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Abstract. In this paper, we combine discrete and functional forms of Jensen’s inequality for convex functions of

several variables. We apply convex and affine combinations to inequalities. Using this approach, we consider the

functional form of Jensen’s inequality for affine combination of mappings. We also offer simple generalizations of

the known results.
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1. Introduction

We use the introduction to highlight three basic types of sets in a linear space, as well as their

associated functions. For this purpose we use combinations of points (vectors) and coefficients

(scalars). Let X be a real linear space. We can start with the binomial combinations

(1) αa+βb

of points a,b ∈ X and coefficients α,β ∈ R.

The combination in equation (1) is called linear. A set L⊆X is linear (usually called a linear

subspace) if it contains all binomial linear combinations of its points. A function L : L→ R is
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linear (usually called a linear functional) if the equality

(2) L(αa+βb) = αL(a)+βL(b)

holds for all binomial linear combinations αa+βb of the linear subspace L.

If α +β = 1, the term linearity becomes affinity using the adjective affine for combinations,

sets and functions.

The combination in equation (1) is called convex if α +β = 1 and α,β ≥ 0. A set C ⊆ X is

convex if it contains all binomial convex combinations of its points. A function f : C → R is

convex if the inequality

(3) f (αa+βb)≤ α f (a)+β f (b)

holds for all binomial convex combinations αa+ βb of the convex set C . A function f is

concave if the function − f is convex. Thus, a function is affine if, and only if, it is convex and

concave.

The concept of linear, affine and convex hull of a vector set can also be described using

binomial combinations. For example, the convex hull of a set S , denoted by convS , consists

of all binomial convex combinations of its vectors.

Using the mathematical induction, the above binomial combination properties can be extend-

ed to all finite combinations

(4)
n

∑
i=1

αiai,

of points ai ∈ X and coefficients αi ∈ R, assuming that ∑
n
i=1 αi = 1 in the affine case, and

additionally assuming that all αi ≥ 0 in the convex case.

2. Discrete and functional form of Jensen’s inequality

Using the inductive method, Jensen presented in [2] the discrete form of the inequality relat-

ing to convex combinations and convex functions. Adapted to our needs, this inequality reads

as follows.
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Theorem A. Let C be a convex set of a real linear space, let a1, . . . ,an ∈ C be points, and let

∑
n
i=1 αiai be a convex combination.

Then every convex function f : C → R satisfies the inequality

(5) f

(
n

∑
i=1

αiai

)
≤

n

∑
i=1

αi f (ai).

If f is concave, then the reverse inequality is valid in equation (5). If f is affine, then the

equality is valid in equation (5).

In more than one hundred years of its existence, the famous Jensen’s inequality in equation (5)

even today occupies the attention of mathematicians who deal with inequalities. The following

is a description of the functional form.

Let X be a non-empty set. Let X be a subspace of the linear space RX of all real functions

on the domain X . We use the space X that contains the unit function e0, defined by e0(x) = 1

for every x ∈X .

A linear functional L : X→ R is said to be positive (non-negative) or monotone if L(g) ≥ 0

for every non-negative function g ∈ X. We use the positive functional L satisfying L(e0) = 1.

Such functional is called unital or normalized. For any function g ∈ X, the number L(g) is

located in the closed convex hull of the set {g(x) : x ∈X }, that is, in the closed interval of real

numbers which contains the image of g.

Cite two examples of unital positive linear functionals. Given the n-tuple of non-negative

coefficients αi ∈ R satisfying ∑
n
i=1 αi = 1, and the n-tuple of points xi ∈ X , we define the

summarizing linear functional L on the space X by

(6) Lsum(g) =
n

∑
i=1

αig(xi).

Obviously, the functional Lsum is positive, and since Lsum(e0) = 1, it is unital. If X is the

measurable set respecting some positive measure µ so that µ(X ) > 0, then the integrating

linear functional Lint on the space X of all µ-integrable functions on X , can be defined by

(7) Lint(g) =
1

µ(X )

∫
X

gdµ.

The integrating functional is also positive and unital.
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The functional form of Jensen’s inequality for convex functions of one variable is due to

Jessen, see [3]. McShane extended the functional form of Jensen’s inequality to convex func-

tions of several variables, see [4, Theorem 1 and Theorem 2]. He has covered the generalization

in two steps, calling them the geometric formulation [4, Theorem 1] and analytic formulation [4,

Theorem 2] of Jensen’s inequality. We present these formulations in the theorem that follows.

