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1. Introduction

Problems concerning the existence of fixed points of Lipschitz map have been of considerable

interest in the theory of nonlinear operator. The study of nonlinear operators had its beginning

about the start of the twentieth century with investigations into the existence properties to certain

initial value problems arising in ordinary differential equations. The earliest ways of dealing

with such problems, which were largely planned by [14], involved the iteration of an integral

operator to devise solutions to the problems. In 1922, these methods of Picard were given exact

abstract formulation by Banach [4] and Cacciopoli [5] which is now generally referred to as

Contraction Mapping Techniques. Since then, a number of authors have defined contractive
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type mappings on a complete metric space (X,d). [4] defined a mapping which is a contraction

for a positive number c < 1. Also, [10] considered a nonexpansive contractive type mappings.

In [1], the weak contraction was introduced and showed that most of the results are still true

for Banach space. Choudhury and Metiya [7] extend fixed point of weak contractions to cone

metric spaces. Some works related to the concept of existence and uniqueness of solution,

contraction mapping and ordinary differential equations could be sourced from ( [15], [3], [13],

[9], [17]).

2. Preliminaries

Let us consider the general first order equation

y′ = f (t,y) (1)

where f is defined for (t,y) on some set and continuous. Suppose f1, f2, . . . , fn are continuous-

valued functions defined for (t, y1, y2, . . . , yn) space. A wide class of (1) is the system

y′1 = f1(t, y1, y2, . . . , yn),

y′2 = f2(t, y1, y2, . . . , yn),
...

y′n = fn(t, y1, y2, . . . , yn).

(2)

This is a system of n ordinary differential equations of the first order, the derivatives y′1, y′2, . . . ,y
′
n

appear explicitly and they are analogue of (1).

n−th Order Equation: An equation of n− th order

y(n) = f (t, y, y′, . . . ,y(n−1)) (3)

may be treated as a system of the form (2).

Let y = y1, y′ = y2, . . . , yn−1 = yn. Then (3) can be written as:
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y′1 = y2,

y′2 = y3,
...

y′n−1 = yn,

y′n = f (t, y, y1, . . . ,yn),

(4)

which may be viewed as the type (2). The clear difference between (1) and (2) is that a complex

number y is now to deal with n such complex numbers y1, y2, . . . , yn.

Let y be a vector of the n complex numbers, we write y = (y1, y2, . . . , yn). Therefore, the

complex number yk is the k−th component of y. The set of all such vectors is called the complex

n−dimensional space Cn.

Systems as Vector Equations: Consider the first order system of equations

y′1 = f1(t, y1, y2, . . . ,yn),

y′2 = f2(t, y1, y2, . . . ,yn),
...

y′n = fn(t, y1, y2, . . . ,yn).

(5)

It is assumed that f1, f2, . . . , fn are complex-valued functions defined for (t, y1, y2, . . . ,yn) on

some set, where t is real and y1, y2, . . . ,yn are complex. Clearly, f1, f2, . . . , fn are functions of

t and the vector y, where y = (y1, y2, . . . ,yn) is in Cn.

Therefore, we may write

f1(t, y) = f1(t, y1, y2, . . . ,yn),

f2(t, y) = f2(t, y1, y2, . . . ,yn),
...

fn(t, y) = fn(t, y1, y2, . . . ,yn).

In (5), we have n functions f1, f2, . . . , fn which may be regarded as a vector-valued function

f = ( f1, f2, . . . , fn),

which may be given by

f(t, y) = f1(t, y), f2(t, y), . . . , fn(t, y).
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Suppose

y′ = (y′1, y′2, . . . , y′n),

then the system (5) may now be written as

y′ = f(t, y). (6)

Remark: The vector differential equation (6) now has the form (1).

Definition 2.1. [8] A vector-valued function f is said to satisfy a Lipschitz condition on Ω if

there is a number K > 0 such that

|f(t, y)− f(t, z)| ≤ K |y− z| (7)

for all y, z ∈Cn and (t, y), (t, z) ∈Ω. The constant K is called the Lipschitz constant.

Proposition 2.2. [8] Let f be a vector-valued function defined for (t, y) on a set Ω given by

Ω := {(t,y) : | t− t0| ≤ a, |y−y0| ≤ b, a,b > 0} .

