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1. Introduction: 

Throughout this paper, we use E and E
*
 for a real Banach space and its dual space. The mapping 

J: E → 
*E2  defined by J(x) = 

2 ** * *{x E : x,x x , x x }    for all x ∈ E, is called duality 

mapping. Now we give some definitions: 

Definition 1.1 A Banach space E is said to be uniformly convex iff for any ∈, 0 < ∈ ≤ 2, the 

inequalities x 1, y 1and x y    imply there exists a δ > 0 such that 
x y

1 .
2


    
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Definition 1.2 A Banach space E is said to be smooth if for each x ∈ ES {x E: x 1},    there 

exists a unique functional *

xj E  such that x xx, j x and j 1.    

It is clear that if E is smooth, then J is single-valued which is denoted by j. Also if E is a Hilbert 

space, then J = I, where I is the identity mapping. 

Definition 1.3 Let E be a Banach space. Then a function 
E :R R    is said to be modulus of 

smoothness of E if  

E

x y x y
(t) sup{ 1: x 1, y t}.

2

  
       

A Banach space E is said to be uniformly smooth if 

E

t 0

(t)
lim 0.

t


   

Also every uniformly smooth Banach space is smooth. 

Let q > 1. A Banach space E is said to be q-uniformly smooth if there exists a fixed constant c > 

0 such that q

E (t) ct .   It is obvious that if E is q-uniformly smooth, then q ≤ 2 and E is 

uniformly smooth. 

Definition 1.4 Let C be a nonempty subset of a Banach space E and T : C → C be any mapping. 

T is said to be nonexpansive if for all x, y ∈ C, 

Tx Ty x y .                                                                                                               (1.1) 

T is said to be   - strictly pseudo-contractive if there exists a constant   ∈ (0, 1) such that 

2 2
Tx Ty, j(x y) x y (I T) x (I T) y                x, y ∈ C and for some j(x - y)  

∈ J(x - y).                                                                                                                           (1.2) 

(1.2) is equivalent to: 

    
2

I T x I T y, j(x y) (I T) x (I T) y              x, y ∈ C and for some j(x - y)  

∈ J(x - y).                                                                                                                           (1.3) 

Let C and D be nonempty subsets of a Banach space E such that C is nonempty closed convex 

and D   C, then a mapping P : C → D is said to be sunny [9] if P(x + t(x – P(x))) = P(x) for all x 

∈ C and t ≥ 0, whenever x + t(x – P(x)) ∈ C. A mapping P : C → D is said to be retraction if Px 

= x for all x ∈ D. P is said to be sunny nonexpansive retraction from C onto D if P is a retraction 
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from C onto D which is also sunny and nonexpansive. The subset D of C is called sunny 

nonexpansive retraction of C if there exists a sunny nonexpansive retraction from C onto D.  

An operator A of C into E is said to be accretive if there exists j(x - y) ∈ J(x - y) such that   

Ax Ay, j(x y) 0, x, y C.         

An operator A of C into E is said to be    inverse strongly accretive if there exists j(x - y) ∈ J(x 

- y) and α > 0 such that   

2
Ax Ay, j(x y) Ax Ay , x, y C.        

Remark 1.5 Every    inverse strongly accretive operator is accretive and Lipschitz continuous 

but converse is not true. Also if T is an η-strictly pseudo-contractive mapping, then I – T is η- 

inverse strongly accretive mapping. 

In a Banach space, the variational inequality problem is to find a point x
*
 ∈ C such that 

* * * *Ax , j(x x ) 0, x Candforsome j(x x ) J(x x ).                                                     (1.4) 

Firstly, this problem was introduced by Aoyama et al. [7]. The set of solutions of a variational 

inequality problem in a Banach space is denoted by S(C, A), that is, 

S(C,A) {u C : Au,J(v u) 0, v C}.                                                                               (1.5) 

In 2005, in order to find a solution of the variational inequality (1.4), Aoyama et al. [7] obtained 

a weak convergence theorem as follows : 

Theorem 1.6  [7] Let C be a nonempty closed convex subset of a uniformly convex and 2-

uniformly smooth Banach space E. Let QC be a sunny nonexpansive retraction from E onto C, let 

α > 0 and let A be inverse strongly accretive operator of C into E with S(C, A) ≠ ϕ. Suppose 

that x1 = x ∈ C and {xn} is given by 

xn + 1 = αnxn + (1 – αn)QC (xn – 𝜆nAxn),     n ≥ 0,                                                                

where {𝜆n} is a sequence of positive real numbers and {αn} is a sequence in [0, 1]. If {𝜆n} and 

{αn} are chosen so that 𝜆n ∈ [a, 
2K


 ] for some a > 0 and αn ∈ [b, c] for some b, c with 0 < b < c < 

1, then {xn} converges weakly to some element z of S(C, A), where K is the 2-uniformly 

smoothness constant of E. 