Theorem B. Let C ⊆ Rm be a closed convex set. Let g1, . . . ,gm ∈ X be functions such that(
g1(x), . . . ,gm(x)

)
∈ C for every x ∈X . Let f : C → R be a continuous convex function such

that f (g1, . . . ,gm) ∈ X.

Then every unital positive linear functional L : X→ R satisfies the inclusion

(8)
(
L(g1), . . . ,L(gm)

)
∈ C ,

and the inequality

(9) f
(
L(g1), . . . ,L(gm)

)
≤ L
(

f (g1, . . . ,gm)
)
.

If f is concave, then the reverse inequality is valid in equation (9). If f is affine, then the

equality is valid in equation (9).

The hyperplanes that contain the set C were used in the proof of the inclusion in equation

(8). The epigraph of the convex function f ,

(10) epi( f ) = {(x1, . . . ,xm,xm+1) ∈ C ×R |xm+1 ≥ f (x1, . . . ,xm)},

and the inclusion in equation (8) were applied in the proof of the inequality in equation (9).

3. Inequality for convex functions and affine combinations in the plane

If A,B,C ∈ R2 are planar points that do not belong to the same line, then every point P ∈ R2

can be presented by the unique affine combination

(11) P = αA+βB+ γC.



INEQUALITIES INCLUDING FUNCTIONAL AFFINE COMBINATIONS 5

The above trinomial combination is convex if, and only if, the point P belongs to the triangle

conv{A,B,C}. If we use the point coordinates, the affine combination coefficients α,β ,γ in

equation (11) can be calculated using determinants, see [8, equations (24) and (25)].

Given the function f : R2 → R, let f plane
{A,B,C} : R2 → R be the function of the plane passing

through the points (A, f (A)), (B, f (B)) and (C, f (C)) of the graph of the function f . Because

of the affinity of f plane
{A,B,C}, it follows that

(12) f plane
{A,B,C}(P) = α f (A)+β f (B)+ γ f (C).

In the case that the function f is convex, the inequality

(13) f (P)≤ α f (A)+β f (B)+ γ f (C) = f plane
{A,B,C}(P)

holds for all points P belonging to the triangle conv{A,B,C}.

Our main results are based on the discrete variant of the inequality relating to the planar affine

combination αA+βB+γC−δD, where A,B,C,D∈R2 are points satisfying D∈ conv{A,B,C},

and α,β ,γ,δ ∈ [0,1] are coefficients satisfying α,β ,γ ≥ δ and α +β + γ − δ = 1. Including

the convex combination of D = α1A+β1B+ γ1C, it follows that

(14) αA+βB+ γC−δD = (α−δα1)A+(β −δβ1)B+(γ−δγ1)C.

The trinomial combination on the right-hand side of equation (14) is convex because its coeffi-

cients are non-negative, and their sum is equal to 1.

Relying on the equations in (14) and (13), and applying Jensen’s inequality, we attain the

following result for four-membered affine combinations and convex functions on the planar

domain.

Theorem C. Let A,B,C,D ∈ R2 be points such that D ∈ conv{A,B,C}. Let α,β ,γ,δ ∈ [0,1]

be coefficients such that α,β ,γ ≥ δ and α +β + γ−δ = 1.

Then the affine combination

(15) P = αA+βB+ γC−δD
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is in the set conv{A,B,C}, and every convex function f : conv{A,B,C} → R satisfies the in-

equality

(16) f (P)≤ α f (A)+β f (B)+ γ f (C)−δ f (D).

If f is concave, then the reverse inequality is valid in equation (16). If f is affine, then the

equality is valid in equation (16).

The proof of Theorem C can be found in [7, Lemma 3.1]. The proof of the first part of

Theorem C can also be found in [8, Lemma 13]. The affine combination of the line segment

was applied in Jensen-Mercer’s inequality for convex functions of one variable, see [5].

Remark 3.1. To prove the inequality in equation (16) if conv{A,B,C} is the triangle, we can

apply the function f plane
{A,B,C} and the inequality in equation (13). Thus, it follows that

f (P) ≤ f plane
{A,B,C}(αA+βB+ γC−δD)(17)

= α f (A)+β f (B)+ γ f (C)−δ f plane
{A,B,C}(D)(18)

≤ α f (A)+β f (B)+ γ f (C)−δ f (D).(19)

If conv{A,B,C} is the line segment conv{A,B}, we use the function f line
{A,B}. If conv{A,B,C} is

the point A, the inequality in equation (16) is trivially reduced to f (A)≤ f (A).

