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Abstract. In this paper, we give a refinement of discrete Jensen’s inequality for the operator convex functions. We
launch the corresponding mixed symmetric means for positive self-adjoint operators defined on Hilbert space and

also establish the refinement of inequality between power means of strictly positive operators.
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1. INTRODUCTION-PRELIMINARIES

H will from now on denote a complex Hilbert space. S(I) means the class of all self-adjoint
bounded operators on H whose spectra are contained in an interval / C R. The spectrum of a
bounded operator A on H is denoted by Sp(A).
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Let f: Dy(C R) — R be a function and let I C D be an interval. f is said to be operator
monotone on / if f is continuous on 7 and A, B € S(I), A < B (i.e. B— A is a positive operator)
imply f(A) < f(B). The function f is said to be operator convex on [ if f is continuous on /

and
f(sA+1B) <sf(A)+tf(B)

for all A, B € S(I) and for all positive numbers s and ¢ such that s +¢ = 1. The function f is

called operator concave on J if — f is operator convex on J.

Theorem 1.1. Jensen’s operator inequality: Let I C R be an interval, and let f : I — R be an
operator convex function on I. If C; € S(I) (i=1,...,n), and w; >0 (i = 1,...,n) such that

T wi=1, then

M=

(1) f( WiCi> < Y wif(G).
=1 i=1

1

If f is an operator concave function on I, then the inequality in (1) is reversed.

Some interpolations of (1) are given in [3] as follows.
Theorem 1.2. Under the conditions of the Jensen’s operator inequality

2 FOEWC) = fan < oo < fin < o < fa= Y wif (Ci),
i=1 i=1

where for 1 <k <n

1 k L wi, G,
(3) Jien = N Z (Z Wi,-) f =
(1) = )

k—1) 1<ii<...<ix<n

4) f(ZWiCi) <o < Frrtn S Fin < o < fra= Y wif(Gh),

where for k > 1
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k
1

k .)Elwij ij
(5) ﬂ,ﬁm )y (wa)f —
=1

k—1 ) 1<ii<..<ig<n Wi,

J

A self-adjoint bounded operator A on H is called strictly positive if it is positive and invertible,
or equivalently, Sp(A) C [m,M] for some 0 < m < M.
The power means for strictly positive operators C := (Cy, ...,C,,) with positive weights w :=

(wy,...,wy,) are defined in [3] as follows:

1
(6) M,(C,w) =M, (Cy,...,Cp; W1, ..., w,) 1= ( chr> ,
n
where r € R\ {0} and W,,: = ¥ w;. The following result about the monotonicity of power
i=1
means is also given in [3]:
(7) M (C,w) < M,(C,w)

holds if either s <r,s ¢ (—1,1),r¢ (=1,1)or1/2<s<1<rors<—-1<r<-—1/2.
Some symmetric mixed means, corresponding to the expressions (3) and (5) are introduced

n [3]: for r,s € R\ {0} and for W,, = 1, define

My (s, r;k) ;=

(8) | k H
@1<i1<z<ik<n j§1Wij My (Ciyoes Gt Wiy wi) |

where 1 < k <n, and

M, srk

1
©) . .
1 1<11< <ix<n ]gl Wl] M5<Cll7 Clk’wih ...7Wl‘k) R

where k > 1.

The following result from [3] gives some refinements of (7).
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Theorem 1.4. Let C be an n-tuple of strictly positive operators, and let w; >0 (i =1, ...

such that W,, = 1. Then the following inequalities are valid

(10) M(C,w) =M, (s,r;1) < ... < M,(s,r;k) < ... < My(s,r;n) =M, (C,w),
and

(11) M(C,w) =M, (s,r;1) < ... <My (s,r;k) < ... < M,(C,w),

if either

) 1<s<ror
1) —r<s<-—1or
(i) s<—1,r>s5>2r;
while the reverse inequalities are valid if either
av) r<s<-—1lor
W 1<s<-—ror

(vi) s> 1, r <s<2r.

In this paper, we generalize the above results by using a new refinement of the Jensen’s

inequality from [2]. First, we give the notations introduced in [2]:

Let X be a set. The power set of X is denoted by P(X). |X| means the number of elements in X.

The usual symbol N is used for the set of natural numbers (including 0).

