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Abstract. An asymmetric Fuglede-Putnam’s theorem for w−hyponormal operators and (p,k)−quasihyponormal

operator is proved. As a consequence of this result, we obtain that the range of the generalized derivation induced

by the above classes of operators is orthogonal to its kernel.
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1. Introduction

For complex Hilbert spaces H and K , B(H ),B(K ) and B(H ,K ) denote the set of all

bounded linear operators on H , the set of all bounded linear operators on K and the set of

all bounded linear transformations from H to K respectively. A bounded operator A ∈ B(H )

is called normal if A∗A = AA∗. According to [10] a bounded operator A ∈ B(H ) is called

(p,k)−quasihyponormal if

A∗k(A∗A)− (AA∗)Ak ≥ 0, 0 < p≤ 1, k ∈ N.

If p = 1, k = 1 and p = k = 1, then A is k−quasihyponormal, p−quasihyponormal and quasi-

hyponormal respectively.
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If {N}, {HN}, {Q(p)}, and {Q(p,k)} denote the classes of normal, hyponormal, p−quasihyponormal

and (p,k)−quasihyponormal operators. These classes are related by proper inclusion

{N} ⊆ {HN} ⊆ {Q(p)} ⊆ {Q(p,k)}.

Also A is called p−hyponormal [1, 5, 7, 8, 16, 17], if (A∗A)p ≥ (AA∗)p for some 0 < p ≤ 1,

semi-hyponormal if p = 1/2, log−hyponormal [14] if A is invertible operator and satisfies

log(A∗A) ≥ log(AA∗), and w−hyponormal if |Ã| ≥ |A| ≥ |(Ã)∗|, where Ã = |A| 12U |A| 12 is the

Aluthge transformation. It was shown in [2] and [3] that the class of w−hyponormal operators

contains both the p−hyponormal and log−hyponormal operators. Let p−H and w−H denote

the class of p−hyponormal and w−hyponormal operators respectively. We have

{N} ⊂ {HN} ⊂ {p−H} ⊂ {w−H}.

These classes are interesting and have similar properties to those of hyponormal operators.

The familiar Fuglede-Putnam’s theorem asserts that if A ∈ B(H ) and B ∈ B(K ) are normal

operators and AX =XB for some operators X ∈B(K ,H ), then A∗X =XB∗ [12]. Many authors

have extended this theorem for several classes of operators. H.I. Kim [11] proved that Fuglede-

Putnam’s theorem holds for injective (p,k)−quasihyponormal and p−hyponormal operators.

Let A ∈ B(H ), B ∈ B(K ). We say that the pair (A,B) satisfies the Fuglede-Putnam’s theo-

rem if AX = XB for some X ∈ B(H ,K ) implies A∗X = XB∗.

The organization of this paper is as follows, in Section 2, we recall some well known results

which will be used in the sequel. In Section 3, our aim is to extend the Fuglede-Putnam theorem

[12], we prove that if either

(1) A is injective (p.k)−quasihyponormal and B∗ is w−hyponormal such that kerB∗⊂ kerB

or

(2) A is w−hyponormal such that kerA∗ ⊂ kerA and B∗ is (p,k)−quasihypo-

normal, then the pair (A,B) satisfies the Fuglede-Putnam’s theorem.

Let A,B ∈ L(H ), we define the generalized derivation δA,B induced by A and B by

δA,B(X) = AX−XB, for all X ∈ B(H ).



AN EXTENSION TO FUGLEDE-PUTNAM’S THEOREM AND ORTHOGONALITY 3

Definition 1.1 [4] Given subspaces M and N of a Banach space V with norm ‖ ·‖. M is said

to be orthogonal to N if ‖m+n‖ ≥ ‖n‖ for all m ∈M and n ∈N .

Anderson and Foias [4] proved that if A and B are normal, S is an operator such that AS = SB,

then

‖ δA,B(X)−S ‖≥‖ S ‖, for all X ∈ B(H ),

where ‖ · ‖ is the usual operator norm. Hence the range of δA,B is orthogonal to the null space

of δA,B. The orthogonality here is understood to be in the sense of definition [4].