In 2013, Kangtunyakarn [1] proved a strong convergence theorem for finding a common element 

of the set of solutions of a finite family of variational inequality problems and the set of fixed 
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points of a nonexpansive mapping and an 𝜂-strictly pseudo-contractive mapping in uniformly 

convex and 2-uniformly smooth spaces. 

Firstly, we give a definition.  

Definition 1.7 [1] Let C be a nonempty closed convex sebset of a Banach space H. Let  
1

N

i i
T be 

finite family of nonexpansive mappings of C into itself and let 𝜆1, 𝜆2,…….., 𝜆N, be real numbers 

such that 0 ≤ 𝜆i ≤ 1 for every i = 1, 2, ……, N. Define a mapping K : C → C as follows: 

𝒰1 = 𝜆1T1 + (1 - 𝜆1)I, 

𝒰2 = 𝜆2T2 𝒰1 + (1 – 𝜆2) 𝒰1, 

𝒰3 = 𝜆3T3 𝒰2 + (1 – 𝜆3) 𝒰2, 

. 

. 

𝒰N - 1 = 𝜆N-1  TN-1 𝒰N-2 + (1 – 𝜆N-1) 𝒰N-2,                                                                            

K = 𝒰N = 𝜆NTN 𝒰N-1 + (1 – 𝜆N) 𝒰N-1, 

Such a mapping K is called the K–mapping generated by T1, T2,……. TN and 𝜆1, 𝜆2,….. , 𝜆N. 

Theorem 1.8 [1] Let C be a nonempty closed convex subset of a uniformly convex and 2-

uniformly smooth Banach space E. Let QC be a sunny nonexpansive retraction from E onto C. 

For every i = 1, 2, ……, N, let Ai : C → E α-inverse strongly accretive mappings. Define a 

mapping Gi : C → C by QC(I – 𝜆iAi)x = Gix for all x ∈ C and i = 1, 2, ……, N, where 𝜆i ∈ (0, 

2

i

K


 ), K is the 2-uniformly smooth constant of E. Let B : C → C be the K-mapping generated by 

G1, G2,….., GN and 𝜌1,  𝜌2,……, 𝜌N, where 𝜌i ∈ (0, 1),   i = 1, 2, ……, N – 1 and 𝜌N  ∈ (0, 1]. Let 

T : C → C be a nonexpansive mapping and S : C → C be an 𝜂-strictly pseudocontractive 

mapping with F = F(S) ⋂ F(T) 
1

( , )
N

ii
S C A


 ≠ ϕ. Define a mapping BA : C → C by T((1 - α)I + 

αS)x = BAx,   x ∈ C and α ∈ (0, 
2K


 ). For arbitrarily given x1 ∈ C, let {xn} be a sequence 

generated by 

xn+1 = αn f(xn) + 𝛽nxn + 𝛾nBxn + 𝛾nBAxn,   n ≥ 1,                                                      

where f : C → C is a contractive mapping and {αn}, {𝛽n}, {𝛾n}, {𝛿n} ⊆ [0, 1], αn + 𝛽n + 𝛾n + 𝛿n = 

1 and satisfy the following conditions : 
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 (i).   limn → ∞ αn = 0, 
0






 n

n

= ∞, 

(ii).  {𝛾n}, {𝛿n}⊆ [c, d] ⊂ (0, 1), for some c, d > 0,   n ≥ 1, 

(iii).  1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

 

(iv).  0 < lim infn→∞βn ≤ lim supn→∞βn < 1. 

Then the sequence {xn} converges strongly to q ∈ F, whivh solves the following VIP: 

< q – f(q), j(q - p) > ≤ 0,    p ∈ F. 

In 2013, Atid Kangtunyakarn [2], introduced a new mapping, called S
A
-mapping to modify the 

Halpern iterative scheme for finding a common element of two sets of solutions of variational 

inequality problem and the set of fixed points of a finite family of nonexpansive mappings and 

the set of fixed points of a finite family of strictly pseudo-contrctive mappings in a uniformly 

convex and 2-uniformly smooth Banach space. 

Firstly, he gave a definition. 

Definition 1.9 [2] Let C be a nonempty closed convex subset of a Banach space H. Let  
1

N

i i
S  

and  
1

N

i i
T be two finite families of mappings of C into itself. For each j = 1, 2, ……, N, let αj = 

(α1
j 
, α2

j
, α3

j
) ∈ I   I   I , where I ∈ [0, 1] and α1

j 
+ α2

j 
+ α3

j
 = 1. Define S

A
 : C → C as follows: 

𝒰0 = T1 = I, 

𝒰1 = T1(α1
1
S1 𝒰0

 
+ α2

1 𝒰0
 
+ α3

1
I), 

𝒰2 = T2(α1
2
S2 𝒰1

 
+ α2

2 𝒰1
 
+ α3

2
I), 

𝒰3 = T3(α1
3
S3 𝒰2

 
+ α2

3 𝒰2
 
+ α3

3
I), 

. 

