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Abstract. In this paper, we give a geometrical proof of a new Steffensen’s inequality for convex functions. In
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1. Introduction

The the following inequality was discovered in 1918 by Steffensen [9]

(1)
∫ b

b−λ

g(s)ds≤
∫ b

a
g(s) f (s)ds≤

∫ a+λ

a
g(s)ds,

where λ =
∫ b

a f (s)ds, f and g are integrable functions defined on (a,b), g is monotone decreas-

ing and for each s ∈ (a,b), 0≤ f (s)≤ 1; see also [5], [8], [7] and [6] and the references therein.

Godunova and Levin in [3] noted that the generalisation of (1) by Bellman in [2] was incorrect.
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Pecaric [8] corrected the Bellman generalisation with a narrow subclass. The corrected result is

(2)
(∫ 1

0
f (s)g(s)ds

)p

≤
∫

λ

0
g(s)pds,

where λ =
(∫ 1

0 f (s)ds
)p

, g : [0,1] −→ ℜ is a nonnegative and nonincreasing function, f :

[0,1] −→ ℜ is an integrable function with 0 ≤ f (s) ≤ 1 (∀s ∈ [0,1]) and p ≥ 1, for the proof;

see [8] and the references therein.

The purpose of this paper is to present a refinement of inequality (2) with proofs consisting

of both analytical and geometrical.

2. Preliminaries

We begin with convex functions.

Definition 2.1. (Convex functions) Let I be an interval in ℜ. Then ψ : I −→ ℜ is said to be

convex if for all t1, t2 ∈ I and for all positive λ and µ satisfying λ +µ = 1, we have

(3) ψ(λ t1 +µt2)≤ λψ(t1)+µψ(t2).

A convex function necessarily is continuous for t1, t2 ∈ I.

A function ψ is said to be strictly convex if for all t1 6= t2, ψ is said to be strictly convex.

Remark 2.1. The convexity of a function ψ : I −→ℜ means geometrically that, the function ψ

falls below (or lies on and not above) the chord joining the endpoints (t1,ψ(t1)) and (t2,ψ(t2)),

for every t1, t2 ∈ I.

Intuitively, a convex function has a tangent line at each point and lies above of its tangent

lines. That is, for each t ∈ I there exists a slope Ct such that

ψ(s)≥ ψ(t)+Ct(s− t), ∀x ∈ I.

We remark here that if ψ is differentiable at t then Ct = ψ ′(t).

Definition 2.2. A function ψ is said to be concave if −ψ is convex (i.e. if the inequality (3) is

reversed). If it is strict for all t1 6= t2, ψ is said to be strictly concave.
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Remark 2.2. If ψ ′′(t) exists at each point of the interval I, then a necessary and sufficient

condition that ψ(t) is convex is that ψ ′′(t)≥ 0 for all t ∈ I.

For the above discussion, we refer authors to [5] and [1]. Some examples of convex functions

are: |t|, tk for k > 1 and −tk for 0 < k < 1, et , t log t, − log t and concave functions are: tk for

0 < k < 1, log t,
√

t for t ≥ 0 and so on.

3. Main results

We first present a refinement of inequality (2) here.

Theorem 3.1. Let the function f : [0,1] −→ ℜ be continuous such that 0 ≤ f (s) ≤ 1. If ψ :

[0,1]−→ℜ is a convex, differentiable function with ψ(0) = 0, then

(4) ψ

(∫ 1

0
f (s)ds

)
≤
∫ 1

0
f (s)ψ ′(s)ds

for all s ∈ [0,1].

Proof. Let p = 1. Since the differential of ψ(s) denoted ψ ′(s) is increasing and −ψ ′(s) is

nonincreasing for all s ∈ [0,1], substitution of g(s) =−ψ ′(s) in (2) gives

−
∫ 1

0
f (s)ψ ′(s)ds≤

∫
λ

0
−ψ

′(s)ds.

This simplifies to ∫
λ

0
ψ
′(s)ds≤

∫ 1

0
f (s)ψ ′(s)ds,

(5) ψ(λ )−ψ(0)≤
∫ 1

0
f (s)ψ ′(s)ds.

Since λ =
∫ 1

0 f (s)ds and ψ(0) = 0, thus (5) becomes

ψ

(∫ 1

0
f (s)ds

)
≤
∫ 1

0
f (s)ψ ′(s)ds

This completes the proof.

Let us consider a case of a simple function f on an interval [s0,s2] such that 0≤ s0 < s2 ≤ 1.

We give some definitions
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Definition 3.1. Let a1 and a2 be real numbers. Define a function f : [s0,s2]→ℜ by

f (s) =


a1 if s0 ≤ s < s1,

a2 if s1 ≤ s≤ s2.

Then f is called a simple function since for every s ∈ [s0,s2], we have f (s) = a j for j = 1,2.

Let us obtain a continuous function fε from f . Let ε > 0, we have the partition {[s0,s1−
ε), [s1− ε,s1 + ε), [s1 + ε,s2]} of [s0,s2].

