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1. INTRODUCTION 

                   Random fixed point theorem for contraction mappings in polish spaces and random 

fixed point theorems are of fundamental importance in probabilistic functional analysis. Beg and 

Shahzad[2] studied the structure of common random fixed points and random coincidence points 

of a pair of compatible random operators. Recently Dhagat et. al.[3]  given some results for 

random operators.  In [4] Huang and Zhang generalized the concept of metric spaces, replacing 

the set of real numbers by an ordered Banach space, hence they have defined the cone metric 

spaces. They also described the convergence of sequences and introduced the notion of 

completeness in cone metric spaces. They have proved some fixed point theorems of contractive 

mappings on complete cone  metric space with the assumption of normality of a cone. 

Subsequently, various authors [1], [6] have generalized the results of Huang and Zhang and have 

studied fixed point theorems for normal and non-normal cones. Recently Sumitra, V.R., 

Uthariaraj,R. Hemavathy[6]   gave some results for normal cones. There exist a lot of   works 
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involving points used the Banach contraction principle. Mehta, Singh, Sanodia and Dhagat [5] 

has given some results in random cone metric space. 

 

2. PRELIMINARY  

Definition 2.1: Let (E, τ) be a topological vector space and P a subset of E, P is called a cone if 

1. P is non-empty and closed, P ≠{0}, 

2. For x, y ∈ P and a, b ∈ R ⟹ ax + by ∈ P where a,b≥ 0 

1. If x ∈  P  and –x ∈ P ⟹x = 0  

For a given cone P ⊆ E, a partial ordering ≤ with respect to P is defined  by x ≤ y if and 

only if y − x ∈ P, x < y if x ≤ y and x ≠ y, while x≪ y will  stand for y − x ∈ int P, int P 

denotes the  interior of P.  

A cone PE is called normal if there is a number K>0 such that for all x,y E 0 ≤ x ≤ y implies 

||x|| ≤ K||y||. 

The least positive number satisfying the above inequality is called the normal constant of P. It is 

clear that K≥1. We know that that there exists an ordered Banach Space E with cone P which is 

not normal but int P . 

 Definition 2.2: Measurable function: Let (Ω, ∑ ) be a measurable space with ∑ a sigma 

algebra of subsets of  Ω  and M a  non-empty subset of a metric space X = (X, d). Let 2M  be the 

family of all non-empty  subsets of M and C(M)  the family of all nonempty closed subsets of M. 

A mapping G: Ω → 2M is called measurable if, for each open subset U of M,s 

Definition 2.3: Measurable selector: A mapping ξ ∶  Ω → M  is called a measurable selector of 

a measurable mapping G: Ω → 2M if ξ  is measurable and ξ(ω) ∈ G(ω) for  each  ω ∈  Ω.  

Definition 2.4: Random operator: Mapping T : Ω ×M  → X is said to be a random operator if, 

for each  fixed x ∈ M, T(., x) :  Ω  → X is measurable.  



FIXED POINT THEOREMS IN CONE RANDOM METRIC SPACES                                   3 

Definition 2.5:Continuous  Random operator: A random operator T : Ω ×M  → X is said to be 

continuous  random operator if, for each  fixed x ∈ M, T(., x) :  Ω  → X is continuous. 

Definition 2.6: Random fixed point: A measurable mapping ξ ∶  Ω → M  is a random fixed 

point of a random operator T: Ω ×M → X  if ξ(ω) =T (ω, ξ(ω)) for  each ω ∈ Ω. 

Definition 2.7: Let M be a nonempty set and the mapping d: Ω ×M → X and P⊂ X be a cone,   

ϵ Ω be a selector, satisfies the following conditions: 

2.7.1) ( ( ), ( )) 0 ( ), ( ) ( ) ( )

2.7.2) ( ( ), ( )) ( ( ), ( )) , , ( ), ( )

2.7.3) ( ( ), ( )) ( ( ), ( )) ( ( ), ( )) , .