. 

𝒰N - 1 = TN - 1(α1
N - 1 

SN - 1 𝒰N - 2
 
+ α2

N - 1 𝒰N - 2
 
+ α3

N - 1
I),                                                     (1.6) 

S
A
 = 𝒰N = TN(α1

N 
SN𝒰N - 1

 
+ α2

N𝒰N - 1
 
+ α3

N
I), 

This mapping is called the S
A
 –mapping generated by S1, S2,….., SN, T1, T2,……. TN and α1, 

α2,….. , αN. 

Theorem 1.10  [2] Let C be a nonempty closed convex subset of a uniformly convex and 2-

uniformly smooth Banach space E. Let QC be a sunny nonexpansive retraction from E 
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 onto C. Let A, B be α- and 𝛽-inverse strongly accretive mappings of C into E, respectively. Let 

 
1

N

i i
S  be a finite family of ki-strict pseudocontractions of C into itself and let  

1

N

i i
T  be a finite 

family of nonexpansive mappings of C into itself such that F = 
1 1

( ) ( )
N N

i ii i
F S F T

 
⋂ S(C, A) ⋂ 

S(C, B) ≠ ϕ and k = min{ki : i = 1, 2,……,N} with K
2
 ≤ k, where K is the 2-uniformly smooth 

constant of E. Let αj = (α1
j 
, α2

j
, α3

j
) ∈ I   I   I, where I ∈ [0, 1], α1

j 
+ α2

j 
+ α3

j
 = 1, α1

j
 ∈ (0, 1], 

α2
j
 ∈ [0, 1], α3

j
 ∈ (0, 1) for all j = 1, 2, ……, N. Let S

A
 be the S

A
 –mapping generated by S1, 

S2,….., SN, T1, T2,……. TN and α1, α2,….. , αN. 

Let {xn} be the sequence generated by x1, u ∈ C and 

xn+1 = αnu + 𝛽nxn + 𝛾n QC (I – aA) xn  + 𝛿n QC (I – bB) xn + 𝜂n S
A
 xn ,  n ≥ 1 ,                        

where {αn},{𝛽n},{𝛾n},{𝛿n},{𝜂n} ∈ [0, 1] and αn + 𝛽n + 𝛾n + 𝛿n + 𝜂n = 1 and satisfy the following 

conditions: 

(i).   limn → ∞ αn = 0, 
0






 n

n

= ∞, 

(ii).  {𝛾n}, {𝛿n}, {𝜂n}⊆ [c, d] ⊂ (0, 1), for some c, d > 0,   n ≥ 1, 

(iii). 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

,

1

1

 






   n n

n

, 

(iv).  0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

(v). a ∈ (0, 
2K


) and b ∈ (0, 

2K


). 

Then {xn} converges strongly to z0 = QF u, where QF  is the sunny nonexpansive retraction of C 

onto F. 

Motivated by the research going on in this direction, we generalize the above mentioned result to 

more general class of mappings known as accretive and Lipschitz-continuous. Also with the help 

of a numerical example, we prove the validity of the result. 

 

2. Preliminaries.    

In this section, we give some lemmas, which will be used to prove our main result. 
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Lemma 2.1 [4] Let E be a real 2-uniformly smooth Banach space with the best smooth constant 

K. Then the following inequality holds: 

2 2 2
x y x 2 y,J(x) 2 Ky     for any x, y ∈ E. 

Lemma 2.2 [11] Let X be a uniformly convex Banach space and Br = {x X : x r}, r 0.    

Then there exists a continuous, strictly increasing and convex function g : [0, ∞] → [0, ∞], g(0) 

= 0 such that 

2 2 2 2
x y z x y z g( x y )          for all x, y, z   Br and all α, β, γ ∈ [0, 1] 

with α + β + γ = 1. 

Lemma 2.3 [7] Let C be a nonempty closed convex subset of a smooth Banach space E. Let QC 

be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C into E. 

Then, for all 𝜆 > 0, 

CS(C,A) F(Q (I A))  .   

Lemma 2.4 [5] Let {sn} be a sequence of nonnegative real numbers satisfying  

n 1 n n ns (1 )s , n 0,       where n{ } is a sequence in (0, 1) and n{ }  is a sequence such that  

(i). n

n 1

,




    

(ii). n

n
n n 1n

limsup 0or .


 


  


   

Then  n nlim s 0.    

