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Abstract. The paper deals with the applications of convex functions to convex and affine combinations. We use

combinations that have the common center. As a result of this approach, the Jensen type inequalities are obtained

in the discrete and integral form. This issue can also be considered with the functions which are not necessarily

convex.
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1. Introduction

In summary form, we present the concept of convexity and affinity by using binomial com-

binations in a real linear space X .

Let x,y ∈X be points and let κ,λ ∈ R be coefficients. Their binomial combination

(1) κx+λy

is convex if κ,λ ≥ 0 and if κ + λ = 1. If c = κx+ λy, then the point c itself is called the

combination center. A subset of X is convex if it contains all binomial convex combinations of

its points. The convex hull convS of a set S ⊆X is the smallest convex set which contains
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S , and it consists of all binomial convex combinations of points of S . A function f defined

on the convex set C ⊆X is convex if the inequality

(2) f (κx+λy)≤ κ f (x)+λ f (y)

holds for all binomial convex combinations κx+λy of pairs of points x,y ∈ C .

Using the adjective affine instead of convex, requiring that the condition κ +λ = 1 holds for

coefficients, and requiring that the equality holds in equation (2), we get a characterization of

the affinity.

Implementing mathematical induction, we can prove that all of the above properties concern-

ing binomial combinations apply to n-membered combinations for any positive integer n.

We present the discrete and integral form of the famous Jensen’s inequality. In 1905, applying

mathematical induction to the convex combination, Jensen has obtained in [4] the following

discrete inequality.

Discrete form of Jensen’s inequality. Let C be a convex set of a real linear space, and let

∑
n
i=1 κixi be a convex combination of points xi ∈ C .

Then the inequality

(3) f

(
n

∑
i=1

κixi

)
≤

n

∑
i=1

κi f (xi).

holds for every convex function f : C → R.

In 1906, working on transition to integrals, Jensen has stated in [5] the another form. Version

with the measurable set is as follows.

Integral form of Jensen’s inequality. Let S be a measurable set of a space of positive measure

µ so that µ(S )> 0, let I ⊆ R be an interval, and let g : S → R be an integrable function so

that g(S )⊆I .

Then the inequality

(4) f
(

1
µ(S )

∫
S

g(x)dµ

)
≤ 1

µ(S )

∫
S

f (g(x))dµ

holds for every convex function f : I → R such that f (g) is integrable.
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The extension of Jensen’s inequality to affine combinations, as well as the integral form of

that extension, can be found in [12]. Some new Jensen type inequalities were presented in [10].

2. Two Basic Inequalities

The aim of this short section is to repeat the derivation of two basic inequalities concerning a

convex function and their secant line by using binomial affine, and especially convex combina-

tions.

In what follows, we will use bounded intervals of real numbers, closed interval [a,b] and

open interval (a,b), with endpoints a less than b.

Using endpoints a and b, every number x ∈ R can be uniquely represented by the binomial

affine combination

(5) x =
b− x
b−a

a+
x−a
b−a

b.

This combination is convex if, and only if, the number x belongs to the closed interval [a,b].

Basic inequalities for convex functions can be obtained by applying the representing formula in

equation (5).

Let I ⊆ R be an interval containing the segment [a,b], let f : I → R be a function, and let

f sec
{a,b} : R→ R be the function of the secant line passing through the graph points (a, f (a)) and

(b, f (b)). Applying the affinity of f sec
{a,b} to the affine combination in (5), we get the equation

(6) f sec
{a,b}(x) =

b− x
b−a

f (a)+
x−a
b−a

f (b).

If the function f is convex, then we have two basic relations between the values f (x) and

f sec
{a,b}(x),

(7) f (x)≤ f sec
{a,b}(x) for x ∈ [a,b],

and

(8) f (x)≥ f sec
{a,b}(x) for x ∈I \ (a,b).
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To obtain the inequality in equation (7) concerning x ∈ [a,b], we apply the convexity of f to

f (x) respecting equation (5), and use equation (6),

(9) f (x)≤ b− x
b−a

f (a)+
x−a
b−a

f (b) = f sec
{a,b}(x).

To obtain the inequality in equation (7) concerning x ∈ I \ (a,b), we suppose that x ≤ a.

Applying equation (5) to the point a ∈ [x,b], we get the convex combination

(10) a =
b−a
b− x

x+
a− x
b− x

b.

