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Abstract. The paper deals with the functional forms of Jensen’s inequality for continuous convex functions of one

variable. Some generalizations are stated by using positive linear functionals on the linear space of real functions.

Obtained results are further applied to functional quasi-arithmetic means.
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1. Introduction

1.1. Convexity and Affinity

Let X be a real linear space. Combining pairs of points a,b ∈ X and coefficients α,β ∈ R,

we obtain the binomial combinations

(1) αa+βb.

If α,β ≥ 0 with α + β = 1, the combination in equation (1) is convex, and its geometric

perception is the line segment between a and b. A set C ⊆X is convex if it contains all binomial
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convex combinations of its points. A function f : C → R is convex if the inequality

(2) f (αa+βb)≤ α f (a)+β f (b)

holds for all binomial convex combinations αa+βb of the set C .

If α +β = 1, the combination in equation (1) is affine, and its perception is the line passing

through a and b. A set A ⊆ X is affine if it contains all binomial affine combinations of its

points. A function f : A →R is affine if it satisfies the equality in equation (2) for all binomial

affine combinations αa+βb of the set A .

Relying on the mathematical induction, binomial combinations can be replaced with finite

combinations. In that case equation (2) becomes the famous Jensen’s inequality from 1905, see

[3].

1.2. Convex Sets of Functions

Let X be a non-empty set, and let X be a subspace of the linear space of all real functions

on the domain X . We assume that X contains the unit function defined by 1(x) = 1 for every

x ∈X . Let I ⊆ R be an interval, and let XI ⊆ X be a subset containing all functions with

the image in I . If αg+βh is a convex combination of functions g,h ∈ XI , then the number

convex combination αg(x)+βh(x) is in I for every x ∈X , which indicates that the function

set XI is convex.

1.3. Positive Linear Functionals

A linear functional L : X→ R is positive (non-negative) if L(g) ≥ 0 for every non-negative

function g ∈ X, and L is unital (normalized) if L(1) = 1. If g ∈ X, then for every unital positive

functional L the number L(g) is in the closed interval of real numbers containing the image of

the function g.

In 1931, Jessen affirmed the functional form of Jensen’s inequality for convex functions of

one variable, see [4]. The suitable adaptation is as follows.

Theorem A. Let I ⊆ R be a closed interval, and let function g ∈ XI . Let f : I → R be a

continuous convex function such that f (g) ∈ X.
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Then every unital positive linear functional L : X→ R satisfies the inclusion

(3) L(g) ∈I ,

and the inequality

(4) f (L(g))≤ L( f (g).

If f is concave, then the reverse inequality is valid in equation (4). If f is affine, then the

equality is valid in equation (4).

The interval I must be closed, otherwise it could happen that L(g) /∈I as noted in [5]. The

function f must be continuous, otherwise it could happen that the inequality in (4) does not

apply as pointed out in [9].

2. Main Results

For ease of reference, let us mention the basic formulas related to convex functions on the

interval of real numbers. If a and b are different real numbers, say a < b, then every real number

x can be uniquely presented by the affine combination

(5) x =
b− x
b−a

a+
x−a
b−a

b.

The above binomial combination is convex if, and only if, the number x belongs to the interval

[a,b]. Let I ⊆ R be an interval containing [a,b], let f : I → R be a convex function, and let

f line
{a,b} : R→ R be the function of the line passing through the points (a, f (a)) and (b, f (b)) of

the graph of f . Using the affinity of f line
{a,b}, we have

(6) f line
{a,b}(x) =

b− x
b−a

f (a)+
x−a
b−a

f (b) for x ∈ R,

and applying the convexity of f , it follows that

(7) f (x)≤ f line
{a,b}(x) if x ∈ [a,b]

and

(8) f (x)≥ f line
{a,b}(x) if x ∈I \ (a,b).
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The following is an interesting result concerning a convex function and two unital positive

linear functionals.

Theorem 2.1. Let I ⊆ R be a closed interval, let [a,b] ⊆ I , let function g ∈ X[a,b], and let

function h∈XI \(a,b). Let f : I →R be a continuous convex function such that f (g), f (h)∈X.

If a pair of unital positive linear functionals L,H : X→ R satisfies

(9) L(g) = H(h),

then

(10) L( f (g))≤ H( f (h)).

Proof. To prove the inequality in equation (10) we distinguish the case a < b, and the case

a = b.