Lemma 2.5 [2] Let C be a nonempty closed convex subset of a 2-uniformly smooth and 

uniformly convex Banach space. Let 
N

i i 1{S }   be a finite family of i  - strict pseudo-contractions 

of C into itself and let 
N

i i 1{T }   be a finite family of nonexpansive mappings of C into itself with 

N N

i i

i 1 i 1

F(S ) F(T )
 

   and 2

imin{ :i 1,2,..., N}with K    , where K is the 2-uniformly 

smooth constant of E. Let 
j j j

j 1 2 3( , , ) I I I        , where I = [0,1], j j j

1 2 3 1,   

j j j

1 2 3(0,1], [0,1], (0,1)      for all j = 1, 2, …, N. Let S
A
 be the S

A
-mapping generated by 



8                                           RENU CHUGH, REKHA RANI AND SANJAY KUMAR 

1 2 N 1 2 NS ,S ,...,S ,T ,T ,...,T  and 1 2 N, ,...,   . Then F(S
A
) =

N N

i i

i 1 i 1

F(S ) F(T )
 

and S
A
 is a 

nonexpansive mapping. 

Lemma 2.6 [2] Let C be a closed convex subset of a strictly convex Banach space E. Let 

1 2 3T ,T ,T  be three nonexpansive mappings from C into itself with 1 2 3F(T ) F(T ) F(T )  . 

Define a mapping S by 1 2 3Sx T x T x T x   ,    x ∈ C, where α, β, γ is a constant in (0, 1) 

and  α + β + γ = 1. Then S is nonexpansive and F(S) = 1 2 3F(T ) F(T ) F(T ) .     

Lemma 2.7 [4] Let E be a real 2-uniformly smooth Banach space with the best smooth constant 

K. Then the following inequality holds: 

2 2 2
x y x 2 y,J(x) 2 Ky      for any x, y ∈ E. 

Lemma 2.8 [10] Let {xn} and {zn} be bounded sequences in a Banach space X and {βn} be a 

sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose  

n 1 n n n nx x (1 )z     for all integers n ≥ 0 and 

n 1 n n 1 n
n

limsup( z z x x ) 0. 


      Then n n nlim x z 0.     

Lemma 2.9 [8] In a Banach space E, the following inequality holds: 

2 2
x y x 2 y,J(x y) , x, y E,       where j(x + y) = J(x + y). 

Lemma 2.10 [6] Let C be a nonempty closed convex subset of a real uniformly smooth Banach 

space E and let T : C → C be a nonexpansive mapping with a nonempty fixed point F(T). If {xn} 

  C is a bounded sequence such that limn→∞ n nx Tx 0.   Then there exists a unique sunny 

nonexpansive retraction 
F(T)Q :C F(T)  such that 

F(T) n F(T)
n

limsup u Q u,J(x Q u) 0


    for any given u ∈ C. 

 

3. Main Result 

Now, we prove our main result. 

Theorem 3.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly 

smooth Banach space E. Let QC be a sunny nonexpansive retraction from E onto C. Let A and B 

be accretive and L- Lipschitz continuous mappings of C into E. Let 
N

i i 1{S }   be a finite family of 
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ki-strict pseudocontractions of C into itself and let 
N

i i 1{T }   be a finite family of nonexpansive 

mappings of C into itself such that 𝐅 = 
1 1

( ) ( )
N N

i ii i
F S F T

 
⋂ S(C, A) ⋂ S(C, B) ≠ ϕ and k = 

min{ki : i = 1, 2,……,N} with K
2
 ≤ k, where K is the 2-uniformly smooth constant of E. Let αj = 

(α1
j 
, α2

j
, α3

j
) ∈ I   I   I, where I ∈ [0, 1], α1

j 
+ α2

j 
+ α3

j
 = 1, α1

j
 ∈ (0, 1], α2

j
 ∈ [0, 1], α3

j
 ∈ (0, 1) 

for all j = 1, 2, ……, N. Let S
A
 be the S

A
 –mapping generated by S1, S2,….., SN, T1, T2,……. TN 

and α1, α2,….. , αN. 

Let {xn} be the sequence generated by x1 ∈ C and 

xn+1 = αnx1 + 𝛽nxn + 𝛾n QC (I – aA) xn + 𝛿n QC (I – bB) xn + 𝜂n S
A
 xn ,  n ≥ 1 ,                       

where {αn},{𝛽n},{𝛾n},{𝛿n},{𝜂n} ∈ [0, 1] and αn + 𝛽n + 𝛾n + 𝛿n + 𝜂n = 1 and satisfy the following 

conditions: 

(i).   limn → ∞ αn = 0, 
0






 n

n

= ∞, 

(ii).  {𝛾n}, {𝛿n}, {𝜂n}⊆ [c, d] ⊂ (0, 1), for some c, d > 0,   n ≥ 1, 

(iii). 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

1

1

 






   n n

n

,  
1

 




   n n

n

, 

(iv).  0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

(v). a ∈ (0, 
2K


) and b ∈ (0, 

2K


). 

Then {xn} converges strongly to 0 F 1z Q x , where QF  is the sunny nonexpansive retraction of C 

onto F. 

Proof. Let (I aA) x n C ny Q  and (I ) xn C nz Q bB   for all n ≥ 1. 

