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Abstract. In this paper, we consider a viscosity approximation algorithm for variational inequality problems

and fixed point set of nonexpansive mappings. Strong convergence theorems are established in the framework of

Hilbert spaces.
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1. Introduction-Preliminaries

In this paper, we always assume that H is a real Hilbert space, whose inner product and norm

are denoted by 〈·, ·〉 and ‖ · ‖. Let C be a nonempty closed and convex subset of H. Recall that

a mapping A is said to be monotone if

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈C.

Recall that a mapping A is said to be α-inverse-strongly monotone if there exists a real number

α > 0 such that

〈Ax−Ay,x− y〉 ≥ α‖Ax−Ay‖2, ∀x,y ∈C.
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Recall that the classical variational inequality problem, denoted by V I(C,A), is to find u ∈ C

such that

〈Au,v−u〉 ≥ 0, ∀v ∈C. (1.2)

Given z ∈ H,u ∈C, the following inequality holds

〈u− z,v−u〉 ≥ 0, ∀v ∈C,

if and only if u = PCz. It is known that the projection PC is firmly nonexpansive. That is,

‖PCx−PCy‖2 ≤ 〈x− y,PCx−PCy〉, ∀x,y ∈C.

One can see that the variational inequality problem (1.2) is equivalent to a fixed point prob-

lem. That is, an element u ∈ C is a solution of the variational inequality (1.2) if and only if

u ∈C is a fixed point of the mapping PC(I−λA), where λ > 0 is a constant and I is the identity

mapping.

Let S : C→C be a mapping. In this paper, we use F(S) to stand for the set of fixed points of

the mapping S. Recall that the mapping S is said to be nonexpansive if

‖Sx−Sy‖ ≤ ‖x− y‖, ∀x,y ∈C.

Recently, the classical variational inequality (1.2) and fixed point problem of nonexpansive

mappings have received rapid development, see, for example, [1-17] and the references therein.

In this paper, we consider a viscosity approximation algorithm for variational inequality

problems and fixed point set of nonexpansive mappings. Strong convergence theorems are

established in the framework of Hilbert spaces.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn} be a

sequence in [0,1] with

0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1.

Suppose xn+1 = (1−βn)yn +βnxn for all integers n≥ 0 and

limsup
n→∞

(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.

Then limn→∞ ‖yn− xn‖= 0.
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Lemma 1.2 Let H be a real Hilbert space, C be a nonempty closed convex subset of H and

S : C→C be a nonexpansive mapping. Then I−S is demiclosed at zero.

Lemma 1.3 Let C be a closed convex subset of a strictly convex Banach space E. Let {Ti : 1≤

i ≤ r} be a sequence of nonexpansive mappings on C. Suppose ∩r
i=1F(Ti) is nonempty. Let

{µi} be a sequence of positive numbers with ∑
r
i=1 µi = 1. Then a mapping S on C defined by

Sx = ∑
r
i=1 µiTix for x ∈C is well defined, nonexpansive and F(S) = ∩∞

i=1F(Ti) holds.

Lemma 1.4 Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn +δn,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(i) limn→∞ γn = 0 and ∑
∞
n=1 γn = ∞;

(ii) limsupn→∞ δn/γn ≤ 0 or ∑
∞
n=1 |δn|< ∞.

Then limn→∞ αn = 0.

2. Main results

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Ai :

C→H be a µi-inverse-strongly monotone mapping for each 1≤ i≤ r, where r is some positive

integer. Let S : C → C be a nonexpansive mapping with a fixed point. Assume that F :=

∩r
i=1V I(C,Ai)∩F(S) 6= /0. Let {xn} be a sequence defined by the following manner:

x1 ∈C, xn+1 = αn f (xn)+βnxn + γnS
r

∑
i=1

ηiPC(xn−λiAixn), n≥ 1, (2.1)

where f : C→ C is a fixed contractive mapping, λ1,λ2, . . . and λr are real numbers such that

λi ∈ (0,2µi) for each 1≤ i≤ r, and {αn}, {βn} and {γn} are sequences in (0,1). Assume that

the above control sequences satisfies the following conditions:

(i) αn +βn + γn = ∑
r
i=1 ηi = 1, ∀n≥ 1;

(ii) limn→∞ αn = 0,∑∞
n=1 αn = ∞;

(iii) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1.
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Then the sequence {xn} generated by the iterative algorithm (2.1) converges strongly to p =

PF f (p).