Suppose that a < b. Then it follows that f (g)≤ f line
{a,b}(g) by equation in (7), and f line

{a,b}(h)≤

f (h) by equation in (8). Using the above inequalities and applying the affinity of f line
{a,b}, we get

(11)

L( f (g)) ≤ L
(

f line
{a,b}(g)

)
= f line
{a,b} (L(g))

= f line
{a,b} (H(h)) = H

(
f line
{a,b}(h)

)
≤ H( f (h)),

finishing the proof of this case.

Suppose that a = b. If a is the interior point of I , then the series of inequalities in equation

(11) works with any supporting line function f line
{a} at the point a, because f (a) = f (g) = f line

{a} (g)

and f line
{a} (h) ≤ f (h). If a is the boundary point of I , then using the continuity of f for every

ε > 0 we can find the interior point c of I satisfying f (a)≤ f (c)+ε , that is, f (g)≤ f line
{c} (g)+ε .

Applying the function f line
{c} to equation (11), we get

(12) L( f (g))≤ H( f (h))+ ε,

and letting ε to zero, we achieve the inequality in equation (10). �

Theorem 2.1 is the generalization of Theorem A, as it shows the next corollary.
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Corollary 2.2. Let I ⊆ R be a closed interval, and let function g ∈ XI . Let f : I → R be a

continuous convex function such that f (g) ∈ X.

If a unital positive linear functional L :X→R satisfies the implication (9)⇒ (10) of Theorem

2.1 for H = L, then

(13) f (L(g))≤ L( f (g)).

Proof. Taking the constant function g0 = L(g)1, and so having the condition

(14) L(g0) = L(g)

with functions g0 and g satisfying the requirements of Theorem 2.1, we can apply the assump-

tion, and get

(15) L( f (g0))≤ L( f (g)).

Since f (g0) = f (L(g0))1 is the constant function value of f (L(g)), the left-hand side of the

above inequality is equal to f (L(g)) which proves the inequality in (13). �

The extension of Theorem 2.1 by using several unital functionals is as follows.

Corollary 2.3. Let [a1,b1] ⊆ . . . ⊆ [an−1,bn−1] ⊆ I . Let function g1 ∈ X[a1,b1], let functions

gk ∈ X[ak,bk]\(ak−1,bk−1) for k = 2, . . . ,n−1, and let function gn ∈ XI \(an−1,bn−1). Let f : I → R

be a continuous convex function such that f (gi) ∈ X.

If an n-tuple of unital positive linear functionals Li : X→ R satisfies

(16) L1(g1) = . . .= Ln(gn),

then

(17) L1( f (g1))≤ . . .≤ Ln( f (gn)).

In order to further generalize Theorem A and Theorem 2.1, we will replace the unital func-

tional L with n functionals Li satisfying ∑
n
i=1 Li(1) = 1.

Using the above functional collection, and combining Theorem A with the discrete form of

Jensen’s inequality, we get the following extension of Theorem A.
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Corollary 2.4. Let I ⊆R be a closed interval, and let functions g1, . . . ,gn ∈XI . Let f : I →

R be a continuous convex function such that f (gi) ∈ X.

Then every n-tuple of positive linear functionals Li : X→ R with ∑
n
i=1 Li(1) = 1 satisfies the

inclusion

(18)
n

∑
i=1

Li(gi) ∈I ,

and the inequality

(19) f

(
n

∑
i=1

Li(gi)

)
≤

k

∑
i=1

Li( f (gi)).

Proof. Without loss of generality we can assume that all numbers αi = Li(1)> 0, and take unital

positive linear functionals Mi = (1/αi)Li. Then all Mi(gi) ∈I by the inclusion in equation (3),

so it is clear that the convex combination

(20)
n

∑
i=1

Li(gi) =
n

∑
i=1

αiMi(gi)

belongs to the interval I . Applying the discrete form of Jensen’s inequality to equation (20),

and using the inequalities f (Mi(gi)) ≤ Mi( f (gi)) resulting from equation (4), we achieve the

inequality in equation (19). �

The extension of Theorem 2.1 follows by using two collections of positive linear functionals.

Each collection must satisfy the sum condition respecting the unit function.

Theorem 2.5. Let I ⊆ R be a closed interval, and let [a,b] ⊆ I . Let functions g1, . . . ,gn ∈

X[a,b], and let functions h1, . . . ,hm ∈ XI \(a,b). Let f : I → R be a continuous convex function

such that f (gi), f (h j) ∈ X.