Letu > 1 and v > 2 be fixed integers. Define the functions

and

SV,W(ih"'aiV) = (iluiza"'7iW717iW+17"'7iV)7 1§WSV7
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v

Sy (it yiv) == | {Sww (i1, -,iv)},

w=1
and
@, if I=0
L) = U So(in,....iv), if 1#£@ "

(il,...,i‘>)61

Next, let the function

oy {l,...,u}l =N, 1<i<u,

be given by: @, (i1,...,i,) means the number of occurrences of i in the sequence (if,...,i,).

Foreach I € P({1,...,u}") let
oy ;= Z oy (ir,...,0v), 1<i<u.

It is easy to see that the dependence of the functions S, ,,, Sy, T, and ¢,; on u does not play
an important role, so we can use simplified notations.
The following hypotheses will give the basic context of our results.

(Hp) Letn > 1 and k > 2 be fixed integers, and let ; be a subset of {1, ... ,n}k such that
(12) o >1, 1<i<n.

(Hp) Let I C R be an interval, and let C; € S(I) (1 <i <n).

(H3) Let wy,...,w, be positive numbers such that iw i=1

(Hy) Let the function f : I — R be operator conve)z.: 1

(Hs) Let i, g : I — R be continuous and strictly operator monotone functions.

We need some further preparations.

Starting from I, we introduce the sets I; C {1,... ,n}l (k—12>1>1) inductively by
Il—l I:T[(Il), kZlZZ

Obviously, I} = {1,...,n}, by (12), and this insures that oy, ; = 1 (1 <i <n). From (12) again,

we have that oy, ; > 1 (k—1>1>1,1<i<n).
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For any k > [ > 2 and for any (ji,...,j;—1) € 1, let

Hy, (-5 di-1)
= {((i1,...,ip),m) €L x {1,..., 1} | Spmlit, - -vit) = (i, ondio1) }-
Using these sets we define the functions #;, ; : [; — N (k > [ > 1) inductively by
(13) ok (s i) =1, (i1, ,ik) € I

(14) -1, ji-1) i= Z tr1 (it 0p) -
((i1sensit) ;)€ (1o ji-1)

2. MAIN RESULTS

The main results of this paper involve some special expressions, which we now describe.

Suppose (Hy)-(H4). Forany k > [ > 1 let

(15) A=A (I, Cry ., Coawi, s wy)

= X (i&)f =

=1
. !
(i1,-i1) €L s=1 My Z Wis
o s
s=1
and associate to each k —1 > [ > 1 the operator
(16) A1 = A (I, Crs .., Cry Wi, -, Wy)
i
Wis .
1 ! w; Z"la’ksis G,
. . s §=
i T L )| S
T (i) €D s=1 s Z Wig
o is

With these preparations out of the way we come to

Theorem 2.1. Assume (Hy)-(Hy). Then
(a)

(17) f (ZMG) <Ak SAppko1 <o S Ak <Agg = Y wef(Cr).
r=1

r=1
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(b) Suppose |Hy, (ji,- .., ji—1)| = Bi—1 for any (j1,...,ji—1) € 1 (k>1>2). Then

[
I Zwiscis
(18) Ak,lZAu:ﬁ _ Z <Zwis>f % , (k>1>1),
(i1ye- i) €l \5=1 ZWiX
s=1
and thus

n n
i (Zwrcr) SApk SApqp—1 < ... <A <A = Zwrf(cr)-
r=1

r=1
To prove these results we can use the same method as in the proof of the main result (Theorem

1) in [2], so we omit the proofs.

3. DISCUSSION, AND APPLICATIONS

Throughout Examples (3.1-3.6) (based on the examples in [2]) the conditions (Hy)-(Hy) will
be assumed.

Theorem 2.1 contains Theorem 1.2, as the first example shows.
Example 3.1. Let
I := {(i],...,ik) S {1,...,n}k | h<... <ik}, 1<k<n.

Then og,; =1 (i =1,...,n) ensuring (Hy) with k = n. It is easy to check that Ty (I}) = Ir—
(k=2,...,n), It = (}) (k=1,...,n), and for every k=2,...,n

|Hy (J1s - di-1) =n—(k=1), (1, k1) € i1,

and therefore, thanks to Theorem 2.1 (b),

k
1 k Zwiscis
Akk = 75 ) (Z“%) f % ., k=1,....n.

(kfl) 1<i1<...<ix<n \s=1 Zwis
s=1

and

(19) S (Zwrcr) <Apk SAp-1 g1 <. < Agp <A = Y w f(G).
r=1 r=1
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1 C, +...+GC
Akk = 7 Z f(%)7 k=1,...,n,

7 (Z) 1<ii<..<ix<n

and thus (19) gives Theorem 1.2.
The next example illustrates that Theorem 1.3 is a also special case of Theorem 2.1.