2.7.4) , , , ( ( ), (

d x y x y X x y

d x y d y x x y X and x y X

d x y d x z d z y x y X and bea selector

For any x y X d x y

     

      

      

 

     

     

    

  )) sin .is non increa g and left continuous 

 

Then d is called cone random metric on M and (M, d) is called a cone random metric space. 

Definition 2.8: Implicit Relation  

Let Φ be the class of all real-valued continuous functions φ : (R+)5 → R+ non -decreasing in the 

first argument and satisfying the following conditions: 

For x, y ≥ 0, x ≤ φ(y,0,x,y, x+y) or x ≤ φ(y,y, x, y,x) or x ≤ φ(x, y,0,x, y) 

 there exists a real number 0< h <1 such that x ≤ h y 

 

3. MAIN RESULTS 

Theorem 3.1 :Let (X, d) be a complete cone metric space and P a normal cone with normal 

constant K. Suppose  M be a nonempty separable closed subset of cone metric space X and let T 

and S be commuting  random operators defined on M such that for w∈ Ω, T(ω, . ), S(ω, . ): Ω ×

M → M satisfying contraction 

||d(T(x(ω), Ty(ω)) || ≤   λ || (d(Sx(ω), Sy(ω)) || for all x, y ∈ X, ω∈ Ω .……………(1) 

 And range of S contains range of T and if S is continuous, then T have unique common fixed 

point in X. 

Proof: For each x0(ω) ∈  Ω × X  and x1(ω) ∈  Ω × X  considered such that  

y0(ω)=T x0 (ω) = Sx1(ω) . Therefore in general, yn(ω)=Txn (ω) = Sxn+1(ω)  

||d(yn(ω), yn-1(ω)) || =|| (d(Txn(ω), Txn-1(ω)) ||  
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                                ≤   λ || (d(Sxn(ω), Sxn-1(ω)) || = λ || d(yn-1(ω), yn-2(ω)) || 

  ||d(yn(ω), yn-1(ω)) ||   ≤   λ  || d(yn-1(ω), yn-2(ω)) || 

                                 ≤   λ2  || d(yn-2(ω), yn-3(ω)) || ≤   λ3  || d(yn-3(ω), yn-4(ω)) || 

                                 … 

                               ≤   λn−1  || d(y1(ω), y0(ω)) || 

Now  for n>m 

d(yn(ω), ym(ω))   ≤   d(yn(ω), yn-1(ω)) +d(yn-1(ω), yn-2(ω)) +d(yn-2(ω), yn-3(ω)) +……… 

                                    +…….|| d(ym+1(ω), ym(ω)) || 

Since P is normal cone 

||d(yn(ω), ym(ω)) ||  ≤   K[||d(yn(ω), yn-1(ω)) +d(yn-1(ω), yn-2(ω)) +d(yn-2(ω), yn-3(ω)) +… 

                                    +…….d(ym+1(ω), ym(ω)) ||] 

||d(yn(ω), ym(ω)) ||   ≤  K[ ||d(yn(ω), yn-1(ω)) || +|| d(yn-1(ω), yn-2(ω)) ||+|| d(yn-2(ω), yn-3(ω)) || 

                                    +…….|| d(ym+1(ω), ym(ω)) ||] 

||d(yn(ω), ym(ω)) ||   ≤  K[λn−1  +λn−1  +λn−1  +……..λm  ]  || d(y1(ω), y0(ω)) || 

||d(yn(ω), ym(ω)) ||   ≤  
𝐾λm

1− λ
 ||d(y1(ω), y0(ω)) || 

 ||d(yn(ω), ym(ω)) ||0 as m∞ 

Therefore sequences {yn(ω)}={Txn (ω)} = {Sxn+1(ω)} is Cauchy sequence and X in complete 

therefore there exist p(ω) in X such that 

lim
𝑛∞

Txn (ω) =  lim
𝑛∞

Sxn+1 (ω) = p(ω) 