Let u ∈ F = 
1 1

(S ) (T ) (C,A) (C,B)
N N

i i

i i

F F S S
 

. Then  

2

ny u ≤ 
2 2

n n n n nx aAx u x aAx y       

= 
2 2 2 2

2 , (Ax ) 2 , (Ax )n n n n n n n n n nx u aAx a x u j x y aAx a x y j             

= 
2 2

2 x u, (Ax )n n n n n n nx u x y a x y j            
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= 
2 2

2 , (Ax )n n n n nx u x y a u y j               

= 
2 2

2 ( , (u x ) , (u x ) , (x ) )n n n n n n n n nx u x y a Ax Au j Au j Ax j y                                                                                                              

 ≤ 
2 2

2 , (x )n n n n n nx u x y aAx j y                   

= 
2 2

2 y , (x ) , (x )n n n n n n n n n n n nx u x y x aAx j y y x j y             

≤  
2 2 2

n n n n nx u x y x y           

≤  
2

nx u    

⟹  n ny u x u    for n ≥ 1.                                                                                                (3.1)   

Similarly, we can prove that   

n nz u x u    for n ≥ 1.                                                                                                       (3.2)   

Now by induction, we have, 

   1nx u x u       n ≥ 1.                                                                                           (3.3)   

In fact when n = 1, it follows from (3.1) and (3.2) that  

2x u  A

1 1 1 1 1 C 1 1 C 1 1 1x x Q (I aA) x Q (I bB) x S x u          

≤ A

1 1 1 1 1 1 1 1 1 1x u x u y u z u S x u           

≤ 1 x u , which implies that (3.3) holds for n = 1. Assume that (3.3) holds for n ≥ 2. Then we 

have,  nx u ≤ 1 x u . Now,         

1  nx u A

n 1 n n n C n n C n n nx x Q (I aA) x Q (I bB) x S x u          

≤ A

n 1 n n n n n n n nx u x u y u z u S x u           

≤ 1 x u .  

Thus (3.3) holds for n + 1. Therefore (3.3) holds for all n ≥ 1. Hence {xn} is bounded. And so 

{yn}, {zn} {S
A
xn} are bounded. Next, we shall show that 

limn→∞  n 1 nx x 0                                                                                                         (3.4) 

Now, 

2

C n 1 C nQ (I aA) x Q (I aA) x    ≤ 
2

n 1 n n 1 n(x x ) a(Ax Ax )      
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≤ 
2 22 2

n 1 n n 1 n n 1 n n 1 nx x 2a Ax Ax , j(x x ) 2K a Ax Ax           

≤ 
2 22 2

n 1 n n 1 nx x 2K a Ax Ax     

≤ 
2 22 2 2

n 1 n 1 n 1 nx x 2K a L x x            

=  
22 2 2

1 n 1 n(1 2K a L ) x x       

C n 1 C nQ (I aA) x Q (I aA) x    ≤ n 1 n(1 2KaL) x x                                                (3.5)  

Similarly, C n 1 C nQ (I bB) x Q (I bB) x    ≤ n 1 n(1 2KbL) x x  .                             (3.6) 

By definition of xn , we can rewrite xn as 

xn+1 = n n n nx (1 )z ,                                                                                                          (3.7)      

where                                                                  

 
A

n 1 n C n n C n n n

n

n

x Q (I aA) x Q (I bB) x S x
z

1

       



 . 

Now, using (3.5) and (3.6), we have 

A

n 1 1 n 1 C n 1 n 1 C n 1 n 1 n 1

n 1

n 1 n A

n 1 n C n n C n n n

n

x Q (I aA) x Q (I bB) x S x

1
z z

x Q (I aA) x Q (I bB) x S x

1

      





       


 

       




                            

= n 2 n 1 n 1 n 1 n n

n 1 n

x x x x

1 1

   



   


 
  

≤ n 2 n 1 n 1 n 1 n n n 1 n n n 1 n n

n 1 n 1 n 1 n

x x x x x x x x

1 1 1 1

     

  

       
  

   
                     

= n 2 n 1 n 1 n 1 n n n 1 n n

n 1 n 1 n

1 1 1
(x x ) (x x ) x x

1 1 1
    

 

        
  

 

=   

A

n 1 1 n 1 C n 1 n 1 C n 1 n 1 n 1

A
n 1 n 1 n C n n C n n n

n 1 n n

n 1 n

x Q (I aA) x Q (I bB) x S x1

1 x Q (I aA) x Q (I bB) x S x

1 1
x x

1 1

      







       

        

   
 
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n 1 n 1 n 1 C n 1 C n n 1 n C n

n 1

n 1 C n 1 C n n 1 n C n

A A A

n 1 n 1 n n 1 n n n 1 n n

n 1 n

1
( x Q (I aA) x Q (I aA) x Q (I aA) x

1

Q (I bB) x Q (I bB) x Q (I bB) x

1 1
S x S x S x ) x x

1 1

   