Using equation (6), and applying the convexity of f to f (a) respecting the above combination,

we get

(11) f sec
{a,b}(x)≤

b− x
b−a

(
b−a
b− x

f (x)+
a− x
b− x

f (b)
)
+

x−a
b−a

f (b) = f (x).

The case x≥ b is handled in the same way.

The review of fundamental and particular inequalities, as well as the extended concept of

convex functions, was done in the book [8].

3. Main results

The main results are related to Jensen’s inequality, its generalizations and refinements. As

mentioned in the Introduction, Jensen has proved his inequality by applying mathematical in-

duction. On the other hand, we emphasize an importance of the secant and its affinity in proving

inequalities whose terms include affine combinations.

The basic statement of this section is the following lemma applicable to many other inequal-

ities.

Lemma 3.1. Let I ⊆R be an interval, and let f : I →R be a convex function. Let [a,b]⊆I

be a bounded closed subinterval, let ∑
n
i=1 κixi be a convex combination of points xi ∈I \(a,b),

and let αa+βb be the unique affine combination such that

(12) c =
n

∑
i=1

κixi = αa+βb.
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If c ∈ [a,b], then

(13) f

(
n

∑
i=1

κixi

)
≤ α f (a)+β f (b)≤

n

∑
i=1

κi f (xi).

If c ∈I \ (a,b), then

(14) α f (a)+β f (b)≤ f

(
n

∑
i=1

κixi

)
≤

n

∑
i=1

κi f (xi).

Proof. Let us firstly prove the inequality in equation (13). Relying on equation (7), the affinity

of f sec
{a,b}, and then equation (8), we get the series of inequalities

(15)

f

(
n

∑
i=1

κixi

)
≤ f sec

{a,b}

(
n

∑
i=1

κixi

)

=
n

∑
i=1

κi f sec
{a,b}(xi)

≤
n

∑
i=1

κi f (xi).

Extending the above series of inequalities by inserting the equality

(16) f sec
{a,b}

(
n

∑
i=1

κixi

)
= f sec
{a,b}(αa+βb) = α f (a)+β f (b),

we obtain the series which contains the double inequality in equation (13).

Let us now prove the inequality in equation (14). Using secant’s inequality in equation (8)

and Jensen’s inequality in equation (3), we get

(17) α f (a)+β f (b) = f sec
{a,b}(c)≤ f (c) = f

(
n

∑
i=1

κixi

)
≤

n

∑
i=1

κi f (xi)

ending the proof. �

The n-membered convex and binomial affine combination in Lemma 3.1 have the common

center c. The coefficients of the combination αa+ βb with the center c are determined with

fractions

(18) α =
b− c
b−a

, β =
c−a
b−a

by the representing formula in equation (5). The point c belongs to the interval I because it is

also the center of the convex combination of points in I .
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To visually explain the inequalities in equations (13) and (14) by the planar figure, we high-

light several points. First we take the graph points A = (a, f (a)) and B = (b, f (b)). The affine

combination

(19) S = αA+βB

belongs to the interval J = {
(
x, f sec
{a,b}(x)

)
: x ∈I } of the secant line through A and B. Then

we take the graph points Pi = (xi, f (xi)), and their convex hull P = conv{P1, . . . ,Pn}, which is

the convex polygon inscribed into the epigraph of the function f . The convex combination

(20) P =
n

∑
i=1

κiPi

belongs to the polygon P . The points S, P and C = (c, f (c)) have the common abscissa c.

Comparing the order of these three points on the line x = c, we notice the following two options.

The order

(21) C � S� P

holds for S ∈ [A,B], and the order

(22) S�C � P

holds for S ∈J \ (A,B). The equations (21)-(22) are equivalent to the equations (13)-(14), and

they are visually shown in Figure 1.

FIGURE 1. Visual presentation of equations (21) and (22)
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It is interesting that the Jensen inequality is a consequence of the inequality in equation

(13). To demonstrate that, let us take a convex function f : I → R and a convex combination

c = ∑
n
i=1 κixi of points xi ∈I . If the set {x1, . . . ,xn} is singleton, then every xi = c, so in this

case the trivial equality

(23) f (c) = f

(
n

∑
i=1

κixi

)
=

n

∑
i=1

κi f (xi) = f (c)

presents the Jensen inequality. If the set {x1, . . . ,xn} is not singleton, then it is equal to the set

{xi1, . . . ,xim} where xi1 < .. . < xim . Then c ∈ [xi j ,xi j+1] for some 1≤ j ≤ m. Taking a = xi j and

b = xi j+1 , we have achieved that all xi ∈ I \ (a,b), thus we can apply Lemma 3.1 and get the

inequality in equation (13) containing the Jensen inequality.