Now S is continuous and T and S are commuting mappings, we get 

 Sp(ω)  = S lim
𝑛∞

Sxn(ω) = lim
𝑛∞

S2xn(ω) 

Sp(ω)  = S lim
𝑛∞

Txn(ω) = lim
𝑛∞

STxn(ω) = lim
𝑛∞

TSxn(ω)  

Now from (1) we have  

||d(TSxn(ω), Sp(ω))||  ≤ λ || (d(S2xn(ω), Sp(ω)) ||   
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On taking  n∞, 𝑤𝑒 𝑔𝑒𝑡 

||d(Sp(ω), Tp(ω))||  ≤ λ || (d(Sp(ω), Sp(ω)) ||   

Since 0< λ <1, ||d(Sp(ω), Tp(ω))|| = 0  Sp(ω) = Tp(ω)) 

Again from (1) we have  

||d(Txn(ω), Tp(ω)||  ≤ λ || (d(Sxn(ω), Sp(ω)) ||   

||d(p(ω), Tp(ω)||  ≤ λ || (d(p(ω), Sp(ω)) || = λ || (d(p(ω), Tp(ω)) || 

 Tp(ω) = p(ω). 

 Sp(ω) = Tp(ω)) = p(ω). 

For uniqueness let there exists another fixed point q(ω) in X such that from (1) 

||d(p(ω), q(ω)) || = ||d(T(p(ω), Tq(ω)) || ≤   λ || (d(Sp(ω), Sq(ω)) ||=||d(p(ω), q(ω)) || 

Hence for all 0< λ <1 we have p(ω) = q(ω). 

Theorem 3.2:Let (X, d) be a complete cone metric space and P a normal cone with normal 

constant K. Suppose  M be a nonempty separable closed subset of cone metric space X and let T 

and S be commuting  random operators defined on M such that for w∈ Ω, T(ω, . ), S(ω, . ): Ω ×

M → M satisfying contraction 

||d(T(x(ω), Ty(ω)) || ≤   λ || (d(Sx(ω), Sy(ω)) ||  

for all x, y ∈ X, ω∈ Ω and 0 < .λ <½……………(3.2.1) 

||d(T(x(ω), Ty(ω)) || ≤   λ || (d(Tx(ω), Sx(ω)) || +|| (d(Ty(ω), Sy(ω)) ||  

for all x, y ∈ X, ω∈ Ω and 0 < .λ <½……………(3.2.2) 

||d(T(x(ω), Ty(ω)) || ≤   λ || (d(Tx(ω), Sy(ω)) || +|| (d(Ty(ω), Sx(ω)) ||  

for all x, y ∈ X, ω∈ Ω and 0 < .λ <½……………(3.2.3) 

 And range of S contains range of T and if SX is continuous, then T and S have unique point of 

coincidence . If T and S weakly compatible, S and T have  unique common fixed point in X. 

Proof:-  For each x0(ω) ∈  Ω × X  and x1(ω) ∈  Ω × X  considered such that  

y0(ω)=T x0 (ω) = Sx1(ω) . Therefore in general, yn(ω)=Txn (ω) = Sxn+1(ω)  

As per theorem 1 and for all the cases (3.1),(3.2),(3.3) we  have  
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  ||d(yn(ω), yn-1(ω)) ||   ≤   λ  || d(yn-1(ω), yn-2(ω)) ||……..(3.2.4) 

Indeed by (3.2.1) it follows that   

||d(yn(ω), yn-1(ω)) || =|| (d(Sxn+1(ω), Sxn(ω)) || = ||(d(Txn(ω), Txn-1(ω)) || 

                                 ≤      λ || (d(Sxn(ω), Sxn-1(ω)) || = λ  || d(yn-1(ω), yn-2(ω)) ||. 