Definition 3.2. Let a1 and a2 be real numbers. Define a function fε : [s0,s2]→ℜ by

fε(s) =



a1 if s0 ≤ s < s1− ε,

a2−a1
2ε

(s− s1 + ε)+a1 if s1− ε ≤ s < s1 + ε,

a2 if s1 + ε ≤ s≤ s2.

Remark 3.1. Let us remark that fε is continuous in [s0,s2] since lims→s∗ fε(s) = fε(s∗) for

every s∗ ∈ [s0,s2].

a1

a2

s1 s2 s

f(s)

s0

Figure1.

a1

a2

s1 s2 s

fε(s)

s0

Figure2.

A1

A2

s1 − ε s1 + ε

Lemma 3.1. Let f (s) and fε(s) be functions as in Definitions 3.1 and 3.2 respectively. Then

(6)
∫ s2

s0

f (s)ds =
∫ s2

s0

fε(s)ds.
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Proof. The midpoint of the line

fε(s) =
a2−a1

2ε
(s− s1 + ε)+a1 f or s1− ε ≤ s < s1 + ε

is P =
(
s1,

a1+a2
2

)
. (See Figure 2). Therefore, the areas

A1 =
ε

2

[
a1−

(
a1 +a2

2

)]
=

ε

4
(a1−a2),

A2 =
ε

2

[(
a1 +a2

2

)
−a2

]
=

ε

4
(a1−a2).

Therefore, we have

A1 = A2.

Lemma 3.2. Let f (s) and fε(s) be functions as in Definitions 3.1 and 3.2 respectively. If ψ(s)

is a convex, differentiable function with ψ(0) = 0, then∫ s2

s0

[ fε(s)− f (s)]ψ ′(s)ds =
a1−a2

2ε

∫ s1+ε

s1−ε

[ψ(s)−ψ(s1)]ds.

Proof. Write

(7)
∫ s2

s0

[ fε(s)− f (s)]ψ ′(s)ds =
∫ s2

s0

fε(s)ψ ′(s)ds−
∫ s2

s0

f (s)ψ ′(s)ds.

The second term on the right side of (7) gives∫ s2

s0

f (s)ψ ′(s)ds =
∫ s1

s0

a1ψ
′(s)ds+

∫ s2

s1

a2ψ
′(s)ds,

(8)
∫ s2

s0

f (s)ψ ′(s)ds = (a1−a2)ψ(s1)+a2ψ(s2)−a1ψ(s0).

Also, the first term on the right side of (7) is expressed as∫ s2

s0

fε(s)ψ ′(s)ds =
∫ s1−ε

s0

a1ψ
′(s)ds

+
∫ s1+ε

s1−ε

[
a2−a1

2ε
(s− s1 + ε)+a1

]
ψ
′(x)ds

+
∫ s2

s1+ε

a2ψ
′(s)ds.
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Applying integration by parts, we obtain∫ s2

s0

fε(s)ψ ′(s)ds = a1[ψ(s1− ε)−ψ(s0)]+
a2−a1

2ε

[
2εψ(s1 + ε)−

∫ s1+ε

s1−ε

ψ(s)ds
]

+a1ψ(s1 + ε)−a1ψ(s1− ε)+a2ψ(s2)−a2ψ(s1 + ε),

which simplifies to

(9)
∫ s2

s0

fε(s)ψ ′(s)ds =
a1−a2

2ε

∫ s1+ε

s1−ε

ψ(s)ds+a2ψ(s2)−a1ψ(s0).

Thus, the difference between inequalities (8) and (9) gives∫ s2

s0

[ fε(s)− f (s)]ψ ′(s)ds =
(a1−a2)

2ε

∫ s1+ε

s1−ε

[ψ(s)−ψ(s1)]ds

as required.

Lemma 3.3. Let g(s) be a continuous function on the interval [s0,s2]. Then

lim
η→0

1
2η

∫ s1+η

s1−η

g(s)ds = g(s1).

Proof. Let η > 0 and set

I(η) =
1

2η

∫ s1+η

s1−η

g(s)ds.

Continuity of g at s1. Let ε > 0, there exists δ > 0 such that |g(s)− g(s1)| < ε whenever

|s− s1|< δ . Since

|I(η)−g(s1)| ≤
1

2η

∫ s1+η

s1−η

|g(s)−g(s1)|ds

for η < δ , we have

s1−η ∈ (s1−δ ,s1 +δ )

and

s1 +η ∈ (s1−δ ,s1 +δ ).

Thus, |s− s1|< η and hence |I(η)−g(s1)|< ε . Therefore I(η)→ g(s1) as η → 0.

