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Abstract. If p(z) is a polynomial of degree n, having no zeros in |z|< 1, then it was shown by Dewan et al [K. K.

Dewan and Sunil Hans, Generalization of certain well known polynomial inequalities , J. Math. Anal. Appl. 363

(2010) 38–41] that for every real or complex number β with |β | ≤ 1 and |z|= 1,

|zp′(z)+
nβ

2
p(z)| ≤ n

2
{(|β

2
|+ |1+ β

2
|)max
|z|=1
|p(z)|− (|1+ β

2
|− |β

2
|)min
|z|=1
|p(z)|}.

In this paper, we generalize the above inequality and some related inequalities by extending them to the class of

polynomials having no zeros in |z| < 1 except s-fold zeros at the origin where 0 ≤ s ≤ n. We also establish a

compact generalization of some known polynomial inequalities.
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1. Introduction and statement of results

According to a well known Bernstein’s inequality on the derivative of a polynomial p(z) of

degree n, we have

max
|z|=1
|p′(z)| ≤ nmax

|z|=1
|p(z)|. (1)
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The result is best possible and equality holds for the polynomials having all its zeros at the

origin (see [14]).

The inequality (1) can be sharpened, if we restrict ourselves to the class of polynomials

having no zeros in |z|< 1.

In fact, P. Erdös conjectured and later Lax [12] proved that if p(z) 6= 0 in |z|< 1, then (1) can

be replaced by

max
|z|=1
|p′(z)| ≤ n

2
max
|z|=1
|p(z)|. (2)

If the polynomial p(z) has all its zeros in |z| ≤ 1, then it was proved by Turan [15] that

max
|z|=1
|p′(z)| ≥ n

2
max
|z|=1
|p(z)|. (3)

The inequalities (2) and (3) are sharp and equalities hold for polynomials having all its zeros on

|z|= 1.

Recently Aziz and Zargar [5] improved inequality (3) and proved that if p(z) is a polynomial

of degree n having all its zeros in |z| ≤ 1, with s-fold zeros at the origin, then

max
|z|=1
|p′(z)| ≥ n+ s

2
max
|z|=1
|p(z)|+ n− s

2
min
|z|=1
|p(z)|. (4)

As an improvement of inequality (2) Jain [11] proved that if p(z) is a polynomial of degree n

having no zeros in |z|< 1, then

|zp′(z)+
nβ

2
p(z)| ≤ n

2
(|β

2
|+ |1+ β

2
|)max
|z|=1
|p(z)|, (5)

for every real or complex number β with |β | ≤ 1 and |z| = 1. The equality holds for P(z) =

azn +b, |a|= |b|= 1/2.

Dewan et al [7] proved that if P(z) is a polynomial of degree n and has all its zeros in |z|< 1,

then for every real or complex number β with |β | ≤ 1,

min
|z|=1
|zp′(z)+

nβ

2
p(z)| ≥ n|1+ β

2
|min
|z|=1
|p(z)|. (6)

In the case p(z) having no zeros in |z|< 1, as a refinment of (5),

|zp′(z)+
nβ

2
p(z)| ≤ n

2
{(|β

2
|+ |1+ β

2
|)max
|z|=1
|p(z)|− (|1+ β

2
|− |β

2
|)min
|z|=1
|p(z)|}, (7)

for every real or complex number β with |β | ≤ 1 and |z|= 1.
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In this paper, we first obtain the following generalization of polynomial inequality (6), as

follows:

Theorem 1.1. Let p(z) be a polynomial of degree n, having all its zeros in |z| ≤ 1, with s-fold

zeros at the origin, 0≤ s≤ n, then

min
|z|=1
|zp′(z)+β

n+ s
2

p(z)| ≥ |n+β
n+ s

2
|min
|z|=1
|p(z)|, (8)

for every real or complex number β with |β | ≤ 1. The result is best possible and equality holds

for the polynomials p(z) = azn.