Furthermore, the formula in equation (13) can be used for refinements of Jensen’s inequality.

Corollary 3.2. Let I ⊆R be an interval, and let f : I →R be a convex function. Let [a,b]⊆I

be a bounded closed subinterval, let ∑
n
i=1 κixi be a convex combination of points xi ∈ I \

(a,b), and let ∑
m
j=1 λ jy j be a convex combination of points y j ∈ [a,b]. Assume that these two

combinations have the common center c.

Then

(24) f

(
n

∑
i=1

κixi

)
≤

m

∑
j=1

λ j f (y j)≤
n

∑
i=1

κi f (xi).

Proof. The point c belongs to [a,b] because it is the center of the convex combination of points

y j ∈ [a,b]. Let αa+βb be the unique binomial convex combination whose center falls into the

point c. Using Jensen’s and chord’s inequality, and the right inequality in equation (13), we get

the series of inequalities

(25)
f

(
n

∑
i=1

κixi

)
= f

(
m

∑
j=1

λ jy j

)
≤

m

∑
j=1

λ j f (y j)

≤ α f (a)+β f (b)≤
n

∑
i=1

κi f (xi)

containing equation (24). �
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The inequality in equation (24) can be used to obtain the Hermite-Hadamard inequality. A

special case of equation (24), with xi ∈ [a,b] instead of y j, is the inequality

(26) f (αa+βb)≤
n

∑
i=1

κi f (xi)≤ α f (a)+β f (b).

In order to get the integral sums, we fix a positive integer n and take the equidistant points

xni =
(
(n− i)/n

)
a+

(
i/n
)
b for i = 0,1, . . . ,n. Then we determine two convex combinations

whose centers fall into the same point,

(27) cn =
n−1

2n
a+

n+1
2n

b =
n

∑
i=1

xni− xni−1

b−a
xni.

Applying equation (26) to the above combinations, it follows that

f
(

n−1
2n

a+
n+1

2n
b
)
≤

n

∑
i=1

xni− xni−1

b−a
f (xni)≤

n−1
2n

f (a)+
n+1

2n
f (b),

and letting n to infinity, we obtain the Hermite-Hadamard inequality

(28) f
(

1
2

a+
1
2

b
)
≤ 1

b−a

∫ b

a
f (x)dx≤ 1

2
f (a)+

1
2

f (b).

In 1883, studying convex functions, Hermite has attained in [3] the important double inequal-

ity in equation (28). In 1893, not knowing Hermite’s result, Hadamard has gotten in [2] the left

inequality in equation (28). An interesting historical story about the inequality name can be

read in [9]. Extension of the Hermite-Hadamard inequality to convex functions of two variables

was presented in [6].

Convexity of the function f is not decisive for the validity of inequalities in equations (13)

and (14). It is sufficient that the function f is bellow the secant (more precisely, that f is not

above the secant) on the interval [a,b] , and above the secant (more precisely, that f is not bellow

the secant) on the remaining part of the domain.

Corollary 3.3. Let the assumptions of Lemma be fulfilled with a function f : I →R satisfying

the inequalities in equations (7) and (8), and which need not necessarily be convex.

Then the function f satisfies the double inequalities in equations (13) and (14).
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The barycenter of a set S ⊆ R respecting a measure µ on R so that µ(S )> 0 is the point

(29) c =
1

µ(S )

∫
S

xdµ.

If S is the interval, then its barycenter c belongs to S . If g is an integrable function on the set

S , then every affine function f : R→ R satisfies the equality

(30) f
(

1
µ(S )

∫
S

g(x)dµ

)
=

1
µ(S )

∫
S

f (g(x))dµ.

This equality can be easily verified by using the function equation f (x) = κx+λ where κ and

λ are real constants.

Theorem 3.4. Let µ be a positive measure on R. Let I ⊆R be an interval, and let f : I →R

be an integrable convex function. Let [a,b] ⊆ I be a bounded closed subinterval so that the

set S =I \ (a,b) has a positive µ-measure, and let αa+βb be the unique affine combination

such that

(31) c =
1

µ(S )

∫
S

xdµ = αa+βb.