If a pair of n-tuple and m-tuple of positive linear functionals Li,H j :X→R with ∑
n
i=1 Li(1) =

∑
m
j=1 H j(1) = 1 satisfies

(21)
n

∑
i=1

Li(gi) =
m

∑
j=1

H j(h j),

then

(22)
n

∑
i=1

Li( f (gi))≤
m

∑
j=1

H j( f (h j)).
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Proof. The sum ∑
n
i=1 Li(gi) is in [a,b] by equation (20). The proof goes as in Theorem 2.1. In

the case a < b, we use equation (11) including the equality

(23)
n

∑
i=1

Li
(

f line
{a,b}(gi)

)
= f line
{a,b}

(
n

∑
i=1

Li(gi)

)
for n-tuples gi and Li, and the same equality for m-tuples h j and H j. �

3. Applications of Theorem 2.1

First, we explore Theorem 2.1 to get a discrete form of the Jensen type inequality.

Corollary 3.1. Let I ⊆ R be an interval, and let [a,b]⊆I . Let ∑
n
i=1 αiai be a convex combi-

nation where ai ∈ [a,b], and let ∑
m
j=1 β jb j be a convex combination where b j ∈I \ (a,b).

If the above convex combinations have the common center

(24)
n

∑
i=1

αiai =
m

∑
j=1

β jb j,

then every continuous convex function f : I → R satisfies the inequality

(25)
n

∑
i=1

αi f (ai)≤
m

∑
j=1

β j f (b j).

Proof. We may assume that the interval I is closed, otherwise we use the convex hull of points

b j. Using X as the space of all functions on the closed interval I , and applying Theorem 2.1

to the summarizing functional

(26) L(g) =
n

∑
i=1

αig(ai)

with the function g(x) = x if x ∈ [a,b] and g(x) = a if x ∈I \ [a,b], as well as the functional

(27) H(h) =
m

∑
j=1

β jh(b j)

with the function h(x) = a if x∈ (a,b) and h(x) = x if x∈I \(a,b), we realize that the equality

in equation (24) implies the inequality in equation (25). �

The inequality in equation (25) also holds for discontinuous convex functions. Corollary 3.1

is the generalization of the discrete form of Jensen’s inequality by Corollary 2.2. The related

integral forms of inequalities can be obtained by using the integrating functionals.
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The implication (9)⇒ (10) of Theorem 2.1 can be extended in a way that

(28) c = L(g) = H(h)

implies

(29) f (c)≤ L( f (g))≤ H( f (h)).

Using Theorem 2.1 with the above implication, we can present the Hermite-Hadamard inequal-

ity as follows.

Corollary 3.2. Let a < b, let g : [a,b]→ R be an integrable function with the image in [a,b],

and let f : [a,b]→ R be a continuous convex function.

If

(30)
1

b−a

∫ b

a
g(x)dx = αa+βb,

then

(31) f (αa+βb)≤ 1
b−a

∫ b

a
f (g(x))dx≤ α f (a)+β f (b).

Proof. Using X as the space of all integrable functions on the interval [a,b], and applying the

implication (28)⇒ (29) to the integrating functional

(32) L(g) =
1

b−a

∫ b

a
g(x)dx

with the given function g, and the functional

(33) H(h) = αh(a)+βh(b)

with the function h(a) = a and h(x) = b if x ∈ (a,b], we achieve the inequality in equation (31).

�

Putting the identity function g in equation (30), we obtain the classic Hermite-Hadamard’s

inequality in equation (31). More on this important and interesting inequality can be read in [6]

and [2].

4. Functional Quasi-Arithmetic Means
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Let I ⊆ R be a closed interval, let g1, . . . ,gn ∈ XI be functions, and let ϕ : I :→ R be a

strictly monotone continuous function such that ϕ(gi) ∈ X. Let L1, . . . ,Ln : X→ R be positive

linear functionals with ∑
n
i=1 Li(1) = 1. The quasi-arithmetic mean of functions gi respecting the

function ϕ and functionals Li can be defined by

(34) Mϕ(Li,gi) = ϕ
−1

(
n

∑
i=1

Li(ϕ(gi))

)
.

The term in parentheses belongs to the interval ϕ(I ), and therefore the quasi-arithmetic mean

Mϕ(Li,gi) belongs to the interval I .

If we have two strictly monotone continuous functions ϕ,ψ : I → R, then we say that ψ is

ϕ-convex if the function f = ψ ◦ϕ−1 is convex on the interval J = ϕ(I ). This terminology

is taken from [8, Definition 1.19], and the same notation we use for concavity.