4. Main results

We focus on the formulation of the functional variant of Theorem C. First we will analyze

the special case of the equality in equation (9) for functions g1,g2 ∈ X, and the affine function

f : R2→ R. Using the equation f (x1,x2) = λ1x1 +λ2x2 +λ3 with real constants λ1, λ2 and λ3,

we have the equality

(20)

f
(
L(g1),L(g2)

)
= λ1L(g1)+λ2L(g2)+λ3

= λ1L(g1)+λ2L(g2)+λ3L(e0)

= L(λ1g1 +λ2g2 +λ3e0)

= L
(

f (g1,g2)
)
.
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The above equality, using f as the triangle plane function, will be applied in the proof of the

functional variant of Theorem C.

Let C ⊆ R2 be a convex set, and let X ⊆ RX be a real linear space. The subset X2
C of

the product space X2 which contains all mappings with the image in C is convex. Indeed, if

αa+βb is the convex combination of mappings

(21) a = (a1,a2) , b = (b1,b2)

belonging to X2
C , then the planar convex combination αa(x)+βb(x) is in C for every x ∈X ,

that is, αa+βb is in X2
C .

In the following we use the closed convex set C ⊆R2. Working with mappings a= (a1,a2)∈

X2
C , and functionals L : X→ R, we will use the abbreviation

(22) L(a) =
(
L(a1),L(a2)

)
.

Theorem 4.1. Let C ⊆ R2 be a closed convex set. Let a,b,c,d ∈ X2
C be mappings, and let L :

X→R be a unital positive linear functional so that d ∈X2
4 where4= conv{L(a),L(b),L(c)}.

Let f : C → R be a continuous convex function such that compositions f (a), f (b), f (c), f (d) ∈

X. Let α,β ,γ,δ ∈ [0,1] be coefficients such that α,β ,γ ≥ δ and α +β + γ−δ = 1.

Then the affine combination

(23) l = αL(a)+βL(b)+ γL(c)−δL(d)

is in the set4, and we have the inequalities

(24) f (l)≤ α f (L(a))+β f (L(b))+ γ f (L(c))−δ f (L(d))

and

(25) f (l)≤ αL( f (a))+βL( f (b))+ γL( f (c))−δL( f (d)).

Proof. Since L(d) ∈4 by Theorem B, then also l ∈4 by Theorem C. Thus it is clear that the

inequality in equation (24) follows from the inequality in equation (16). Prove the inequality in

equation (25).
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If4 is the triangle, we can use the triangle plane function f plane
{L(a),L(b),L(c)}. Since the number

inequality f plane
{L(a),L(b),L(c)}(d(x)) ≥ f (d(x)) holds for every x ∈ X , we have the composition

inequality

(26) f plane
{L(a),L(b),L(c)}(d)≥ f (d).

Applying the convexity of f , the affinity of f plane
{L(a),L(b),L(c)}, as well as the formulae in equations

(13), (20) and (26), we get the series of inequalities

(27)

f (l) ≤ f plane
{L(a),L(b),L(c)}

(
αL( f (a))+βL( f (b))+ γL( f (c))−δL( f (d))

)
= α f (L(a))+β f (L(b))+ γ f (L(c))−δ f plane

{L(a),L(b),L(c)}(L(d))

= α f (L(a))+β f (L(b))+ γ f (L(c))−δL
(

f plane
{L(a),L(b),L(c)}(d)

)
≤ αL( f (a))+βL( f (b))+ γL( f (c))−δL( f (d))

concluding the proof of the inequality in equation (25) for this case.

If 4 is the line segment, to prove the inequality in equation (25) we can apply the series of

inequalities in equation (27) using the chord line instead of the triangle plane.

If 4 is the plane point, the mapping d is constant. Using the representation d = L(a)e0 =

L(d)e0, we get that the composition

(28) f (d) = f (L(d))e0.

In this case, (25) follows from (24) because f (L(a))≤L( f (a)), f (L(b))≤L( f (b)) and f (L(c))≤

L( f (c)) by (9), and L( f (d)) = f (L(d)) by (28). �

Remark 4.2. If the mappings a,b,c,d ∈ X2
C satisfy the conditions of Theorem 4.1, then the

affine combination αa(x)+βb(x)+ γc(x)− δd(x) does not necessarily belong to 4 for every

x ∈X .

Theorem 4.1 can be extended including the convex combination of mappings di satisfying

the same condition as the mapping d. It will be affirmed in the following theorem.