2. Preliminaries

We begin by the following known results which will be used in the sequel.

Definition 2.1. [1] Let A ∈ B(H ) and A =U |A| be the polar decomposition of A, the Aluthge

transformation of A is Ã = |A| 12U |A| 12 .

Theorem 2.2. [9] An operator A ∈ B(H ) is w−hyponormal if and only if

(|A∗|
1
2 |A||A∗|

1
2 )

1
2 ≥ |A∗|.

Lemma 2.3. [17] Let A ∈ B(H ) be p−hyponormal operator and M ⊂H be an invariant

subspace for A, then the restriction of A to M is p−hyponormal.

Lemma 2.4. [15] Let A ∈ B(H ) be (p,k)−quasihyponormal operator and M ⊂H be an

invariant subspace for A, then the restriction of A to M is (p,k)−quasihypo-

normal operator.

Lemma 2.5. [10] Let A ∈ B(H ) be (p,k)−quasihyponormal operator and M ⊂H be an

invariant subspace for A. If A|M is an injective normal operator, then M reduces A.

Lemma 2.6. ([6], [12]) Let A ∈ B(H ) be w−hyponormal and M ⊂H be an invariant sub-

space for A, then the restriction of A to M is w−hyponormal.

Lemma 2.7. [16] Let A ∈ B(H ) be w−hyponormal operator, then its Aluthge transform

Ã = |A|
1
2U |A|

1
2
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is semi-hyponormal.

Theorem 2.8. [11] Let A ∈ B(H ) be an injective (p,k)−quasihyponormal and B∗ ∈ B(K ) be

p−hyponormal on Hilbert spaces H and K respectively. If C ∈ B(K ,H ) and AC =CB, then

A∗C =CB∗.

Theorem 2.9. [14]Let A ∈ B(H ) and B ∈ B(K ). Then the following assertions are equivalent

(1) The pair (A,B) satisfy Fuglede-Putnam’s theorem.

(2) If AX = XB for some X ∈ B(K ,H ), then R(X) reduces A, ker(X)⊥ reduces B, and

A |R(X), B |
(kerX)⊥

are normal operators.

3. Main results

Our goal is to investigate the orthogonality of R(δA,B) (the range of δA,B) and ker(δA,B) (the

kernel of δA,B) for some operators. We prove that R(δA,B) is orthogonal to ker(δA,B) when

either

(i) A is an injective (p,k)−hyponormal operator and B∗ is w−hyponormal such that kerB∗⊂

kerB or

(ii) A is w−hyponormal such that kerA ⊂ kerA∗ and B∗ is an injective (p,k)−hyponormal

operator.

Theorem 3.1 Let A ∈ B(H ) be is an injective (p,k)−hyponormal operator and B∗ ∈ B(K ) be

w−hyponormal such that ker B∗⊂ ker B. If AC =CB for some C ∈ B(H ,K ), then A∗C =CB∗.

Proof. Case 1. If B∗ is injective. Assume that AC =CB for some C ∈ B(K ,H ).

Since R(C) is invariant by A and (ker C)⊥ is invariant by B∗, we consider the following decom-

positions:

H = R(C)⊕ (R(C))⊥, K = (ker C)⊥⊕ (ker C),

then it yields

A =

 A1 A2

0 A3

 , B =

 B1 0

B2 B3


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and

C =

 C1 0

0 0

 : (ker C)⊥⊕ (ker C)−→ R(C)⊕ (R(C))⊥.

From AC =CB we get

(1) A1C1 =C1B1.

Let B∗1 =U∗|B∗1| be the polar decomposition of B∗1. Multiply the both members of (1) by |B∗1|1/2,

we obtain

A1C1|B∗1|1/2 =C1B1|B∗1|1/2.

Hence

(2) A1C1|B∗1|1/2 =C1|B∗1|1/2(B̃∗1)
∗.