If c ∈ [a,b], then

(32) f
(

1
µ(S )

∫
S

xdµ

)
≤ α f (a)+β f (b)≤ 1

µ(S )

∫
S

f (x)dµ.

If c ∈I \ (a,b), then

(33) α f (a)+β f (b)≤ f
(

1
µ(S )

∫
S

xdµ

)
≤ 1

µ(S )

∫
S

f (x)dµ.

Proof. The inequalities in (32) and (33) can be verified by applying the procedure of proving

Lemma 3.1. The key formula is

(34) f sec
{a,b}

(
1

µ(S )

∫
S

xdµ

)
=

1
µ(S )

∫
S

f sec
{a,b}(x)dµ

based on the affinity of f sec
{a,b} and equation (30). �

Connections between convex combination centers and set barycenters were also discussed in

[11].
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Corollary 3.5. Let the assumptions of Theorem 3.4 be fulfilled with an integrable function

f : I → R satisfying the inequalities in equations (7) and (8), and which need not necessarily

be convex.

Then the function f satisfies the double inequalities in equations (32) and (33).

4. Applications to Means

The applications of the function convexity and concavity can be realized by using quasi-

arithmetic means.

Let ∑
n
i=1 κixi be a convex combination of points xi ∈ I , and let ϕ : I → R be a strictly

monotone continuous function. The quasi-arithmetic mean of the above convex combination

respecting the function ϕ is the point defined by

(35) Mϕ(xi,κi) = ϕ
−1

(
n

∑
i=1

κiϕ(xi)

)
,

where the abbreviation Mϕ(xi,κi) replaces the full mark Mϕ(x1, . . . ,xn,κ1, . . . ,κn).

The term in parentheses belongs to the interval ϕ(I ), and therefore the quasi-arithmetic

mean Mϕ(xi,κi) belongs to the interval I . It is well known that quasi-arithmetic means satisfy

the invariant property

(36) Mϕ(xi,κi) = Mκϕ+λ (xi,κi)

where κ 6= 0 and λ are real constants.

Quasi-arithmetic means may also be applied to affine combinations, in the case where the

combination center belongs to the interval I .

The order of two quasi-arithmetic means Mϕ and Mψ can be determined if the composite

function ψ(ϕ−1) is convex or concave. We say that the function ψ is ϕ-convex (respectively

ϕ-concave) if the composite function ψ(ϕ−1) is convex (respectively concave).

In the next theorem, we will use the quasi-arithmetic means for convex and affine combina-

tions of Lemma 3.1.
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Theorem 4.1. Let I ⊆ R be an interval, and let ϕ,ψ : I → R be strictly monotone contin-

uous functions such that ψ is ϕ-convex and increasing. Let [a,b] ⊆ I be a bounded closed

subinterval, let ∑
n
i=1 κixi be a convex combination of points xi ∈I \ (a,b), and let αa+βb be

the unique affine combination such that

(37) c = Mϕ(xi,κi) = Mϕ(a,b,α,β ).

If c ∈ [a,b], then

(38) Mϕ(xi,κi)≤Mψ(a,b,α,β )≤Mψ(xi,κi).

If c ∈I \ (a,b), then

(39) Mψ(a,b,α,β )≤Mϕ(xi,κi)≤Mψ(xi,κi).

Proof. By acting with the function ϕ to the equality in equation (37), it follows that

(40) ϕ(c) =
n

∑
i=1

κiϕ(xi) = αϕ(a)+βϕ(b).

Let us prove the inequality in equation (38) assuming that c ∈ [a,b]. Applying the inequality

in equation (13) to the points ϕ(xi) and the convex function f = ψ(ϕ−1) : ϕ(I )→ R, we get

(41) f

(
n

∑
i=1

κiϕ(xi)

)
≤ α f (ϕ(a))+β f (ϕ(b))≤

n

∑
i=1

κi f (ϕ(xi)).

Acting with the increasing function ψ−1 to the above inequality, and taking into account that

f (ϕ(a)) = ψ(a), f (ϕ(b)) = ψ(b) and f (ϕ(xi)) = ψ(xi), we get the inequality

(42) ϕ
−1

(
n

∑
i=1

κiϕ(xi)

)
≤ ψ

−1(
αψ(a))+βψ(b)

)
≤ ψ

−1

(
n

∑
i=1

κiψ(xi)

)
representing those required in equation (38).