If ∂ f/∂yk (k = 1, 2, . . . ,n) is continuous on Ω and there is a constant K > 0 such that∣∣∣∣ ∂ f
∂yk

∣∣∣∣≤ K

for (t, y) ∈Ω, then f satisfies a Lipschitz condition on Ω.

Proposition 2.3. [8] Consider the vector differential equation

y′ = f(t, y),

where the components f1, f2, . . . , fn of f are of the form

f1(t, y) = a11(t)y1 +a12(t)y2 + . . .+a1n(t)yn +b1(t),

f2(t, y) = a21(t)y1 +a22(t)y2 + . . .+a2n(t)yn +b2(t),
...

fn(t, y) = an1(t)y1 +an2(t)y2 + . . .+ann(t)yn +bn(t),

(8)

where a11(t), . . . , ann(t), b1(t), . . . , bn(t) are complex-valued functions defined for real t in

some interval I. If all the ai j are continuous on an interval I : |t− t0| ≤ a, where a > 0,
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then the corresponding vector-valued function f satisfies a Lipschitz condition on the strip

Ω : |t− t0| ≤ a, |y− y0| ≤ b or |y|< ∞, a,b > 0.

Proposition 2.4. The vector differential equation (6) defined on Ω is equivalent to the integral

equation

y = yo +
∫ t

t0
f(τ, y(τ))dτ, (9)

where y0 = (α1, α2, . . . ,αn), f(τ, y(τ)) = ( f1, f2, . . . , fn) and

fk(τ, y(τ)) =
n

∑
j=1

a jk(τ)yk(τ)+bk(τ), k = 1, 2, . . . , n.

We complete this section with a proposition which is sequel to our work.

Proposition 2.5. [6] Let X be a metric space. Then X is said to be complete if every cauchy

sequence in X has a limit x which is in X . A subset Y of a metric space X is complete if it is

closed.

3. Problem Formulation

In this section, we discuss the Banach fixed point theorem which states sufficient conditions

for the existence and uniqueness of a fixed point and also gives a constructive procedure for

obtaining sharp results to the fixed point. We start with the following definitions.

Definition 3.1. Let X be a nonempty set and T be a mapping of X into itself. A point x ∈ X is

said to be a fixed point of the mapping T if

T x = x (10)

i.e. the image T x coincides with x.

Definition 3.2. Let X = (X ,d) be a metric space. A mapping T : X −→ X is called a Lipschitz

map if there is a real number c > 0 such that for all x,y ∈ X

d(T x,Ty)≤ cd(x,y) (11)

for all x,y ∈ X and T is called a contraction on X if there is a positive real number c < 1 such

that for all x, y ∈ X .
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Definition 3.3. Let X be a metric space. A mapping T : X → X is said to be weakly contractive

on X if

d(T x,Ty)≤ d(x,y)−ϕ(d(x,y)) (12)

for all x,y ∈ X and ϕ[0, ∞) −→ [0, ∞) is continuous and non-decreasing function such that

ϕ(t) = 0 if and only if t = 0. Clearly, if ϕ(t) = κt where 0 < κ < 1, then (12) reduces to

(11).

Proposition 3.4. Every contraction mapping on a metric space (X ,d) is a continuous mapping.

Theorem 3.5. (Banach Fixed Point Theorem) Let X be a non-empty metric space. suppose that

X is complete and T : X −→ X is a contraction on X . Then, T has precisely one fixed point

x ∈ X .

Remark Generally in application, the mapping T is a contraction not on the entire space X but

merely on a subset of X . Since a closed subset of a complete space X is complete, T has a fixed

point on the closed subset provided there is a restriction on the choice of x0 so that the xn lie in

the closed subset.

This is justified by the following theorem.

Theorem 3.6 Let X = (X ,d) be a complete metric space and let T : X −→ X be a contraction

on a closed ball B = {x : d(x, x0)≤ r} ∀ x0, x ∈ B⊂ X .

Moreover, assume that

d(x0, T x0)< (1− c)r.

Then, T has precisely one fixed point x ∈ X .

