0
we have

1+ 1A P|" 1+ 182"
4.5
4.5) Z’“n|mm{ 2 || 2 }
m

I—|—|A* I—|—|A|2

Z|n‘

)

I—|—|A|2

m
< mln{ Z |an|

By the inequalities (4.3)-(4.5) we conclude that

(4.6) w (i anA"> < min{ i |ay|

m

Z!nl

I+|A*

)

Since all the series whose partial sums are involved in (4.6) are convergent, then by letting

for any m > 1.

m — oo in (4.6) we deduce the desired result (4.2). ]

Remark 7. Since
1+]A?
2

2

2
1Al
- 2

)

and if we assume that the convergence radius R > 1, then by the monotonicity and convexity of

the power series fq (z) =Yoo |an| 2" on (0,R) we also have the inequality

o () ()

) fa(1)+J;a(HAH2>’

2

provided ||A||* < R.
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Theorem 11. Let f (z) :=Y" i—0d iz’ ' be a power series with complex coefficients and convergent

on the open disk D (0,R),R > 1. IfA,B € % (H) are such that ||A||*, ||B||*, |AB||* < R, then

al 1)

< g [ s (1aR) + 1 (181) + £ (14817)].

I+|B)* +|A*|* +|(AB)"
4

IN

(4.3) w(f (AB))

Proof. Let m > 1. Utilising the properties of the numerical radius we have

(Zan (AB) ) Z|an|w ((AB)" <Z]an\w (AB).

n=0 n=0
On making use of the inequality (2.40) we have

m

m
Y lan|w' (AB) < Y |ay]
n=0 n=0

1+ |B*+|A*]* +|(AB)"|?
4

Since

I+|B] + |A* >+ | (4B)"
4

1 2 2 2
< 2 (1 1AIP+ [BI? + 14BIP) <R

it follows that the series whose partial sums are involved above are convergent and the first part
of (4.8) holds true.

The second part follows by the monotonicity and convexity of f, on (0,R). O

Corollary 5. Let f (z) :=Y.7 i—0d iz’ ' be a power series with complex coefficients and convergent
on the open disk D (0,R),R > 1. If B€ % (H) is such that ||B||* < R, then

) <3 [+ r(1817)]

L, BE+IBT
2 1

(4.9) w(f (B)) < fa (
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5. SOME EXAMPLES

We recall some examples of functions defined by power series with nonnegative coefficients

1 oo
(5.1) — =) 7,zeD(0,1);
I—2z n=0

)

1
coshz = Z szn, 7€ C;

n=0
> 1
sinhz=Y) ——72""! zeC;
nzb(Zn—f—l)
> 1
Z —7",z€D(0,1).
= n!

Other important examples of functions as power series representations with nonnegative coeffi-

cients are:
(5.2) exp(z) = Zﬁz ,2€Cy
n=0""
1 1+z2 — 1 5
“In| —2) = " D(0,1);
2“(1—1) I e UL
= I(nty)
1 2n+1 .
sin =y —=L ,2€D(0,1);
) ,;)\/E(Zn—kl) &, zeD(0)
> 1
N 2n—1 .
tanh (Z)—Zz 1Z ,2€D(0,1);
- F IF(n+B)T(Y) ,
2F (@, B,7,2) ' a,B,y>0,
- L By
z€D(0,1);

where I' is Gamma function.

Now, if we use, for instance, the inequality (3.5) we have the following inequalities
_111/2
VP

Y

(o)l ||

and
1/2 L1112

In <1—|T\2)_1 n(1-vP)

for any 7 and V two normal and commuting operators with ||T||, ||V || < 1.

W <ln (1— VT)_l) <
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If T and V are normal and commuting operators, then we also have

w7 < e (7)o ()]

and

sinh (va) Hl/z.

sinh (\T\z) Hl/z

If we use the inequality (3.7) then we get

-1 -1
w<(1—VT)*1>§ (1—|T|2) _12_<I—|V|2> |

w(sinh (VT)) <

and
2\ ! 2\ !
1n(l—|T| ) +ln<l—|V| )
2 b

w <ln (- VT)”) <

for any 7 and V two normal and commuting operators with ||T||,||V|| < 1.

If T and V are normal and commuting operators, then we also have

exp (I71°) +exp (IVF)

2 Y

w(exp(VT)) <

and

2 2

cosh<|T| >+cosh<|V| )
2

w(cosh(VT)) <

‘We notice that if

.- (_1)71 n 1
. = =1 D(0,1);
(5.3) f(2) n; i =In——, 2 D(0,1);
- <_1)n 2n
g(z) = 7" =cosz, z€C;
(2) ;O (2,
h(z) = iizz"“:sinz,ze(c;
= (2n+1)!

1
—1)""=——,2€D(0,1);
) l1+z ©.1)

~
=
=
I
Nk
i

i
[es]
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then the corresponding functions constructed by the use of the absolute values of the coefficients

are
(5.4) i ! ! eD(0,1)
. fry o = s Z s ’
n=1 I’l’ 1—z
Z 2 — coshz, z € C;
n—()
ha(z) = ;ZZ”“ =sinhz, z € C;
“ = (2n+1)! ’ ’

Zz 1 T, 2€P0.).

On making use of the inequality (4.2) we have

-1 _
B . I+ |A*|2 2
I+A 1) < - |2 1—
w <( )" ) <min ( 5 , >
forany A € 4 (H) with ||A]| < 1.
By the inequalities (4.2) and (4.7) we also have
] 1A% 2 2
w(exp(A))ﬁmin{(exp( # )),exp( > )}
and
I+ A% 1+ |A]?
w(sin(A))Smin{(sinh( % )),sinh( +2| | )}

forany A € 4 (H).
The interested reader may state further similar results by utilising the other general inequal-
ities obtained above or other examples of functions defined by power series. The details are

omitted.
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