  

   



            


        

         
 

 

 

n 1 n 1 n 1 n 1 n n 1 n C n

n 1

n 1 n 1 n n 1 n C n

n 1 nA

n 1 n 1 n n 1 n n n 1 n n

n 1 n

1
( x (1 2 KaL) x x Q (I aA) x

1

(1 2 KbL) x x Q (I bB) x

x x S x ) x x
(1 )(1 )

   



  



   



            


       

 
        

 

 

n 1 n 1 n 1 n 1 n 1 n 1 n n 1 n 1 n 1 n

n 1

n 1 n C n n 1 n C n

n 1 nA

n 1 n n n 1 n n

n 1 n

1
( x ( ) x x 2 KL(a b ) x x

1

Q (I aA) x Q (I bB) x

S x ) x x
(1 )(1 )

       



 



 



             


         

 
      

 

 

n 1 n 1 n 1 n n 1 n 1 n 1 n

n 1

n 1 n C n n 1 n C n

n 1 nA

n 1 n n n 1 n n

n 1 n

1
( x x x 2 KL(a b ) x x

1

Q (I aA) x Q (I bB) x

S x ) x x
(1 )(1 )

    



 



 



          


         

 
      

 

 

Now using conditions (i) - (iv), we obtain, 

n

limsup


 n 1 n n 1 n( z z x x ) 0           

Using Lemma 2.8 and (3.7), we obtain 

n
lim


 n nz x  = 0.                                                                                                              (3.8) 

Also, by (3.7), we have 

 n 1 n n n nx x (1 ) z x       

By condition (iv) and (3.8), we have 

n 1 n
n
lim x x 0


   

Next, we shall show that 
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A

C n n C n n n n
n n n
lim Q (I aA) x x lim Q (I bB) x x lim S x x 0
  

                                   (3.9) 

Using definition of xn , we can write 

2

1  nx u

2
A

n 1 n n n C n n C n n n(x u) (x u) (Q (I aA) x u) (Q (I bB) x u) (S x u)             

= 

2

n n n C n

A

n C nn 1 n n

n n n

n n n n n n n n n

(x u) (Q (I aA) x u)

(Q (I bB) x u)(x u) (S x u)
( )(

     

     
      

           

 

= 
2

n n n C n n n(x u) (Q (I aA) x u) c z      , where n n n nc       and 

A

n C nn 1 n n

n

n n n n n n n n n

(Q (I bB) x u)(x u) (S x u)
z

     
  
           

. 

By Lemma 2.2, we have 

2

1  nx u
2 2 2

n n n C n n n n n 1 n C nx u Q (I aA) x u c z u g ( x Q (I aA) x )             

≤ 

2 2 2 22 2 2

n n n n n n 1 n n

2 22 2 2

n n n n n n 1 n C n

( ) x u 2K a L x u x u x u

2K b L x u x u g ( x Q (I aA) x )

          

         
 

= 

2 2 22 2 2 2

n n n n n n 1 n n n

n n 1 n C n

( ) x u x u 2K L (a b ) x u

g ( x Q (I aA) x )

            

    
 

≤ 
2 2 22 2 2 2

n n 1 n n n n n 1 n C nx u x u 2K L (a b ) x u g ( x Q (I aA) x )              

⟹ n n 1 n C ng ( x Q (I aA) x )      

≤ 
2 2 2 22 2 2 2

n n 1 n 1 n n nx u x u x u 2K L (a b ) x u           

≤ 
2 22 2 2 2

n n 1 n 1 n n 1 n n n( x u x u ) x x x u 2K L (a b ) x u             

Using (3.4) and conditions (i) and (iii), we get 

1 n C n
n
limg ( x Q (I aA) x ) 0.


    

By using property of 1g , we obtain 

 n C n
n
lim x Q (I aA) x 0.


                                                                                              (3.10) 

Applying the same method as in (3.10), we can obtain 
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A

C n n n n
n n
lim Q (I bB) x x lim S x x 0
  

     . 

Set Gx = A

C CS x Q (I aA) x Q (I bB) x,        x ∈ C and α + β + γ = 1. By Lemma 2.6, we 

obtain, 
A

C C CF(G) F(Q (I aA)) F(Q (I bB)) F(Q S )   . Using Lemma 2.3 and 2.5, we can 

say that   

𝐅 = 
1 1

( ) ( )
N N

i ii i
F S F T

 
⋂ S(C, A) ⋂ S(C, B) = F(G). 

By definition of G, 

A

n n n n C n n C n nGx x S x x Q (I aA) x x Q (I bB) x x .          

Using (3.9), we can say that 

n n
n
lim Gx x


 = 0.                                                                                                             (3.11) 

By Lemma (2.10) and (3.11), we obtain 

1 0 n 0
n

limsup x z , j(x z ) 0,


                                                                                              (3.12) 

where 0 F 1z Q x . Now we shall prove that the sequence {xn} converges strongly to 0 F 1z Q x . 