Corollary 4.3. Let C ⊆ R2 be a closed convex set. Let a,b,c,d1, . . . ,dn ∈ X2
C be mappings,

and let L : X → R be a unital positive linear functional so that all di ∈ X2
4 where 4 =
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conv{L(a),L(b),L(c)}. Let f : C → R be a continuous convex function such that all com-

positions f (a), f (b), f (c), f (di) ∈ X. Let α,β ,γ,δ ,δi ∈ [0,1] be coefficients such that α +β +

γ−δ = ∑
n
i=1 δi = 1.

Then the affine combination

(29) l = αL(a)+βL(b)+ γL(c)−δ

n

∑
i=1

δiL(di)

is in the set4, and we have the inequalities

(30) f (l)≤ α f (L(a))+β f (L(b))+ γ f (L(c))−δ

n

∑
i=1

δi f (L(di))

and

(31) f (l)≤ αL( f (a))+βL( f (b))+ γL( f (c))−δ

n

∑
i=1

δiL( f (di)).

Proof. The convex combination d(x) = ∑
n
i=1 δidi(x) belongs to4 for every x ∈X . Therefore,

respecting Theorem 4.1 the affine combination l in equation (29) also belongs to4.

The series of inequalities in equation (27) can be applied to the proof of the inequality in

equation (31) because the inequality in equation (26) holds for every mapping di. �

5. Application to functional quasi-arithmetic means in the plane

The Jensen inequality in equation (5) contains two means. The first mean is the convex com-

bination in parentheses on the left-hand side, and the second mean is the convex combination

on the right-hand side. Basic facts on means and their associated inequalities can be found in

[1] and [9]. Among other means, the quasi-arithmetic functional means were investigated in

[6].

The notion of quasi-arithmetic mean is usually associated to convex combinations and in-

jective mappings that preserve the convexity of domain. Let C ⊆ Rm be a convex set, let

a = ∑
n
i=1 αiai be a convex combination where ai ∈ C , and let ϕ : C → Rm be an injective

mapping so that the image set ϕ(C ) is convex. We define the ϕ-quasi-arithmetic mean of the



10 ZLATKO PAVIĆ

observed combination a as the point

(32) Mϕ(a) = ϕ
−1

(
n

∑
i=1

αiϕ(ai)

)
.

The convexity of ϕ(C ) ensures that the convex combination aϕ = ∑
n
i=1 αiϕ(ai) be contained in

ϕ(C ), and so the quasi-arithmetic mean Mϕ(a) = ϕ−1(aϕ) is contained in the set C .

The concept of quasi-arithmetic mean can be extended to affine combinations having the

above properties. For this purpose, let us take an affine combination as in Corollary 4.3, where

4= conv{L(a),L(b),L(c)} is the triangle,

(33) l = αL(a)+βL(b)+ γL(c)−δ

n

∑
i=1

δiL(di),

and take an injective mapping ϕ : conv{L(a),L(b),L(c)} → R2 satisfying the convexity condi-

tion

(34) ϕ
(
conv{L(a),L(b),L(c)}

)
= conv{ϕ(L(a)),ϕ(L(b)),ϕ(L(c))}.

For example, the mapping ϕ can be the composition of translations, homotheties and rotations

in the plane. We define the ϕ-quasi-arithmetic mean of the combination l as the point

(35) Mϕ(l) = ϕ
−1

(
αϕ
(
L(a)

)
+βϕ

(
L(b)

)
+ γϕ

(
L(C)

)
−δ

n

∑
i=1

δiϕ
(
L(di)

))
.

The assumptions ensure that the quasi-arithmetic mean point Mϕ(l) is located in the triangle

conv{L(a),L(b),L(c)}, and the point

(36) lϕ = αϕ
(
L(a)

)
+βϕ

(
L(b)

)
+ γϕ

(
L(C)

)
−δ

n

∑
i=1

δiϕ
(
L(di)

)
is located in the triangle conv{ϕ(L(a)),ϕ(L(b)),ϕ(L(c))}. The quasi-arithmetic means defined

in (35) are invariant with respect to affine mappings of R2, that is, the equality

(37) Mλϕ(x,y)+(x0,y0)(l) = Mϕ(x,y)(l)

holds for all pairs of the nonnegative number λ in R and the point (x0,y0) ∈ R2. Indeed, if

(38) ψ(x,y) = λϕ(x,y)+(x0,y0),
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then

(39) lψ = λ lϕ +(x0,y0)

and

(40) ψ
−1(x,y) = ϕ

−1
(
(x,y)− (x0,y0)

λ

)
,

and therefore, it follows that

Mψ(l) = ψ
−1(lψ) = ϕ

−1
(

lψ − (x0,y0)

λ

)
= ϕ

−1(lϕ) = Mϕ(l).