Example 3.2. Let

Ik::{(il,...,ik)E{l,...,n}k|i1 g...gik}, k> 1.

Obviously, oy ; > 1 (i =1,...,n), and therefore (Hy) is satisfied. It is not hard to see that
Telle) =iy (k=2,...), [Ik| = (") (k=1,...), and for each 1 =2, ...k

|Hy, (1, g0 =n, (1,5 Ji—1) €11.

Consequently, by applying Theorem 2.1 (b), we deduce that

k
) X ZwisC,-S
Ak = (szg)f % , k>1,

’ (n—]i(_kl 1) 1< <. < <n \s=1
— SHS.SES ZW,’S
s=1

and
n n
(20) FlYwe ) < <A< <A =Y wf(C).
r=1 r=1
By takingw; = ... =w, = %, we obtain that

1 Ci,+...4+GC;
Ak7k:m Z f(%), k>1,

k 1<ii<..<ix<n

and thus (20) gives Theorem 1.3.
The following two examples are particular cases of Theorem 2.1 (b).

Example 3.3. Let

Lo={1,....n}" k>1.
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Trivially, o, ; > 1 (i=1,...,n), hence (Hy) holds. It is evident that Ty (Iy) = Ir—1 (k=2,...),
| =n* (k=1,...), and for every | =2,... k
Hy, G-l =0ty (Gneovdi1) €41,

and therefore Theorem 2.1 (b) leads to

k
1 k ZWiSC,‘S
Ak,kzm ) (Zwis>f % , k>1,

i) €L \5=1
(i1seeesit )€l Y wi,
s=1

and
n n
f (ZW,C,> < <A < <AL= Y wf(G), k>
r=1 r=1
Especially, forw; =...w, = % we find that
1 G, +...+GC,
Ak7k:ﬁ Z f(f 9 kzl,...,n.

(i1 yeeeyig ) ELL
Example 3.4. For 1 <k <n let I} consist of all sequences (i1, ...,i) of k distinct numbers from
{1,...,n}. Then oq,; > 1 (i=1,...,n), hence (H}) is valid. It is immediate that Tp,(Iy) = I,
(k=2,...,n),

Il=nn—1)...(n—k+1) (k=1,...,n), and foreachk =2,...,n

’Hlk(jlvﬂ';jkfl)‘ = (l’l— (k_ 1))k7 (j]a"'?jkfl) € Ik*l-

and from them, on account of Theorem 2.1 (b), follows

kn(n—1)...(n—k+1)
k

k ZW,’SC,'S
Y (Zwis>f % . k=1,....n

] yeeyig ) €L s=1
s Yo
s=1

Ak =

and
n n
i (Z%Q) <App < <A < <A = Y wef(G).
r=1 r=1
If we set wy :...:wn:%, then

! Cy+... 4G, B
nn—1)...(n—k+1) Z f(f), k=1,...,n.

(1505 ) €l

Ark =
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In the sequel two interesting consequences of Theorem 2.1 (a) are given.
n
Example 3.5. Let ¢c; > 1 be an integer (i=1,...,n), letk := Zci, and let I, = PV~ consist of
all sequences (iy,. .., i) in which the number ofoccurrenceslz;”i e{l,...,n}isci(i=1,...,n).

Evidently, (Hy) is satisfied. A simple calculation shows that

n
k!
C1yenesCi15Ci— LyCit 150 esC o :
Ik*l = UP ! e s " aIk,l — | 'Cla 1= 17 1,
et ci!...cy!
and
k=1 (i1, ik—1) =k,
. . . C1yeesCi15Ci— 1,Cit 1 5eeesC .
if (i1, . ig_q) € PCUr LAt 0 =1,
and

f (Zwrcr) = Ak
r=1

where

Example 3.6. Let
L= {(il,iz) e{1,...,n? i1|i2}.

The notation i\|iy means that iy divides iy. Since i|i (i=1,...,n), (Hy) holds. In this case

an.i = [E] +d(i), i:17...,n,
l
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where [ﬂ is the largest natural number that does not exceed %, and d(i) denotes the number of

positive divisors of i. By Theorem 2.1 (a), we have

f( n Wrcr> < Wi, n Wi,
r:zi (i,%):e]z [ﬂ +d(ir) [%} +d(i)
B iy : Ci1 + N s ; Ciz n
LIWEV:I) - [iZ]WZd( I Y w, £(Cy).
[2]va) " [&]raw) !