Proof. For any x,y ∈C, we see that

‖(I−λiAi)x− (I−λiAi)y‖2

= ‖x− y‖2−2λi〈Aix−Aiy,x− y〉+λ
2
i ‖Aix−Aiy‖2

≤ ‖x− y‖2−λi(2µi−λi)‖Aix−Aiy‖2.

Since, for each 1≤ i≤ r, λi ∈ (0,2µi), we see that I−λiAi is nonexpansive. Put yn =∑
r
i=1 ηiPC(xn−

λiAixn) for each n≥ 1. For any x∗ ∈F , we have

‖xn+1− x∗‖= ‖αn f (xn)+βnxn + γnSyn− x∗‖

≤ αn‖ f (xn)− x∗‖+βn‖xn− x∗‖+ γn‖Syn− x∗‖

≤ (1−αn(1−α))‖u− x∗‖+(1−αn)‖xn− x∗‖.

By mathematical inductions, we find that the sequence {xn} is bounded. Note that

‖yn+1− yn‖= ‖
r

∑
i=1

ηiPC(xn+1−λiAixn+1)−
r

∑
i=1

ηiPC(xn−λiAixn)‖

≤ ‖xn+1− xn‖.
(2.2)

Put ln =
xn+1−βnxn

1−βn
, for all n≥ 1. That is,

xn+1 = (1−βn)ln +βnxn, ∀n≥ 1. (2.3)

Note that

ln+1− ln

=
αn+1 f (xn+1)+ γn+1Syn+1

1−βn+1
− αn f (xn)+ γnSyn

1−βn

=
αn+1

1−βn+1
f (xn+1)+

1−βn+1−αn+1

1−βn+1
Syn+1−

αn

1−βn
f (xn)−

1−βn−αn

1−βn
Syn

=
αn+1

1−βn+1

(
f (xn+1)−Syn+1

)
+

αn

1−βn

(
Syn− f (xn)

)
+Syn+1−Syn.
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It follows that

‖ln+1− ln‖ ≤
αn+1

1−βn+1
‖ f (xn+1)−Syn+1‖+

αn

1−βn
‖Syn− f (xn)‖+‖Syn+1−Syn‖

≤ αn+1

1−βn+1
‖ f (xn+1)−Syn+1‖+

αn

1−βn
‖Syn− f (xn)‖+‖yn+1− yn‖.

By virtue of (2.2), we arrive at

‖ln+1− ln‖−‖xn+1− xn‖ ≤
αn+1

1−βn+1
‖ f (xn+1)−Syn+1‖+

αn

1−βn
‖Syn− f (xn)‖.

It follows from the conditions (ii) and (iii) that

limsup
n→∞

(‖ln+1− ln‖−‖xn+1− xn+1‖)< 0.

It follows from Lemma 1.1 that limn→∞ ‖ln− xn‖= 0. Therefore, we find that

lim
n→∞
‖xn+1− xn‖= 0. (2.4)

Note that

‖xn+1− x∗‖2 ≤ αn‖ f (xn)− x∗‖2 +βn‖xn− x∗‖2 + γn‖S
r

∑
i=1

ηiPC(xn−λiAixn)− x∗‖2

≤ αn‖ f (xn)− x∗‖2 +βn‖xn− x∗‖2 + γn

r

∑
i=1

ηi‖PC(xn−λiAixn)− x∗‖2.