If we take s = 0 in Theorem 1.1, the inequality (8) reduce to inequality (6). According to

Lemma 2.1,

|zp′(z)| ≥ n+ s
2
|p(z)|,

then for suitable argument β , we have

|zp′(z)+β
n+ s

2
p(z)|= |zp′(z)|− |β |n+ s

2
|p(z)|. (9)

Combining (8) and (9), we have

|zp′(z)|− |β |n+ s
2
|p(z)|= |zp′(z)+β

n+ s
2

p(z)|

≥ min
|z|=1
|zp′(z)+β

n+ s
2

p(z)| ≥ |n+β
n+ s

2
|min
|z|=1
|p(z)|

≥ {n−|β |n+ s
2
}min
|z|=1
|p(z)|,

or

|zp′(z)|− |β |n+ s
2
|p(z)| ≥ {n−|β |n+ s

2
}min
|z|=1
|p(z)|,

equivalently

|zp′(z)| ≥ |β |n+ s
2
|p(z)|+{n−|β |n+ s

2
}min
|z|=1
|p(z)|.

Making |β |→ 1, then we have the following interesting result which improve the inequality (4).

Corollary 1.2. Let p(z) be a polynomial of degree n, having all its zeros in |z| ≤ 1 with s-fold

zeros at the origin, 0≤ s≤ n, then for |z|= 1, we have

|p′(z)| ≥ n+ s
2
|p(z)|+ n− s

2
min
|z|=1
|p(z)|. (10)
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If we take β = 0 in Theorem 1.1, then inequality (8) reduces to the following result, which

proved by Aziz and Dawood [1].

Corollary 1.3. Let p(z) be a polynomial of degree n, having all its zeros in |z| ≤ 1, then

min
|z|=1
|p′(z)| ≥ n min

|z|=1
|p(z)|. (11)

If we take β =−1 in (8), then we have:

Corollary 1.4. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ 1, with s-fold

zeros at the origin, 0≤ s≤ n, then

min
|z|=1
|zp′(z)− n+ s

2
p(z)| ≥ n− s

2
min
|z|=1
|p(z)|. (12)

Next by using Theorem 1.1, we generalize the inequality (7), more precisely:

Theorem 1.2. If p(z) is a polynomial of degree n, having no zeros in |z|< 1, except s-fold zeros

at the origin, 0≤ s≤ n, then for every real or complex number β with |β | ≤ 1 and |z|= 1,

max
|z|=1
|zp′(z)+β

n+ s
2

p(z)| ≤1
2
{(|n+β

n+ s
2
|+ |s+β

n+ s
2
|)max
|z|=1
|p(z)|−

(|n+β
n+ s

2
|− |s+β

n+ s
2
|)min
|z|=1
|p(z)|}.

(13)

The result is best possible and equality holds in (13) for p(z) = zn + zs and β ≥ 0.

If we take s = 0 in Theorem 1.2, then inequality (13) reduces to inequality (7).

If we take β = 0 in Theorem 1.2, we have the following result which recently proved by Aziz

and Zargar [5].

Corollary 1.5. If p(z) is a polynomial of degree n, having no zeros in |z|< 1, except s-fold zeros

at the origin, 0≤ s≤ n, then

max
|z|=1
|p′(z)| ≤ n+ s

2
max
|z|=1
|p(z)|− n− s

2
min
|z|=1
|p(z)|. (14)

The result is best possible and equality holds in (14) for p(z) = zn + zs.

If we take β =−1 in Theorem 1.2, we have the follwing generalization of result due to K. K.

Dewan [7].
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Corollary 1.6. Let p(z) be a polynomial of degree n, not vanishing in |z| < 1, except s-fold

zeros at the origin, 0≤ s≤ n, then

max
|z|=1
|zp′(z)− n+ s

2
p(z)| ≤ n− s

2
max
|z|=1
|p(z)|. (15)

2. Lemmas

For the proofs of these theorems, we need the following lemmas.

Lemma 2.1. If p(z) is a polynomial of degree n, having all its zeros in the closed disk |z| ≤ 1,

with s-fold zeros at the origin, 0≤ s≤ n, then

|zp′(z)| ≥ n+ s
2
|p(z)|, |z|= 1. (16)

This lemma is due to Aziz and Zargar [5].