We shall devote the rest of this paper to show how the arguments of Baire Category theorem

can be adapted to show existence and uniqueness of solutions of vector differential equation

(6); see [16] for more details.

4. Main Results

We begin with the following propositions which can be easily proved.



FIXED POINT THEOREMS WITH APPLICATIONS TO n-TH ORDER ORDINARY DIFFERENTIAL EQUATIONS 7

Proposition 4.1. Let Φ be a vector-valued differentiable function satisfying yo = Φ(to) for all

(t, Φ(t)) in Ω. Suppose Φ is a solution of (6), then

Φ(t) = Φ(t0)+
∫ t

t0
f(τ, Φ(τ))dτ (13)

and the vector form is Φ(t) = (φ1(t), φ2(t), . . . ,φn(t)) .

Proposition 4.2. Let Φo be fixed and defined by

Φo(t) = yo

then, by the iterative process in (13), we have

Φ1(t) = T Φo(t) = yo +
∫ t

t0
f(τ, Φo(τ))dτ,

Φ2(t) = T 2
Φo(t) = yo +

∫ t

t0
f(τ, Φ1(τ))dτ,

...

In general, we have

Φm(t) = T m
Φo(t) = yo +

∫ t

t0
f(τ, Φm−1(τ))dτ, (m = 0, 1, 2, . . .). (14)

As m−→ ∞, the limit is given by (18) i.e. Φm(t)−→Φ(t)

By (16), T Φm(t)−→ T Φ(t) so that

T Φ(t) = Φ(t). (15)

Interpretation: In a picturesque, the mapping is like a machine (say S) which transforms the

limit function Φ into a new function SΦ defined by

SΦ(t) = Φ(t0)+
∫ t

t0
f(τ, Φ(τ))dτ.

This means that a solution of the system (6) is the function which moves through the machine

untouched, starting with Φo(t) = yo, S converts Φo into Φ1 and Φ1 into Φ2 and, in general, we

have SΦm = Φm+1. Consequently, we arrive at Φ such that SΦ = Φ. Next is to show that the

sequence Φm merit the nomenclature. Before that we give the following suitable remark.
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Remark Suppose Φm as well as Φ exist on the interval I containing to, then Baire’s theorem

asserts that the limit Φ may not be attained on the neighborhood of Φo unless on the successive

neighborhoods of Φo.

Proposition 4.3 Let {Φm}∞

m=1 be sequence of vector-valued function defined on the interval

I : |t− to| ≤ a, and let β be smaller than a, b
M , where M > 0. Then, {Φm}∞

m=1 exist on the

interval

I : |t− to| ≤ β < min
{

a,
b
M

}
for (t, Φm) in Ω.

Proof. From (14)

Φm(t) = yo +
∫ t

t0
f(τ, Φm−1(τ))dτ, (m = 0, 1, 2, . . .)

=⇒ |Φm(t)−yo|=
∣∣∣∣∫ t

t0
f(τ, Φm−1(τ))dτ

∣∣∣∣
≤
∣∣∣∣∫ t

t0
|f(τ, Φm−1(τ))|dτ

∣∣∣∣
≤M

∣∣∣∣∫ t

t0
dτ

∣∣∣∣
≤M |t− to| .

Since I : |t− to| ≤ b
M

=⇒ |Φm(t)−yo| ≤ b. (16)

This shows that (t, Φm) are in Ω for t ∈ I. Clearly Φo exists on I for m = 0 and satisfies the

inequality (16). Now, for m = 1 in (14)

Φ1(t) = yo +
∫ t

t0
f(τ, Φo(τ))dτ,

|Φ1(t)−yo|=
∣∣∣∣∫ t

t0
f(τ, Φo(τ))dτ

∣∣∣∣≤ ∣∣∣∣∫ t

t0
|f(τ, Φo(τ))|dτ

∣∣∣∣≤M
∣∣∣∣∫ t

t0
dτ

∣∣∣∣≤M |t− to| ,

which implies that Φ1 satisfies (16) and since f is continuous on Ω, then f(τ, Φo(τ)) is contin-

uous on I and so Φ1 exists on I. By induction, Φm satisfy (16) for all m and f(τ, Φ(τ)) as well

as Φm are continuous and exist on I.