(2.5)

This implies that

‖xn+1− x∗‖2

≤ αn‖ f (xn)− x∗‖2 +βn‖xn− x∗‖2

+ γn

r

∑
i=1

ηi‖xn− x∗−λi(Aixn−Aix∗)‖2

≤ αn‖ f (xn)− x∗‖2 +βn‖xn− x∗‖2 + γn

r

∑
i=1

ηi(‖xn− x∗‖2

−2λi〈Aixn−Aix∗,xn− x∗〉+λ
2
i ‖Aixn−Aix∗‖2)

≤ αn‖ f (xn)− x∗‖2 +‖xn− x∗‖2− γn

r

∑
i=1

ηiλi(2µi−λi)‖Aixn−Aix∗‖2.
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So, we have

γn

r

∑
i=1

ηiλi(2µi−λi)‖Aixn−Aix∗‖2

≤ αn‖ f (xn)− x∗‖2 +‖xn− x∗‖2−‖xn+1− x∗‖2

≤ αn‖ f (xn)− x∗‖2 +(‖xn− x∗‖+‖xn+1− x∗‖)‖xn− xn+1‖.

In view of hte conditions (ii) and (iii), one obtains that

lim
n→∞
‖Aixn−Aix∗‖= 0, ∀1≤ i≤ r. (2.6)

On the other hand, one has

‖PC(I−λiAi)xn− x∗‖2

= ‖PC(I−λiAi)xn−PC(I−λiAi)x∗‖2

≤ 1
2
(
‖xn− x∗‖2 +‖PC(I−λiAi)xn− x∗‖2

−‖xn−PC(I−λiAi)xn−λi(Aixn−Aix∗)‖2)
=

1
2
(
‖xn− x∗‖2 +‖PC(I−λiAi)xn− x∗‖2−‖xn−PC(I−λiAi)xn‖2

+2λi〈Aixn−Aix∗,xn−PC(I−λiAi)xn〉−λ
2
i ‖Aixn−Aix∗‖2).

It follows that

‖PC(I−λiAi)xn− x∗‖2 ≤ ‖xn− x∗‖2−‖xn−PC(I−λiAi)xn‖2 +Mi‖Aixn−Aix∗‖, (2.7)

where Mi is an appropriate constant such that Mi = max{2λi‖xn−PC(I−λiAi)xn‖ : ∀n ≥ 1}.

On the other hand, we have

‖yn− xn‖= ‖
r

∑
i=1

ηiPC(I−λiAi)xn− xn‖2 ≤
r

∑
i=1

ηi‖PC(I−λiAi)xn− xn‖2,

which combines with (2.7) yields that

r

∑
i=1

ηi‖PC(I−λiAi)xn− x∗‖2 ≤ ‖xn− x∗‖2−‖yn− xn‖2 +
r

∑
i=1

ηiMi‖Aixn−Aix∗‖.

From (2.5), we see that

‖xn+1− x∗‖2 ≤ αn‖ f (xn)− x∗‖2 +‖xn− x∗‖2 + γn

r

∑
i=1

ηiMi‖Aixn−Aix∗‖− γn‖yn− xn‖2,
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from which it follows that

γn‖yn− xn‖2 ≤ αn‖ f (xn)− x∗‖2 +‖xn− x∗‖2−‖xn+1− x∗‖2

+ γn

r

∑
i=1

ηiMi‖Aixn−Aix∗‖

≤ αn‖ f (xn)− x∗‖2 +(‖xn− x∗‖+‖xn+1− x∗‖)‖xn− xn+1‖

+ γn

r

∑
i=1

ηiMi‖Aixn−Aix∗‖.

It follows from (2.4), (2.6) and the conditions (ii) and (iii) that

lim
n→∞
‖yn− xn‖= 0. (2.8)

It follows that

lim
n→∞
‖Syn− xn‖= 0. (2.9)

Observe that
‖Sxn− xn‖ ≤ ‖xn−Syn‖+‖Syn−Sxn‖

≤ ‖xn−Syn‖+‖yn− xn‖.

It follows from (2.8) and (2.9) that

lim
n→∞
‖Sxn− xn‖= 0. (2.10)

Now, we are in a position to show that

limsup
n→∞

〈 f (p)− p,xn− p〉 ≤ 0,

where p = PF f (p). To show it, we can choose a sequence {xni} of {xn} such that

limsup
n→∞

〈 f (p)− p,xn− p〉= lim
i→∞
〈u− p,xni− p〉. (2.11)

Since {xni} is bounded, there exists a subsequence {xni j
} of {xni} which converges weakly to

f . Without loss of generality, we can assume that xni ⇀ f . Define a mapping W : C→C by

Wx =
r

∑
i=1

ηiPC(I−λiAi)x, ∀x ∈C.