6. Generalizations

We first present two simple generalizations of Theorem B. Given the linear functional L :

X→ R, and mappings

(41) gi =
(
gi1, . . . ,gim

)
belonging to the product space Xm, we use the abbreviations

(42) L(gi) =
(
L(gi1), . . . ,L(gim)

)
.

Theorem B can be presented with several mappings gi ∈ Xm
C . The following corollary is

based on the discrete and functional form of Jensen’s inequality.

Corollary 6.1. Let C ⊆ Rm be a closed convex set. Let g1, . . . ,gn ∈ Xm
C be mappings, and let

∑
n
i=1 αigi be a convex combination. Let f : C → R be a continuous convex function such that

all compositions f (gi) ∈ X.

Then every unital positive linear functional L : X→ R satisfies the inclusion

(43)
n

∑
i=1

αiL(gi) ∈ C ,

and the double inequality

(44) f

(
n

∑
i=1

αiL(gi)

)
≤

n

∑
i=1

αi f (L(gi))≤
n

∑
i=1

αiL( f (gi)).
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Theorem B can also be presented with several linear functionals Li. The following is such a

generalization.

Corollary 6.2. Let C ⊆ Rm be a closed convex set. Let g1, . . . ,gn ∈ Xm
C be mappings. Let

f : C →R be a continuous convex function such that all compositions f (gi)∈X. Let L1, . . . ,Ln :

X→ R be positive linear functionals such that all Li(e0)> 0 and ∑
n
i=1 Li(e0) = 1.

Then we have the inclusion

(45)
n

∑
i=1

Li(gi) ∈ C ,

and the double inequality

(46) f

(
n

∑
i=1

Li(gi)

)
≤

n

∑
i=1

f
(
Li(gi)

)
≤

n

∑
i=1

Li
(

f (gi)
)
.

Proof. Taking positive coefficients αi = Li(e0), and unital positive linear functionals

(47) Mi =
1
αi

Li,

we have the convex combination

(48)
n

∑
i=1

Li(gi) =
n

∑
i=1

αiMi(gi)

to which we can apply the inequality in equation (44). �

The following is the generalization of Corollary 4.3. We conclude the inequality for convex

functions and functional affine combinations in the space Rm as follows.

Corollary 6.3. Let C ⊆ Rm be a closed convex set. Let a1, . . . ,am+1,b1, . . . ,bn ∈ Xm
C be map-

pings, and let L : X → R be a unital positive linear functional so that all bi ∈ Xm
4 where

4 = conv{L(a1), . . . ,L(am+1)} is the simplex. Let f : C → R be a continuous convex func-

tion such that all compositions f (a j), f (bi) ∈ X. Let α j,β ,βi ∈ [0,1] be coefficients such that

α j ≥ β and ∑
m+1
j=1 α j−β = ∑

n
i=1 βi = 1.

Then the affine combination

(49) l =
m+1

∑
j=1

α jL(a j)−β

n

∑
i=1

βiL(bi)
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is in the set4, and we have the inequalities

(50) f (l)≤
m+1

∑
j=1

α j f (L(a j))−β

n

∑
i=1

βi f (L(bi))

and

(51) f (l)≤
m+1

∑
j=1

α jL( f (a j))−β

n

∑
i=1

βiL( f (bi)).

If 4 is the m-simplex, in which case the points L(a1), . . . ,L(am+1) are its vertices, to prove

the inequalities in equations (50) and (51) we use the hyperplane function f hyperplane
{L(a1),...,L(am+1)}.

Continuing the previous corollary, we will give the formula for the functional quasi-arithmetic

means in the space Rm. Take an affine combination l as in equation (49) satisfying the assump-

tions of Corollary 6.3, where4 is the m-simplex, and take an injective mapping

(52) ϕ : conv{L(a1), . . . ,L(am+1)}→ Rm

satisfying the convexity condition

(53) ϕ
(
conv{L(a1), . . . ,L(am+1)}

)
= conv{ϕ(L(a1)), . . . ,ϕ(L(am+1))}.

We define the ϕ-quasi-arithmetic mean of the combination l as the point

(54) Mϕ(l) = ϕ
−1

(
m+1

∑
j=1

α jϕ
(
L(a j)

)
−β

n

∑
i=1

βiϕ
(
L(bi)

))
which belongs to the m-simplex conv{L(a1), . . . ,L(am+1)}.
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