4. SYMMETRIC MEANS

Assume (H;)-(H3). The power means corresponding to i’ := (i1,...,i;) €I, (I =1,...,k) are

given as:
1
é Wig r '
.l s—=1 Hieis '8
(21) M, (I;,i') := — | > r#0.
Wig
sgl Ui

Next, we introduce the mixed symmetric means corresponding to the expressions (15) and (16)

as follows:

k Wi‘ N
(22) M (I, k) == Y (Z -’_)(Mruk,i")) , $#0,

*=(iy,...,ix) €l \J=1

andfork—1>1[>1

M; (I, 1) =

(23) ] y — s 5
(/CT)I Z tIkvl<l ) Z O‘Ik,jij (M"(Ikul )) 9 N ;é 0

i=(if.ip)ely J=1

The following result is a comprehensive generalization of Theorem 1.4.
Theorem 4.1. Assume (H|)-(H3) for an n-tuple C of strictly positive operators. Then
(24) My(C,w) =M, (It, 1) < ... < M} (I, k) < M.(C,w).

holds if either
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(i)1<s<ror
(ii) —r<s<—1lor
(iii) s < —1,r>s>2r;
while the reverse inequalities hold in (24) if either
(iv)r<s<—1or
v 1<s<-—ror

i)s>1, r<s<2r.

Proof. Tt is well known (see [1]) that the function f : D;(C R) — R, f(x) = x” is operator
convex on (0,e0) if either 1 < p <2 or —1 < p <0, and operator concave on (0,00) if 0 < p < 1,
while f is operator monotone on (0,00) if 0 < p < 1. Itis also true that — f is operator monotone
on (0,00) if —1 < p < 0. By using these facts, we can apply Theorem 2.1 (a) to the function
f(x) = xr, and the operators C! (i = 1,...,n).

OJ

Assume (H)-(H3) and (Hs). Then we define the quasi-arithmetic means with respect to (15)
and (16) as follows:

2 Mé"gUk’k) =h Z Z 5 | hog™! S_k— )
(ilv'-wik)elk s=1 alkvis

Wig
sgl o is
andfork—1>1[>1
My, (I, 1) :=
L
(26) - X & -8(Ci)
P ez L ) <Z s >h°g_l By
i'=(iy,...,iN €l s=1 k% T
s=1 Tkt

The monotonicity of these generalized means is obtained in the next corollary.

Corollary 4.2. Assume (H)-(H3) and (Hs). For a continuous and strictly operator monotone

function g : I — R we define

Mq =g ! (éwg(@)) .
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Then

(27 My =My, (I, 1) > .. > My, (I, k) > Mg,

1

if either ho g~ is operator convex and h™" is operator monotone or ho g~ is operator concave

and —h~" is operator monotone;

(28) My =M}, (I, 1) < ... <ML, (I, k) < My,

1

if either g o h™ ! is operator convex and —g~" is operator monotone or goh™" is operator con-

-1

cave and 8 is operator monotone.

! and replace C; to g(C;), then we

Proof. First, we apply Theorem 2.1 (a) to the function ho g™
apply A~! to the inequality coming from (17). This gives (27). A similar argument gives (28):

goh™!, C; = h(C;) and g~'can be used. O

Assume (Hy)-(H3), and suppose |Hy, (j1, ..., ji—1)| = Bj—1 forany (ji, ..., ji—1) € [y (k>1>

2). In this case the power means corresponding to i’ := (iy,...,i;) € I (I =1,...,k) has the
form
! ?
ZwijC{j
s=1

M, (I, i) = M, (I, i) = . r#0.