We now show that Φm converge on I to a solution of the system (6). This is given in our next

theorem. See [8].
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Theorem 4.4. Let f be a continous vector-valued function defined on

Ω := {(t, y) : |t− t0| ≤ a, |y−y0| ≤ b,(a,b > 0)}

and bounded on Ω, say |f(t, y)| ≤ M. Suppose f satisfies a Lipschitz condition on Ω with re-

spect to its second argument. Then, the iterative function sequence {Φm}∞

m=1 obtained in (14)

converge on the interval [t0−β , t0 +β ] , where

β < min
{

a,
b
M
,

1
K

}
(17)

to a solution Φ of the system (6).

Proof. Let C(I) be the metric space of all complex-valued continuous function on the interval

I = [t0−a, t0 +a]. For t ∈ [t0−a, t0 +a] and Φ(t), Ψ(t) ∈C(I), the metric on C(I) is defined by

d(Φ(t), Ψ(t)) = sup
t∈[t0+a,t0+a]

|Φ(t)−Ψ(t)|

C(I) is complete [6].

Let J = [t0−β , t0 +β ] ⊂ I, then C(J) is a closed subspace of C(I) which is also complete by

proposition 2.5 Define the mapping T :C(J)−→C(J) and T Φ(t)=Φ(t) for Φ∈C(J). Consider

a ball B in C(J) with radius b centered at yo given by

B = {Φ ∈C(J) : |Φ(t)−yo| ≤ b} .

We show that B⊃ T (B), for suppose T φm(t)−→ T φ(t) and

T Φ(t) = y0 +
∫ t

t0
f(τ, Φ(τ))dτ

=⇒ d(T Φ(t), y0) = sup |T Φ(t)−y0|

= sup
∣∣∣∣∫ t

t0
f(τ, Φ(τ))dτ

∣∣∣∣
≤ sup

∣∣∣∣∫ t

t0
|f(τ, Φ(τ))|dτ

∣∣∣∣
≤M sup |t− t0|

≤Mβ < b,

which implies for Φ ∈ T (B) ⇒ Φ ∈ B, and thus, T maps C(J) into itself.
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Next is to show that T is a contraction on C(J). By the Lipschitzian assumptions (7) and for

Φ(t), Ψ(t) ∈C(J)). We have

d(T Φ, T Ψ) = sup |T Φ(t)−T Ψ(t)|

= sup
∣∣∣∣y0 +

∫ t

t0
f(τ, Φ(τ))dτ−

(
y0 +

∫ t

t0
f(τ, Ψ(τ))dτ

)∣∣∣∣
≤ sup

∣∣∣∣∫ t

t0
|f(τ, Φ(τ))− f(τ, Ψ(τ))|dτ

∣∣∣∣
≤ supK |Φ(τ)−Ψ(τ)|

∣∣∣∣∫ t

t0
dτ

∣∣∣∣
≤ K sup |Φ(τ)−Ψ(τ)|sup |t− t0|

≤ Kβd(Φ, Ψ).

From (17), choose c = Kβ < 1, so that T is a contraction on C(J). The conclusion of the

theorem follows from Theorem 3.8. Observe that the existence result proved above is local.

Moreso, I depends on M, K and the initial condition.

Remark Let f be a continuous vector-valued function and global on the strip

Ω
′ := {(t,y) : |t− to| ≤ a, |y|< ∞}

Then the iterative sequence {Φm(t)}∞

m=1 exists on |t− t0| ≤ a and converges to a solution of the

system (6).

We now discuss the existence and uniqueness of solution of an n-th order differential equation

given by (3). We consider the following theorems.

Theorem 4.5. Let f be a complex valued continuous function in (4) defined on

Ω : |t− t0| ≤ a, |y−y0| ≤ b (a,b > 0)

such that

|F (t,y)| ≤ N

for all (t,y) in Ω. Suppose there exists a constant L > 0 such that

|F (t,y)−F (t,z)| ≤ L |y− z|
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for all (t,y) and (t,z) in Ω. Then, there is only and only one solution of φ of (3) on the interval

I : |t− t0| ≤ β < min
{

a,
b
M
,

1
K

}
,

which satisfies

φ(t0) = α1,φ
′(t0) = α2, . . . ,φ

n−1(t0) = αn,
(

y =
(
α1,α2, . . . ,αn

))
.