Indeed by (3.2.2) it follows that   

||d(yn(ω), yn-1(ω)) || =|| (d(Sxn+1(ω), Sxn(ω)) || = (||(d(Txn(ω), Txn-1(ω)) || 

                                ≤   λ[ || (d(Txn(ω), Sxn(ω)) || + || d(Txn-1(ω), gyn-1(ω)) ||] 

                                  ≤   λ[|| (d(yn(ω), yn-1(ω)) || + (d(yn-1(ω), yn-2(ω))]  

||d(yn(ω), yn-1(ω)) ||  ≤   h(d(yn-1(ω), yn-2(ω)) where h = 
λ

λ−1
 (0,1). 

 Indeed by (3.2.3) it follows that   

||d(yn(ω), yn-1(ω)) || = ||(d(Txn(ω), Txn-1(ω)) || 

                                ≤   λ[ || (d(Txn(ω), Sxn-1(ω)) || + || d(Txn-1(ω), gyn(ω)) ||] 

                                  ≤   λ[|| (d(yn(ω), yn-2(ω)) || + (d(yn-1(ω), yn-1(ω))]  

                                 ≤   λ[|| (d(yn(ω), yn-1(ω)) || + (d(yn-1(ω), yn-2(ω))] 

||d(yn(ω), yn-1(ω)) ||  ≤   h(d(yn-1(ω), yn-2(ω)) where h = 
λ

λ−1
 (0,1). 

Now,  by (3.4) for all cases we get 

||d(yn(ω), yn-1(ω)) ||   ≤   λ  || d(yn-1(ω), yn-2(ω)) || 

                                 ≤   λ2  || d(yn-2(ω), yn-3(ω)) || ≤   λ3  || d(yn-3(ω), yn-4(ω)) || 

……………………………………………………………………………….. 

                               ≤   λn−1  || d(y1(ω), y0(ω)) || 

Now  for n>m 

d(yn(ω), ym(ω))   ≤   d(yn(ω), yn-1(ω)) +d(yn-1(ω), yn-2(ω)) +d(yn-2(ω), yn-3(ω)) +……… 

                                    +…….|| d(ym+1(ω), ym(ω)) || 

Since P is normal cone 
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||d(yn(ω), ym(ω)) ||  ≤   K[||d(yn(ω), yn-1(ω)) +d(yn-1(ω), yn-2(ω)) +d(yn-2(ω), yn-3(ω)) +… 

                                    +…….d(ym+1(ω), ym(ω)) ||] 

||d(yn(ω), ym(ω)) ||   ≤  K[ ||d(yn(ω), yn-1(ω)) || +|| d(yn-1(ω), yn-2(ω)) ||+|| d(yn-2(ω), yn-3(ω)) || 

                                    +…….|| d(ym+1(ω), ym(ω)) ||] 

||d(yn(ω), ym(ω)) ||   ≤  K[λn−1  +λn−1  +λn−1  +……..λm  ]  || d(y1(ω), y0(ω)) || 

||d(yn(ω), ym(ω)) ||   ≤  
𝐾λm

1− λ
 ||d(y1(ω), y0(ω)) || 

 ||d(yn(ω), ym(ω)) ||0 as m∞ 

Therefore sequences {yn(ω)}={Txn (ω)} = {Sxn+1(ω)} is Cauchy sequence and S(X) is complete 

therefore there exist p(ω) in XxΩ such that Sp(ω) = q(ω). Now we will show that for all cases 

T(p) = q. 

From 3.2.1 

||d(Sxn(ω),Tp(ω)) || =   ||d(Txn-1(ω),Tp(ω)) || ≤   λ  || d(Sxn-1(ω), Sp(ω)) || 

By taking  n∞ , we get 

||d(Sp(ω),Tp(ω)) || ≤   λ  || d(Sp(ω), Sp(ω)) || =0. 

||d(Sp(ω),Tp(ω)) || = 0. Hence Sp = Tp.  