Lemma 3.4. Let f be a simple function defined as in Definition 3.1 such that 0≤ f ≤ 1. If ψ is

a convex, differentiable function with ψ(0) = 0, then

ψ

(∫ s2

s0

f (s)ds
)
≤
∫ s2

s0

f (s)ψ ′(s)ds.
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Proof. Let fε(s) be continuous as in Definition 3.2. Then by Lemma 3.1, Theorem 3.1 and

Lemma 3.2 respectively, we have

ψ

(∫ s2

s0

f (s)ds
)
= ψ

(∫ s2

s0

fε(s)ds
)

≤
∫ s2

s0

fε(s)ψ ′(s)ds

≤
∫ s2

s0

f (s)ψ ′(s)ds+
∫ s2

s0

[ fε(s)− f (s)]ψ ′(s)ds

≤
∫ s2

s0

f (s)ψ ′(s)ds+
(a1−a2)

2ε

∫ s1+ε

s1−ε

[ψ(s)−ψ(s1)]ds.

Thus, by Lemma 3.3, when ε → 0, we obtain

ψ

(∫ s2

s0

f (s)ds
)
≤
∫ s2

s0

f (s)ψ ′(s)ds

as required.

Theorem 3.1. Let f be a simple function on [0,1] such that 0≤ f (s)≤ 1 for all s ∈ [0,1]. If ψ

is a convex, differentiable function with ψ(0) = 0, then

ψ

(∫ 1

0
f (s)ds

)
≤
∫ 1

0
f (s)ψ ′(s)ds.

Proof. Let f be a simple function. There exists {0 = s0,s1, · · · ,sn = 1} and {a1,a2, · · · ,an}
such that f (s) = a j on [s j,s j+1) for 0≤ j ≤ n−1. Let 0 < ε < min |s j+1− s j| and define

fε(s) = f (s)

if

s ∈ [0,s1− ε)∪ [s1 + ε,s2− ε)∪·· ·∪ [s j + ε,s j+1− ε)∪·· ·∪ [sn−1 + ε,1).

And

fε(s) =
a( j+1)−a j

2ε
(s− s j + ε)+a j

if

s ∈ [s j− ε,s j + ε)
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where j = 1, · · · ,n−1. (See Figure 3 and Figure 4). Then, following Lemma 3.4, we have∫ 1

0
f (s)ds =

∫ 1

0
fε(s)ds

and

ψ

(∫ 1

0
f (s)ds

)
= ψ

(∫ 1

0
fε(s)ds

)
≤
∫ 1

0
f (s)ψ ′(s)ds+

n−1

∑
j=1

a j−a j+1

2ε

∫ s j+ε

s j−ε

[ψ(s)−ψ(s j)]ds.

Therefore

ψ

(∫ 1

0
f (s)ds

)
≤
∫ 1

0
f (s)ψ ′(s)ds

as required.

...

a1

a2

an−1

an

s1 s2 · · · sn−1 sn s

f(s)

s0

Figure3

...

a1

a2

an−1

an

s1 s2 · · · sn−1 sn s

f(s)

s0

Figure4

4. Applications

In Theorem 3.1, replace 1 by a > 0. Thus

ψ

(∫ 2π

0
f (s)ds

)
≤
∫ 2π

0
f (s)ψ ′(s)ds.

We estimate the Fourier coefficients of ψ :

an =
1

2π

∫ 2π

0
ψ(s)cos(ns)ds

and

bn =
1

2π

∫ 2π

0
ψ(s)sin(ns)ds
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for n≥ 1. For the estimate of bn, let f (s) = 1
2(1+ ε cosns) for ε = 1 or −1. Thus

1
2

∫ 2π

0
(1+ ε cosns)ds = π

and

1
2

∫ 2π

0
(1+ ε cosns)ψ ′(s)ds =

ψ(2π)

2
(1+ ε)+

nε

2

∫ 2π

0
ψ(s)sin(ns)ds

Hence

ψ(π)≤ ψ(2π)

2
(1+ ε)+

nε

2

∫ 2π

0
ψ(s)sin(ns)ds

Take ε = 1 or −1 and we obtain

ψ(π)−ψ(2π)

nπ
≤ bn ≤

−ψ(π)

nπ
.

Also, for the estimate of an, let f (s) = 1
2(1+ ε sinns) for ε = 1 or −1. Thus

1
2

∫ 2π

0
(1+ ε sinns)ds = π

and

1
2

∫ 2π

0
(1+ ε sinns)ψ ′(s)ds =

ψ(2π)

2
− nε

2

∫ 2π

0
ψ(s)cos(ns)ds.

Hence

ψ(π)≤ an ≤
ψ(2π)

2
− nε

2

∫ 2π

0
ψ(s)cos(ns)ds.

Take ε = 1 or −1 and we obtain

ψ(π)−ψ(2π)/2
nπ

≤ an ≤
ψ(2π)/2−ψ(π)

nπ
.

Example 3.1. If

• ψ(s) = s, then an = 0 and bn =−1
n .

• ψ(s) = s2 , then −π

n ≤ an ≤ π

n and −3π

n ≤ bn ≤ −π

n .

4. Conclusion
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The new Steffensen’s inequality (4) is thus proved for continuous functions as well as simple

(discontinuous) functions and also valid for all functions f ∈ L1([0,1]). An application of the

inequality has also been established for the determination of Fourier coefficients.
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