Proof. Consider the system y′ = f(t,y) with component of fk given by (4). Then

|f(t,y)| = |y2|+ |y3|+ . . .+ |yn|+ |F (t,y)|

≤ |y|+ |F (t,y)|

≤ |y0|+b+N = M,

where M = max{|y0|+b+N,b > 0} . Also,

|f(t,y)− f(t,z)| = |y2− z2|+ . . .+ |yn− zn|+ |F (t,y)|− |F (t,z)|

≤ |y− z|+L |y− z|

= (1+L) |y− z| .

Thus satisfies the Lipschitz conditions with Lipschitz constant K = 1+L. The conclusion of

the theorem follows from Theorem 4.4.

Corollary 4.6. Let a1, a2, . . . , an, b be continuous complex-valued function on the interval I

containing a point t0. If α1, α2, . . . , αn are any n constants, there exists one and only one

solution φ of the equation

y(n)+a1(t)y(n−1)+ . . .+an(t)y = b(t)

on I satisfying

φ(t0) = α1, φ
′(t0) = α2, . . . , φ

n−1(t0) = αn.

Proof. From Theorem 4.5, we draw the desired conclusion immediately.

Verification 1. Let us consider the bending of an elastic plate’s equation

y′′′′−2λ
2y′′+4λ

2y = 0, λ 6= 0 (18)
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with the initial conditions

y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 2.

Solution. Let

y = y1,y′ = y′1 = y2,y′′ = y′2 = y3,y′′′ = y′3 = y4.

Then y′′′′ = y′4 = 2λ 2y3−4λ 4y1 and

y′1 = y2 ≡ f1(t, y, y1, . . . ,yn),

y′2 = y3 ≡ f2(t, y, y1, . . . ,yn),

y′3 = y4 ≡ f3(t, y, y1, . . . ,yn),

y′4 = 2λ 2y3−4λ 4y1 ≡ f4(t, y, y1, . . . ,yn).

Hence,

f(t, y) = (y2,y3,y4,2λ
2y3−4λ

4y1),

∂ f1

∂y2
= 1,

∂ f1

∂y1
=

∂ f1

∂y3
=

∂ f1

∂y4
= 0,

∂ f1

∂y3
= 1,

∂ f1

∂y1
=

∂ f1

∂y2
=

∂ f1

∂y4
= 0,

∂ f1

∂y4
= 1,

∂ f1

∂y1
=

∂ f1

∂y2
=

∂ f1

∂y3
= 0,

∂ f1

∂y1
=−4λ 4,

∂ f1

∂y3
= 2λ 2,

∂ f1

∂y2
=

∂ f1

∂y4
= 0.

Therefore, ∣∣∣∣ ∂ f
∂y1

∣∣∣∣= 4λ
4,

∣∣∣∣ ∂ f
∂y2

∣∣∣∣= 1,
∣∣∣∣ ∂ f
∂y3

∣∣∣∣= 1+2λ
2,

∣∣∣∣ ∂ f
∂y4

∣∣∣∣= 1.

Thus, f satisfies the Lipschitz condition with Lipschitz constant L = 4λ 4 > 0, for λ 6= 0. Let T

be a mapping defined by

T y = y0 +
∫ t

t0
f(τ, Φ(τ))dτ

⇒ d(T y, T z) = |T y(t)−T z(t)|

=

∣∣∣∣∫ t

t0
f(τ, y(τ))dτ−

∫ t

t0
f(τ, z(τ))dτ

∣∣∣∣
=

∣∣∣∣∫ t

t0
(f(τ, y(τ))− f(τ, z(τ)))dτ

∣∣∣∣
≤
∣∣∣∣∫ t

t0

∣∣(y2,y3,y4,2λ
2y3−4λ

4y1)− (z2,z3,z4,2λ
2z3−4λ

4z1)
∣∣dτ

∣∣∣∣
≤
∣∣∣∣∫ t

t0

∣∣(y2− z2,y3− z3,y4− z4,2λ
2y3−2λ

2z3−4λ
4y1 +4λ

4z1)
∣∣dτ

∣∣∣∣
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≤ |t|
(
|y2− z2|+ |y3− z3|+ |y4− z4|+