Now for unique coincidence let us consider another point of coincidence p1(ω) in XxΩ such that 

Tp1 (ω) =Sp1(ω) =q1(ω). Now , 

||d(Sp1(ω),Sp(ω)) || = ||d(Tp1(ω),Tp(ω)) || ≤   λ  || d(Sp1(ω), Sp(ω)) ||. 

||d(Sp1(ω),Sp(ω)) || = 0. Hence Sp1 = Sp = Tp= Tp1.  

Now, from 3.2.2 it follows   

||d(Sxn(ω),Tp(ω)) ||=   ||d(Txn-1(ω),Tp(ω)) ||  

                              ≤   λ [ || d(Txn-1(ω), Sxn-1(ω) || +||d(Sp(ω),Tp(ω)) ||. 

||d(Sp(ω),Tp(ω)) || ≤   λ ||d(Sp(ω),Sp(ω)) ||+||d(Tp(ω),Sp(ω)) || = ||d(Tp(ω),Sp(ω)) ||. 

 Tp=Sp.  

Again for uniqueness let us consider another point of coincidence p1(ω) in XxΩ such that Tp1 (ω) 

=Sp1(ω) =q1(ω). Now  
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||d(Sp1(ω),Sp(ω)) || = ||d(Tp1(ω),Tp(ω)) ||  

                              ≤ λ [ || d(Tp1(ω), Sp1(ω)) || +|| d(Tp(ω), Sp(ω)) ||]. 

||d(Sp1(ω),Sp(ω)) || = 0. Hence Sp1 = Sp = Tp= Tp1.  

Again from (3.2.3) 

||d(Sxn(ω),Tp(ω)) ||=   ||d(Txn-1(ω),Tp(ω)) ||  

                              ≤   λ [ || d(Txn-1(ω), Sp(ω) || +||d(Tp(ω), Sxn-1(ω)) ||]. 

By taking  n∞ , we get 

||d(Sp(ω),Tp(ω)) ||  ≤   λ [ || d(Tp(ω), Sp(ω) || +||d(Tp(ω), Sp(ω)) ||] . 

||d(Sp(ω),Tp(ω)) ||  ≤   λ .2. || d(Tp(ω), Sp(ω) || 

Since 0<λ<1/2 therefore ||d(Sp(ω),Tp(ω)) ||=0. Hence Sp(ω) = Tp(ω).  

For uniqueness let us consider another point of coincidence p1(ω) in XxΩ such that Tp1 (ω) 

=Sp1(ω) =q1(ω). Now  

||d(Sp1(ω),Sp(ω)) || = ||d(Tp1(ω),Tp(ω)) ||  

                              ≤ λ [ || d(Tp1(ω), Sp(ω)) || +|| d(Tp(ω), Sp1(ω)) ||] 

                               = λ [ || d(Sp1(ω), Sp(ω)) || +|| d(Sp(ω), Sp1(ω)) ||] 

||d(Sp1(ω),Sp(ω)) || ≤   λ .2. ||d(Sp1(ω),Sp(ω)) ||. 

Since 0<λ<1/2 therefore ||d(Sp1(ω),Sp(ω)) ||=0. Hence Sp1(ω)= Sp(ω) = Tp(ω)= Tp1(ω).  

By the use of preposition 1.4 of [1]  in all above cases we can find that p(ω) is unique common 

fixed point of T and S.   

Example: Let M=R and P={x∈M:x≥0}, also Ω=[0,1] and Σ be the sigma algebra of Lebesgue’s 

measurable subset of [0,1]. Let X = [0,) and define mapping as d:(ΩxX)x(ΩxX)M 

byd(x(ω),y(ω)) = |x(ω)-y(ω)|. Then (X,d) is a cone random metric space. Define random operator 

T from  xX  to X as T(x(ω)) = x(ω)/2. Also sequence of mapping xn :  X is defined by xn () 

= {(1 -2)1+1/n }for every    and n N. Define measurable mapping  x :   X as x () = 

{1-2}for every   . T Satisfies all condition of the theorem 3.1 and hence (1-2  ) is fixed 

point of the space. 
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