By definition of xn, 

2

1 0  nx z

2
A

n 1 0 n n 0 n C n 0 n C n 0 n n 0(x z ) (x z ) (Q (I aA) x z ) (Q (I bB) x z ) (S x z )             

 = 

2

n n 0 n C n 0

n 1 0 n

n n

A

n C n 0 n n 0

n n

(x z ) (Q (I aA) x z )
(x z ) (1 ) (

1 1

(Q (I bB) x z ) (S x z )
)

1 1

    
    

 

    
 

 

 

≤ 

2
A

n n 0 n C n 0 n C n 0 n n 0

n

n n n n

(x z ) (Q (I aA) x z ) (Q (I bB) x z ) (S x z )
(1 ) ( )

1 1 1 1

         
   

   
 

+ n 1 0 n 1 02 x z , j(x z )    

≤ 
2

n n 0(1 ) x z  + 
22 2 2 2

n n n 02K L (a b ) x z     + n 1 0 n 1 02 x z , j(x z )    

Using Lemma (2.4) and conditions (i) and (iii), we obtain  

n 0
n
lim x z 0.


   
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⟹ n 0x z  as n → ∞. 

 

4. Applications. 

Using our main result, we prove a strong convergence theorem as in [2]. First we give a lemma. 

Lemma 4.1  [2] Let C be a nonempty closed convex sebset of a uniformly convex and 2-

uniformly smooth Banach space E.  

Let  
1

N

i i
S  be a finite family of ki-strict pseudocontractions of C into itself such that F = 

1
( )

N

ii
F S ≠ ϕ and k = min{ki : i = 1, 2,……,N} with K

2
 ≤ k, where K is the 2-uniformly 

smooth constant of E. Let αj = (α1
j 
, α2

j
, α3

j
) ∈ I   I   I, where I ∈ [0, 1], α1

j 
+ α2

j 
+ α3

j
 = 1, α1

j
 ∈ 

(0, 1], α2
j
 ∈ [0, 1], α3

j
 ∈ (0, 1) for all j = 1, 2, ……, N. Let S be the S–mapping generated by S1, 

S2,….., SN and α1, α2,….. , αN. Then 
N

i

i 1

F(S) F(S )


 and S is a nonexpansive mapping. 

Theorem 4.2  Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly 

smooth Banach space E. Let QC be a sunny nonexpansive retraction from E onto C. Let A and B 

be accretive and L- Lipschitz continuous mappings of C into E. Let 
N

i i 1{S }   be a finite family of 

ki-strict pseudocontractions of C into itself such that 𝐅 = 
1

( )
N

ii
F S ⋂ S(C, A) ⋂ S(C, B) ≠ ϕ 

and k = min{ki : i = 1, 2,……,N} with K
2
 ≤ k, where K is the 2-uniformly smooth constant of E. 

Let αj = (α1
j 
, α2

j
, α3

j
) ∈ I   I   I, where I ∈ [0, 1], α1

j 
+ α2

j 
+ α3

j
 = 1, α1

j
 ∈ (0, 1], α2

j
 ∈ [0, 1], α3

j
 

∈ (0, 1) for all j = 1, 2, ……, N. Let S be the S–mapping generated by S1, S2,….., SN and α1, 

α2,….. , αN. 

Let {xn} be the sequence generated by x1 ∈ C and 

xn+1 = αnx1 + 𝛽nxn + 𝛾n QC (I – aA) xn + 𝛿n QC (I – bB) xn + 𝜂n S
A
 xn ,  n ≥ 1 ,                       

where {αn},{𝛽n},{𝛾n},{𝛿n},{𝜂n} ∈ [0, 1] and αn + 𝛽n + 𝛾n + 𝛿n + 𝜂n = 1 and satisfy the following 

conditions: 

(i).   limn → ∞ αn = 0, 
0






 n

n

= ∞, 

(ii).  {𝛾n}, {𝛿n}, {𝜂n}⊆ [c, d] ⊂ (0, 1), for some c, d > 0,   n ≥ 1, 
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(iii). 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

1

1

 






   n n

n

,  
1

 




   n n

n

, 

(iv).  0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

(v). a ∈ (0, 
2K


) and b ∈ (0, 

2K


). 

Then {xn} converges strongly to 0 F 1z Q x , where QF  is the sunny nonexpansive retraction of C 

onto F. 

Proof. By putting I = T1 = T2=…= TN in Theorem 3.1 and by using Lemma 4.1, the desired can 

be obtained. 