!
Zwij
s=1
Now, for kK > [ > 1 we introduce the mixed symmetric means related to (18) as follows:

(29) M2, (1)) = ﬁl y (iwij) (M,(I,,i’))s S, s#0.

i'=(iy,....i)) el \Jj=1

Corollary 4.3. Assume (H,)-(Hz), and suppose |Hy,(j1, ..., ji—1)| = Bi—1 for any (j1,..., ji—1) €
I (k>1>2). Then

(30) My(C,w) =M, () < ... < M; () < M, (C,w).

holds if either
) 1<s<ror

1) —r<s<-—1or
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(i) s<—1,r>s5>2r;
while the reverse inequalities hold in (30) if either
av) r<s<-1lor
W) 1<s<-—ror

(vi) s> 1, r <s<2r

Proof. 1t comes from Theorem 4.1. 0

Assume (H)-(H3) and (Hs), and suppose |Hj, (j1, ..., ji—1)| = Bi—1 forany (j1,..., ji—1) €I
(k>12>2). We define for k > [ > 1 the quasi-arithmetic means with respect to (18) as follows:
]
21 wi g(Ciy)

[
31) M () :=h""| g X (leis)hog_l =

(i15esig ) €L \5= leis
sS=

Corollary 4.4. Assume (H))-(H3) and (Hs), and suppose |Hp(ji,...,ji—1)| = Bi—1 for any
(J1s-sdi-1) €=y (k> 1>2). Then

(32) My =M (L) > ... > M (L) > M,

1 1

where either ho g™ is operator convex and h™" is operator monotone or hog=' is operator

concave and —h~" is operator monotone;

(33) Mg =M, (I) < ... <My, (L) < Mj,

1

where either goh™! is operator convex and —g~" is operator monotone or goh™! is operator

1

concave and g~ is operator monotone.

Proof. Similar to the proof of Corollary 4.2. U

Finally, we apply the results of this section in some special cases. Throughout Remarks 4.5-
4.8 and 4.10-4.9, which are based on examples in [2], the conditions (H;)-(H3) (in the mixed

symmetric means) and (Hs) (in the quasi-arithmetic means) will be assumed.

Remark 4.5. In the case of Example 3.1, for n > k > 1 (29) becomes

1

1 s

k s
(34) M, (I) = <W Y <Z1Wi_,) <Mr(lkaik)> ) , s#0.
j=

k—1) 1<ii<...<ixr<n
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and (31) has the form
k
1 k L wig(Ci)
(35) M;%’g(lk) = hil TN Z (Z Wié_) l’lOgi1 s_lk—
(k—l) 1<ii<...<ix<n \s=1 Z] wi,
sS=

Remark 4.6. Under the setting of Example 3.2, for k > 1 (29) becomes

1
s

k s
(36) M, (I) = (ﬁ Y (Zl Wi,-) (Mr(1k7ik)> > , s#0.

k—1 ) 1< <..<i<n

and (31) has the form

k
Zwig(cl)
1 k = s
3N My l)=h"| Y (Zwis>h°gl 1k—

("+k_1) 1<i1<..<ip<n \s=1
k—1 < <Z..Zp<n \s= Zl Wis

(34) and (36) represents mixed symmetric means as given in [3]. Therefore Corollary 4.3 is a

generalization of results given in [3].

Remark 4.7. Under the setting of Example 3.3, for k > 1, (29) leads to

1

s

1 k . s
(38) M) = 5 ¥ (Zwij> (M,(Ik,lk)> . s#0.
ik =(i1,....ix) €l \J=1
and (31) gives
k
B39 M )=h"| == ) (Zwi.y>hog1 |
ikZ(i],...,lk)EIk s=1 ZWi
s=1 ’
respectively.

Remark 4.8. Under the setting of Example 3.4, fork =1,...,n, (29) gives

1

k

(40 M3 () = kn(n—l)..’.q(n—k%—l)ik )3 (ZW’T/)(M’(Ik’ik))s 570

(i1yenix) €L \J=1

and (31) has the form

2 -1 n d -1 vil is8(Ci)
(41) Mh,g(lk) =h kn(n—1)...(n—k+1) Z ; wi |hog X ’
F=(iy,.ip) el 7! X wi

respectively.
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Remark 4.9. Under the construction of Example 3.5, (23) is written as

N =

Lo _ZIWJCJ"—VZ—ZCI
42) M, (I, k—1)= k—g . , s#0,r#0,

Ci

while (26) becomes

n
o £ wig(C) — (G
ho —1 r:l
1 & (G whog -

i=1 Ci

43) My (k—1)=h""

Remark 4.10. Under the construction of Example 3.6, (22) gives

@ =

2 N .
(44) Min2)=| ¥ (Y2 ) ()| L s#o,
2=(i,,n)eh \Jj=1 [ﬂ} +d(ij)

while (25) gives

M/l,g(127 2)

2
(45) 2 Z [ﬂ]er(i )g(C,-S)
= ( W—) hog—! | Stlalrio” *
(ih%GIz E’1 [E]de(ls) 8
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