∣∣2λ
2y3−2λ

2z3
∣∣+ ∣∣4λ

4y1−4λ
4z1
∣∣)

≤ |t|
(
|y− z|+2λ

2 |y3− z3|+4λ
4 |y1− z1|

)
≤ |t|

(
|y− z|+4λ

4 (|y3− z3|+ |y1− z1|)
)

≤ |t|
(
|y− z|+4λ

4 |y− z|
)

≤ |t|
(
1+4λ

4) |y− z|

≤ |t|K |y− z| ,

where K = 1+ 4λ 4 ≡ 1+L and c = |t|K < 1. Hence, T is a contraction. Next, we show that

ym −→ y, m = 1, 2, 3, . . . . Let ym ≡ ym and y0 = (0, 0, 0, 2) be fixed, then,

y1 = (0, 0, 0, 2)+
∫ t

0
f(τ, y0

1 y0
2 y0

3 y0
4)dτ

= (0, 0, 0, 2)+(0, 0, 2t, 0) = (0, 0, 2t, 2)

y2 = (0, 0, 0, 2)+
∫ t

0
(y1

2,y
1
3,y

1
4,2λ

2y1
3−4λ

4y1
1)dτ

= (0, 0, 0, 2)+(0, t2, 2t, 2λ
4t2) = (0, t2, 2t, 2+2λ

4t2)

y3 = (0, 0, 0, 2)+
∫ t

0
(y2

2,y
2
3,y

2
4,2λ

2y2
3−4λ

4y2
1)dτ

= (0, 0, 0, 2)+(
t3

3
, t2, 2t +

2
3

λ
2t3, 2λ

2t2) = (
t3

3
, t2, 2t +

2
3

λ
2t3, 2+2λ

2t2)

y4 = (0, 0, 0, 2)+
∫ t

0
(y3

2,y
3
3,y

3
4,2λ

2y3
3−4λ

4y3
1)dτ

= (
t3

3
, t2 +

1
6

λ
2t4, 2t +

2
3

λ
2t3, 2+2λ

2t2)

y5 = (0, 0, 0, 2)+
∫ t

0
(y4

2,y
4
3,y

4
4,2λ

2y4
3−4λ

4y4
1)dτ

= (0, 0, 0, 2)+(
t3

3
+

1
30

λ
2t5, t2 +

1
6

λ
2t4, 2t +

2
3

λ
2t3, 2λ

2t2)

= (
t3

3
, t2 +

1
6

λ
2t4, 2t +

2
3

λ
2t3, 2+2λ

2t2).
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Since y4 and y5 are sufficiently close to each other, then there is a cluster value (say y), and

therefore, ym −→ y as m−→ ∞.

Verification 2. Given a second order equation

y′′−2
√
|y|= 0 (19)

with the conditions y(0) = 0, y′(0) = 1.

Solution. Let y = y1 and y′ = y2. So,

y′1 = y2 ≡ f1

y′2 = 2
√
|y1| ≡ f2

f(t, y) = (y2,2
√
|y1|)

∂ f1

∂y2
= 1,

∂ f1

∂y1
= 0

∂ f2

∂y1
=

1

|y| 12
,

∂ f2

∂y2
= 0

=⇒
∣∣∣∣ ∂ f
∂y2

∣∣∣∣= 1,
∣∣∣∣ ∂ f
∂y1

∣∣∣∣= 1

|y| 12
f fails to satisfy the Lipschitz conditions at y = (0,0), and hence, the uniqueness fails.

Observe f is continuous but not Lipschitzian, however, it is possible to prove that the problem

has a solution around the neighborhood of t0 [11], though it is solution is not unique.

5. Conclusion

In conclusion, if we suppose f is a continuous vector-valued function defined on

Ω̂ := {(t,y) : |t|< ∞, |y|< ∞}

and satisfies Lipschitz conditions on each strip

(t,y) : |t| ≤ a, |y|< ∞

where a is any positive number. Then, the vector differential equation (6) has a solution which

exists for all real t. i.e. The iterative sequence {Φm(t)}∞

m=1 converge to a solution which exist

for all real t.
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