In equation (2), A1 is is an injective (p,k)−hyponormal operator by Lemma and B∗1 is w−hyponormal

by Lemma , and (B̃∗1)
∗ is semi-hyponormal by Lemma . By applying Theorem , the pair (A1, B̃∗1)

satisfies the Fuglede-Putnam’s theorem. Therefore A1|R(C1|B∗1|1/2) and B̃∗1|(ker(C1|B∗1|1/2)⊥ are nor-

mal operators. Since C1 is injective with dense range and |B∗1|1/2 is injective, then

R(C1|B∗1|1/2) = R(C1) = R(C),

and

ker(C1|B∗1|1/2) = {0}.

It follows that B̃∗1 is normal and (ker C)⊥ reduces B∗. Therefore R(C) reduces A and (ker C)⊥

reduces B. Thus, A2 = 0 and B2 = 0. Hence A1C1 = C1B1 with A1,B1 normal operators, then

A∗1C1 =C1B∗1. Consequently A∗C =CB∗.

Case 2. If B∗ is not injective, the condition kerB∗ ⊂ kerB implies kerB∗ reduces B∗, since

kerA reduces A, the operators A and B can be written on the following decompositions

H = (kerA)⊥⊕kerA, K = (kerB∗)⊥⊕kerB∗,

as follows

A =

 A1 0

0 0

 , B =

 B1 0

0 0

 .
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Since A1 is an injective (p,k)−hyponormal operator and B∗1 is injective w−hyponormal opera-

tor. Let

C : (kerB∗)⊥⊕kerB∗→ (kerA)⊥⊕kerA,

and let C = [Ci j]
2
i, j=1 be the matrix representation of C. Then AC =CB implies A1C11 =C11B1

and C12 = 0,C21 = 0. From case 1, we deduce that A∗1C11 = C11B∗1. Thus A∗C = CB∗. Since

AC =CB implies C∗A∗ = B∗C∗, then C∗A = BC∗ and A∗C =CB∗ by theorem . This completes

the proof.

Corollary 3.2. Let A ∈ B(H ) be w−hyponormal operator such that ker A ⊆ kerA∗ and B∗ ∈

B(K ) be an injective (p,k)−hyponormal operator. If AC =CB for some C ∈ B(K ,H ), then

A∗C =CB∗.

Corollary 3.3. A ∈ B(H ) is normal if and only if A is an injective (p,k)−hyponormal and A∗

is w−hyponormal such that ker A∗ ⊂ ker A.

Theorem 3.4. Let A,B ∈ B(H ). If one of the following assertions

(1) A is an injective (p,k)−hyponormal operator and B∗ is w-hyponormal such that ker B∗⊂

ker B.

(2) A is w−hyponormal such that ker A⊂ ker A∗ and B∗ is an injective (p,k)−hyponormal

operator.

holds, then R(δA,B) is orthogonal to ker(δA,B).

Proof. The pair (A,B) verify the Fuglede-Putman’s theorem by Theorem and Corollary re-

spectively. Let C ∈ B(H ) be such that AC = CB. According to the following decompositions

of H :

H = H1 = R(C)⊕R(C)
⊥
, H = H2 = (kerC)⊥⊕kerC,

we can write A,B,C and X

A =

 A1 0

0 A2

 , B =

 B1 0

0 B2

 , C =

 C1 0

0 0

 , X =

 X1 X2

X3 X4

 ,
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where A1 and B1 are normal operators and X is an operator from H1 to H2. Since AC = CB,

then A1C1 =C1B1. Hence

AX−XB−C =

 A1X1−X1B1−C1 A2X2−X2B2

A1X3−X3B1 A2X4−X4B2

 .

Since C1 ∈ ker(δA1,B1) and A1, B1 are normal, it follows by [4]

‖ AX−XB−C ‖≥‖ A1X1−X1B1−C1 ‖≥‖C1 ‖=‖C ‖, ∀X ∈ B(H ).

This implies that R(δA,B) is orthogonal to ker(δA,B).
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