Lemma 2.2. Let F(z) be a polynomial of degree n having all its zeros in |z| ≤ 1, with s-fold

zeros at the origin, 0 ≤ s ≤ n and p(z) be a polynomial of degree not exceeding that of F(z),

with s-fold zeros at the origin, 0≤ s≤ n. If |p(z)| ≤ |F(z)| for |z|= 1, then for any β ∈ C with

|β | ≤ 1 and |z|= 1,

|zp′(z)+β
n+ s

2
p(z)| ≤ |zF ′(z)+β

n+ s
2

F(z)|. (17)

Proof. By using the inequality |p(z)| ≤ |F(z)| for |z|= 1, any zero of F(z) that lies on |z|= 1,

is the zero of p(z). On the other hand, from Rouche’s Theorem, it is obvious that for α with

|α|< 1, F(z)+α p(z) has as many zeros in |z|< 1 as F(z), and so has all of its zeros in |z|< 1.

Therefore F(z)+α p(z) has all its zeros in |z| ≤ 1, with s-fold zeros at the origin, 0≤ s≤ n. On

applying Lemma 2.1, we get

|zF ′(z)+αzp′(z)| ≥ n+ s
2
|F(z)+α p(z)| for |z|= 1.

Therefore, for any β with |β |< 1, we have for |z|= 1,

(zF ′(z)+αzp′(z))+β
n+ s

2
(F(z)+α p(z)) 6= 0,
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i.e.

T (z) = (zF ′(z)+β
n+ s

2
F(z))+α(zp′(z)+β

n+ s
2

p(z)), (18)

will have no zeros on |z|= 1. Then for an appropriate choice of the argument of α , one get for

|z|= 1,

|α||zp′(z)+β
n+ s

2
p(z)| 6= |zF ′(z)+β

n+ s
2

F(z)|.

Therefore on |z|= 1, we have

|zp′(z)+β
n+ s

2
p(z)| ≤ |zF ′(z)+β

n+ s
2

F(z)|. (19)

If inequality (19) is not true, then there is a point z = z0 with |z0|= 1 such that

|z0 p′(z0)+β
n+ s

2
p(z0)|> |z0F ′(z0)+β

n+ s
2

F(z0)|.

Now take

α =−
z0F ′(z0)+β

n+s
2 F(z0)

z0 p′(z0)+β
n+s

2 p(z0)
,

then |α| < 1 and with this choice of α , we have from (18), T (z0) = 0 for |z0| = 1. But this

contradicts the fact that T (z) 6= 0 for |z| = 1. For β with |β | = 1, inequality (19) follows by

continuity. This is equivalent to the desired result.

If we take F(z) = zn max
|z|=1
|p(z)| in the Lemma 2.2, we have the following result:

Lemma 2.3. If p(z) is a polynomial of degree n with s-fold zeros at the origin, 0≤ s≤ n, then

for any β with |β | ≤ 1 and |z|= 1,

|zp′(z)+β
n+ s

2
p(z)| ≤ |n+β

n+ s
2
|max
|z|=1
|p(z)|.

Lemma 2.4. If p(z) is a polynomial of degree n with s-fold zeros at the origin, 0≤ s≤ n, then

for any β with |β | ≤ 1 and |z|= 1,

|zp′(z)+β
n+ s

2
p(z)|+ |zq′(z)+β

n+ s
2

q(z)| ≤ {|n+β
n+ s

2
|+ |s+β

n+ s
2
|}max
|z|=1
|p(z)|,

where

q(z) = zn+s p(
1
z
).
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Note that q(z) is a polynomial of degree n with s-fold zeros at the origin,0 ≤ s ≤ n, because

p(z) = zsh(z) which h(z) is a polynomial of degree n− s, therefore

q(z) = zn+s p(
1
z
) = zn+s(

1
zs h(

1
z
)) = znh(

1
z
) = zs(zn−sh(

1
z
)).

Since h(z) is a polynomial of degree n− s, where h(0) 6= 0, hence the polynomial zn−sh(1
z ) is a

polynomial of degree n− s. Therefore q(z) is a polynomial of degree n with s-fold zeros at the

origin, 0≤ s≤ n.