The interrelation between different functional quasi-arithmetic means can be established by

using Theorem 2.5.

Corollary 4.1. Let I ⊆ R be a closed interval, and let [a,b] ⊆ I . Let functions g1, . . . ,gn ∈

X[a,b], and let functions h1, . . . ,hm ∈ XI \(a,b). Let ϕ,ψ : I → R be strictly monotone contin-

uous functions such that ϕ(gi),ϕ(h j),ψ(gi),ψ(h j) ∈ X. Let Li,H j : X→ R be positive linear

functionals with ∑
n
i=1 Li(1) = ∑

m
j=1 H j(1) = 1.

If ψ is either ϕ-convex and increasing or ϕ-concave and decreasing, and if

(35) Mϕ(Li,gi) = Mϕ(H j,h j),

then

(36) Mψ(Li,gi)≤Mψ(H j,h j).

If ψ is either ϕ-convex and decreasing or ϕ-concave and increasing, then the reverse in-

equality is valid in (36).

Proof. Take J = ϕ(I ), [c,d] = ϕ([a,b]), and f = ψ(ϕ−1) : J →R. We will apply Theorem

2.5 to the functions ui = ϕ(gi) ∈ XJ , and functions v j = ϕ(h j) ∈ XJ \(c,d). Prove the case

where the function ψ is ϕ-convex and increasing.
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Starting with the equality ϕ(Mϕ(Li,gi)) = ϕ(Mϕ(H j,h j)), that is,

n

∑
i=1

Li(ui) =
m

∑
j=1

H j(v j),

and relying on Theorem 2.5, we get

n

∑
i=1

Li( f (ui))≤
m

∑
j=1

H j( f (v j)).

Acting with the increasing function ψ−1 to the above inequality, it follows that

ψ
−1

(
n

∑
i=1

Li( f (ui))

)
≤ ψ

−1

(
m

∑
j=1

H j( f (v j))

)
,

which is actually the inequality in (36) since f (ui) = ψ(gi) and f (v j) = ψ(h j). �

A special case of the quasi-arithmetic means in equation (34) are power means depending on

real exponents r. Thus, using the functions

(37) ϕr(x) =


xr, r 6= 0

lnx, r = 0

where x ∈ (0,∞), we get the power means of order r in the form

(38) Mr(Li,gi) =



(
n

∑
i=1

Li(gr
i )

) 1
r

, r 6= 0

exp

(
n

∑
i=1

Li(lngi)

)
, r = 0.

To determine the interrelation between different functional power means we will apply Corol-

lary 4.1. In doing so, we will use a closed interval I = [ε,∞) where ε is a positive number, and

the equality

(39) M1(L,gi) =
n

∑
i=1

Li(gi).

Corollary 4.2. Let I = [ε,∞) where ε > 0, and let [a,b]⊂I . Let functions g1, . . . ,gn ∈X[a,b],

and let functions h1, . . . ,hm ∈ XI \(a,b). Let Li,H j : X→ R be positive linear functionals with

∑
n
i=1 Li(1) = ∑

m
j=1 H j(1) = 1.
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If

(40) M1(Li,gi) = M1(H j,h j),

then

(41) Mr(Li,gi)≤Mr(H j,h j) i f r ≥ 1

and

(42) Mr(Li,gi)≥Mr(H j,h j) i f r ≤ 1.

Proof. The proof follows from Corollary 4.1 using the functions ϕ(x) = x, and ψ(x) = xr for

r 6= 0 or ψ(x) = lnx for r = 0. �

The basic facts relating to quasi-arithmetic and power means can be found in [1]. For more

details on different forms of quasi-arithmetic and power means, as well as their refinements, see

[5].

A similar consideration can be done for convex functions of several variables relying on Mc-

Shane’s functional results, see [10]. Very general forms of Hölder’s and Minkowski’s inequality

were obtained in [7] by direct application of McShane’s form. Further generalizations could be

realized by applying the version of Theorem 2.5 for continuous convex functions of several

variables.
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[1] P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, Means and Their Inequalities, Reidel, Dordrecht, NL, 1988.



12 ZLATKO PAVIĆ
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[5] J. Mićić, Z. Pavić, J. Pečarić, The inequalities for quasiarithmetic means, Abstr. Appl. Anal. 2012 (2012),

Article ID 203145.

[6] C. P. Niculescu, and L. E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange

29 (2003), 663-685.
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