From Lemma 1.2, we see that W is nonexpansive such that

F(W ) = ∩r
i=1F(PC(I−λiAi)) = ∩r

i=1V I(C,Ai).
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From (2.8), we see that

lim
n→∞
‖xn−Wxn‖= 0. (2.12)

From Lemma 1.2, we can obtain that f ∈ F(W ). In view of (2.10) and Lemma 1.2, we see that

f ∈ F(S). This proves that

f ∈ F(W )∩F(S) = ∩r
i=1V I(C,Ai)∩F(S).

It follows from (2.11) that

limsup
n→∞

〈 f (p)− p,xn− p〉 ≤ 0.

Notice that

‖xn+1− p‖2 ≤ (1−αn(1−α))‖xn− p‖2 +2αn〈 f (p)− p,xn+1− p〉.

By Lemma 1.4, we draw the decision immediately. This completes the proof.

Conflict of Interests

The author declares that there is no conflict of interests.

Acknowledgements

The author is grateful to the editor and the reviewer’s suggestions which improved the contents

of the article.

REFERENCES

[1] L.C. Ceng, J.C. Yao, An extragradient-like approximation method for variational inequality problems and

fixed point problems, Appl. Math. Comput. 190 (2007), 205–215.

[2] J. Chen, L. Zhang, T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone

mappings, J. Math. Anal. Appl. 334 (2007), 1450–1461.

[3] Y.J. Cho, X. Qin, Systems of generalized nonlinear variational inequalities and its projection methods, Non-

linear Anal. 69 (2008), 4443–4451.

[4] H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly

monotone mappings, Nonlinear Anal. 61 (2005), 341–350.

[5] T. Kotzer, N. Cohen, J. Shamir, Images to ration by a novel method of parallel projection onto constraint sets,

Opt. Lett. 20 (1995), 1172–1174.



VISCOSITY ITERATIVE ALGORITHMS 9

[6] X. Qin, M. Shang. H. Zhou, Strong convergence of a general iterative method for variational inequality

problems and fixed point problems in Hilbert spaces, Appl. Math. Comput. 200 (2008), 242–253.

[7] Y. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl.

Math. Comput. 186 (2007), 1551–1158.

[8] Y. Li, Iterative algorithm for a convex feasibility problem, An. St. Univ. Ovidius Constant, 18 (2010) 205-218.

[9] A.Y. Al-Bayati, R.Z. Al-Kawaz, A new hybrid WC-FR conjugate gradient-algorithm with modified secant

condition for unconstrained optimization, J. Math. Comput. Sci. 2 (2012) 937-966.

[10] S. Plubtieng, R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of

nonexpansive mappings and monotone mappings, Appl. Math. Comput. 197 (2008) 548-558.

[11] J. Shen, L.P. Pang, An approximate bundle method for solving variational inequalities, Commn. Optim.

Theory, 1 (2012) 1-18.

[12] H.S. Abdel-Salam, K. Al-Khaled, Variational iteration method for solving optimization problems, J. Math.

Comput. Sci. 2 (2012) 1475-1497.

[13] B.O. Osu, O.U. Solomon, A stochastic algorithm for the valuation of financial derivatives using the hyperbolic

distributional variates, Math. Fianc. Lett. 1 (2012) 43-56.

[14] Z.M. Wang, W.D. Lou, A new iterative algorithm of common solutions to quasi-variational inclusion and

fixed point problems, J. Math. Comput. Sci. 3 (2013) 57-72.

[15] V.A. Khan, K. Ebadullah, I-convergent difference sequence spaces defined by a sequence of moduli, J. Math.

Comput. Sci. 2 (2012) 265-273.

[16] X. Yang, Iterative sequences with errors for generalized contractive mappings in metric spaces, Eng. Math.

Lett. 2 (2013) 24-33

[17] H. Zegeye, N. Shahzad, Strong convergence theorem for a common point of solution of variational inequality

and fixed point problem, Adv. Fixed Point Theory, 2 (2012) 374-397.