Proof. Let M = max|z|=1 |p(z)|. For α with |α| > 1, it follows by Rouche’s Theorem that

the polynomial G(z) = p(z)−αMzs has no zeros in |z| < 1, except s-fold zeros at the origin.

Correspondingly the polynomial

H(z) = zn+sG(
1
z
),

has all its zeros in |z| ≤ 1 with s-fold zeros at origin and |G(z)|= |H(z)| for |z|= 1. Therefore,

by Lemma 2.2, for |β | ≤ 1 and |z|= 1, we have

|zG′(z)+β
n+ s

2
G(z)| ≤ |zH ′(z)+β

n+ s
2

H(z)|. (20)

On the other hand

H(z) = zn+sG(
1
z
) = zn+s(p(

1
z
)−αMz−s) = q(z)−αMzn,

or

H(z) = q(z)−αMzn,

then by replacement in (20), we have

|zp′(z)−αszsM+β
n+ s

2
(p(z)−αMzs)| ≤ |zq′(z)−nαMzn +β

n+ s
2

(q(z)−αMzn)|.

This implies for |z|= 1,

|zp′(z)+β
n+ s

2
p(z)|− |α||s+β

n+ s
2
|M ≤

|(zq′(z)+β
n+ s

2
q(z))−αMzn(n+β

n+ s
2

)|.
(21)
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As |p(z)| = |q(z)| for |z| = 1, then M = max
|z|=1
|p(z)| = max

|z|=1
|q(z)| and q(z) has s-fold zeros at

origin. On applying Lemma 2.3 to the polynomial q(z), we have for |z|= 1,

|zq′(z)+β
n+ s

2
q(z)| ≤ |n+β

n+ s
2
|max
|z|=1
|q(z)|< |α||n+β

n+ s
2
|M.

Therefore from inequality (21), by suitable choice of argument of α , we have |z|= 1,

|zp′(z)+β
n+ s

2
p(z)|− |α|M|s+β

n+ s
2
| ≤ |α|M|n+β

n+ s
2
|− |zq′(z)+β

n+ s
2

q(z)|,

i.e.

|zp′(z)+β
n+ s

2
p(z)|+ |zq′(z)+β

n+ s
2

q(z)| ≤ |α|(|n+β
n+ s

2
|+ |s+β

n+ s
2
|)M.

Making |α| → 1, Lemma 2.4 follows.

The following lemma is due to Gardner, Govil and Musukula [8].

Lemma 2.5. If p(z) = ∑
n
ν=0 aνzν is a polynomial of degree n, p(z) 6= 0 in |z|< k, (k > 0), then

m < |p(z)| for |z|< k and in particular m < |a0|, where m = min
|z|=k
|p(z)|.

2. Proofs of the theorems

Proof of the Theorem 1.1. If p(z) has a zero on |z|= 1, then inequality (8) is trivial. Therefore

we assume that p(z) has all its zeros in |z| < 1. If m = min
|z|=1
|p(z)|, then m > 0 and |p(z)| ≥ m

for |z| = 1. Therefore, if |λ | < 1 then it follows by Rouche’s Theorem that the polynomial

G(z) = p(z)−λmzn, has all its zeros in |z|< 1 with s-fold zeros at the origin, 0 ≤ s≤ n. Also

by using Lemma 2.5 for k = 1, the polynomial G(z) = p(z)−λmzn is of degree n, for |λ |< 1.

On applying Lemma 2.1 to the polynomial G(z) of degree n, we get

|zG′(z)| ≥ n+ s
2
|G(z)|,

i.e.

|zp′(z)−λmnzn| ≥ n+ s
2
|p(z)−λmzn|,
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where |z|= 1.

Therefore for β with |β |< 1, it can be easily verified that the polynomial

(zp′(z)−λmnzn)+β
n+ s

2
{p(z)−λmzn},

i.e.