Theorem 4.3  Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly 

smooth Banach space E. Let QC be a sunny nonexpansive retraction from E onto C. Let Ai, A and 

B be accretive and L- Lipschitz continuous mappings of C into E. Define a mapping Gi : C → C 

by QC(I – 𝜆iAi)x = Gix for all x ∈ C and i = 1, 2, ……, N, where 𝜆i ∈ (0, 
2

i

K


 ), K is the 2-

uniformly smooth constant of E.Let 
N

i i 1{S }   be a finite family of ki-strict pseudocontractions of C 

into itself such that 𝐅 =  
 1 1

( ,  )
N N

ii i iS C AF S ⋂ S(C, A) ⋂ S(C, B) ≠ ϕ and k = min{ki : i = 1, 

2,……,N} with K
2
 ≤ k, where K is the 2-uniformly smooth constant of E. Let αj = (α1

j 
, α2

j
, α3

j
) 

∈ I   I   I, where I ∈ [0, 1], α1
j 
+ α2

j 
+ α3

j
 = 1, α1

j
 ∈ (0, 1], α2

j
 ∈ [0, 1], α3

j
 ∈ (0, 1) for all j = 1, 

2, ……, N. Let S
A
 be the S

A
 –mapping generated by S1, S2,….., SN, T1, T2,……. TN and α1, 

α2,….. , αN. 

Let {xn} be the sequence generated by x1 ∈ C and 

xn+1 = αnx1 + 𝛽nxn + 𝛾n QC (I – aA) xn + 𝛿n QC (I – bB) xn + 𝜂n S
A
 xn ,  n ≥ 1 ,                       

where {αn},{𝛽n},{𝛾n},{𝛿n},{𝜂n} ∈ [0, 1] and αn + 𝛽n + 𝛾n + 𝛿n + 𝜂n = 1 and satisfy the following 

conditions: 

(i).   limn → ∞ αn = 0, 
0






 n

n

= ∞, 

(ii).  {𝛾n}, {𝛿n}, {𝜂n}⊆ [c, d] ⊂ (0, 1), for some c, d > 0,   n ≥ 1, 
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(iii). 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

1

1

 






   n n

n

,  
1

 




   n n

n

, 

(iv).  0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

(v). a ∈ (0, 
2K


) and b ∈ (0, 

2K


). 

Then {xn} converges strongly to 0 F 1z Q x , where QF  is the sunny nonexpansive retraction of C 

onto F. 

Proof. By Lemma 2.3, we have F(Gi) = S(C, Ai) for all I = 1, 2,…, N. Using Theorem 3.1, the 

desired result can be obtained. 

5. Numerical Example: 

 In this section, we use the iterative scheme given below. 

xn+1 = αnx1 + 𝛽nxn + 𝛾n QC (I – aA) xn + 𝛿n QC (I – bB) xn + 𝜂n S
A
 xn ,  n ≥ 1 ,                       

where {αn},{𝛽n},{𝛾n},{𝛿n},{𝜂n} ∈ [0, 1] and αn + 𝛽n + 𝛾n + 𝛿n + 𝜂n = 1 and satisfy the following 

conditions: 

(i).   limn → ∞ αn = 0, 
0






 n

n

= ∞, 

(ii).  {𝛾n}, {𝛿n}, {𝜂n}⊆ [c, d] ⊂ (0, 1), for some c, d > 0,   n ≥ 1, 

(iii). 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

, 1

1

 






   n n

n

,

1

1

 






   n n

n

,  
1

 




   n n

n

, 

(iv).  0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

(v). a ∈ (0, 
2K


) and b ∈ (0, 

2K


). 

We use the following numerical values for the above mentioned iterative scheme. 

Let 1{ }n

i iT     be the family of nonexpansive mappings defined by , 1
2

n

x
T x n

n
 

  
and 1{ }n

i iS   

be the family of pseudo contractive mappings defined as 

2

1
n

x
S x

x



 and let 
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1 1 2 1 3( )A N N N

N N N NS T S U U I     . Also let QC be a sunny nonexpansive retraction mapping 

from E onto C defined as
 

CQ x  = {0}, x E  , where E = [0,1] and C = {0},
 

Let A and B be accretive and L- Lipschitz continuous mappings of C into E defined as 

2

1

x
Ax

x


  

2

1

x
Bx

x



, where x C

 

The initial values used in C++ program to find the solution are 

  
1

i =0.7, 
2

i =0.2, 
3

i =0.1 where i=1,2,3….N. 

1
, 1n n

n
   , .000001n  , .000000001n  , .0000000000001n  , 0.999999n  , 1 0.5x 

and  0 0.5x  , by using these mappings and initial value in C++ program, we get the following 

observation shown in tabular form 

Table 5.1 

N 1 2 3 19 20 38 39 53 54 55 56 57 58 

nx  0.5 5e-

007 

5e-

013 

5e-

109 

5e-

115 

5e-

223 

5e-

229 

5.00001e-

313 

4.99999e-

319 

0 0 0 0 

 

From the above table, we find that 0nx   as n  which is the solution of our problem. 
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