(zp′(z)+β
n+ s

2
p(z))−λmzn(n+β

n+ s
2

),

will have no zeros on |z|= 1. As |λ |< 1, we have for β with |β |< 1 and |z|= 1,

|zp′(z)+β
n+ s

2
p(z)|> m|λ zn||n+β

n+ s
2
|,

i.e.

|zp′(z)+β
n+ s

2
p(z)| ≥ m|n+β

n+ s
2
|. (22)

For β with |β |= 1, (22) follows by continuity. This completes the proof of Theorem 1.1.

Proof of Theorem 2.2. Let m = min
|z|=1
|p(z)|, then m≤ |p(z)| for |z| ≤ 1. Now for λ with |λ |< 1,

we have

|λm|< m≤ |p(z)|,

where |z|= 1. Hence by Rouche’s Theorem the polynomial G(z) = p(z)−λmzs, has no zero in

|z|< 1 except s-fold zeros at the origin. Therefore the polynomial

H(z) = zn+sG(1/z) = q(z)−λmzn,

will have all its zeros in |z| ≤ 1 with s-fold zeros at the origin. Also |G(z)|= |H(z)| for |z|= 1.

On the other hand by using Lemma 2.5, the polynomial q(z)−λmzn is of degree n, for |λ |< 1.

On applying Lemma 2.2 to the polynomial H(z) of degree n, we have for |z|= 1,

|zG′(z)+β
n+ s

2
G(z)| ≤ |zH ′(z)+β

n+ s
2

H(z),

i.e.

|zp′(z)−λ smzs +β
n+ s

2
(p(z)−λmzs)| ≤ |zq′(z)−λnmzn +β

n+ s
2

(q(z)−λmzn)|.
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This implies

|zp′(z)+β
n+ s

2
p(z)− (s+β

n+ s
2

)λmzs| ≤

|zq′(z)+β
n+ s

2
q(z)− (n+β

n+ s
2

)λmzn|.
(23)

Since all the zeros of q(z) lie in |z| ≤ 1 with s-fold zeros at the origin, 0≤ s≤ n and |p(z)|=

|q(z)| for |z|= 1, hence on applying Theorem 1 to the polynomial q(z), we have for |z|= 1,

|zq′(z)+β
n+ s

2
q(z)| ≥ |n+β

n+ s
2
|min
|z|=1
|q(z)|= |n+β

n+ s
2
|m,

where |z|= 1 and |β | ≤ 1.

Then for an appropriate choice of the argument of λ , we have

|zq′(z)+β
n+ s

2
q(z)− (n+β

n+ s
2

)λmzn|= |zq′(z)+β
n+ s

2
q(z)|− |n+β

n+ s
2
||λ |m. (24)

By combining (23) and (24), we get for |z|= 1 and |β | ≤ 1,

|zp′(z)+β
n+ s

2
p(z)|− |s+β

n+ s
2
||λ |m≤ |zq′(z)+β

n+ s
2

q(z)|− |n+β
n+ s

2
||λ |m.

Equivalently

|zp′(z)+β
n+ s

2
p(z)| ≤ |zq′(z)+β

n+ s
2

q(z)|− (|n+β
n+ s

2
|− |s+β

n+ s
2
|)|λ |m.

As |λ | → 1, we have

|zp′(z)+β
n+ s

2
p(z)| ≤ |zq′(z)+β

n+ s
2

q(z)|− (|n+β
n+ s

2
|− |s+β

n+ s
2
|)m.

Which implies for every real or complex number β with |β | ≤ 1 and |z|= 1,

2|zp′(z)+β
n+ s

2
p(z)| ≤ |zp′(z)+β

n+ s
2

p(z)|+

|zq′(z)+β
n+ s

2
q(z)|− (|n+β

n+ s
2
|− |s+β

n+ s
2
|)m.

This in conjunction with Lemma 2.4 gives for |β | ≤ 1 and |z|= 1,

2|zp′(z)+β
n+ s

2
p(z)| ≤ (|n+β

n+ s
2
|+ |s+β

n+ s
2
|)max
|z|=1
|p(z)|

−(|n+β
n+ s

2
|− |s+β

n+ s
2
|)min
|z|=1
|p(z)|.
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This completes the proof of Theorem 2.2.
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