In a similar way, we can prove the inequality in equation (39). �

In the above theorem, we discussed the case that the function ψ is ϕ-convex and increasing.

Relying on this case, we can easily prove the following cases.

Corollary 4.2. Let ϕ and ψ be functions satisfying the conditions of Theorem 4.1.

If either ψ is ϕ-convex and increasing or ϕ-concave and decreasing, then the inequalities in

equations (38) and (39) are valid.
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If either ψ is ϕ-convex and decreasing or ϕ-concave and increasing, then the reverse in-

equalities in equations (38) and (39) are valid.

A special case of the quasi-arithmetic mean in equation (35) are power means depending on

real exponents r. Precisely, we use the functions

(43) ϕr(x) =


xr , r 6= 0

lnx , r = 0

where the variable x takes on only positive values. The power mean of order r of the convex

combination ∑
n
i=1 κixi of points xi ∈ (0,∞) is the point

(44) Mr(xi,κi) =



(
n

∑
i=1

κixr
i

) 1
r

, r 6= 0

exp

(
n

∑
i=1

κi lnxi

)
, r = 0

where the abbreviation Mr(xi,κi) replaces the full mark Mr(x1, . . . ,xn,κ1, . . . ,κn). In order to

facilitate the application of power means, one can use the formula

(45) M−r(x−1
i ,κi) =

(
Mr(xi,κi)

)−1
.

The application of Theorem 4.1 to power means is as follows.

Corollary 4.3. Let I = (0,∞) be the interval of positive real numbers, and let r ≤ s be real

numbers. Let [a,b]⊂I be a bounded closed subinterval, let ∑
n
i=1 κixi be a convex combination

of points xi ∈I \ (a,b), and let αa+βb be the unique affine combination such that

(46) c = Mr(xi,κi) = Mr(a,b,α,β ).

If c ∈ [a,b], then

(47) Mr(xi,κi)≤Ms(a,b,α,β )≤Ms(xi,κi).

If c ∈I \ (a,b), then

(48) Ms(a,b,α,β )≤Mr(xi,κi)≤Ms(xi,κi).
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Proof. The proof of inequalities in (47) and (48) takes place through several cases depending

on functions ϕ = ϕr and ψ = ϕs.

In the case 0 < r ≤ s, using functions ϕ(x) = xr and ψ(x) = xs, we have the composite

function ψ(ϕ−1(x)) = xs/r which is convex because s/r ≥ 1. The function ψ is ϕ-convex and

increasing, and the required inequalities in equations (47) and (48) follow from Theorem 4.1.

In the case r ≤ s < 0, the function ψ is ϕ-concave and decreasing, and the required inequali-

ties follow from Corollary 4.2.

In the case 0 = r < s, using functions ϕ(x) = lnx and ψ(x) = xs, we have the composite

function ψ(ϕ−1(x)) = esx which is convex. The function ψ is ϕ-convex and increasing, and the

required inequalities follow from Theorem 4.1.

In the case r < s = 0, the function ψ is ϕ-convex and increasing, and the required inequalities

follow from Theorem 4.1. �

At the end, we apply Corollary 4.3 to the harmonic-geometric (r =−1, s = 0) and geometric-

arithmetic (r = 0, s = 1) mean inequality.

In terms of the harmonic-geometric mean inequality, assuming that

(49) c =
n

∑
i=1

κix−1
i = αa−1 +βb−1,

it follows that the inequality

(50)

(
n

∑
i=1

κix−1
i

)−1

≤ aαbβ ≤
n

∏
i=1

xκi
i

holds for c ∈ [a,b], and that the inequality

(51) aαbβ ≤

(
n

∑
i=1

κix−1
i

)−1

≤
n

∏
i=1

xκi
i

holds for c ∈I \ (a,b).

Regarding the geometric-arithmetic mean inequality, assuming that

(52) c =
n

∏
i=1

xκi
i = aαbβ ,
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it follows that the inequality

(53)
n

∏
i=1

xκi
i ≤ αa+βb≤

n

∑
i=1

κixi

holds for c ∈ [a,b], and that the inequality

(54) αa+βb≤
n

∏
i=1

xκi
i ≤

n

∑
i=1

κixi

holds for c ∈I \ (a,b).

A good approach to the theory of means can be found in the book [1]. Applications of

Jensen’s inequality to different forms of quasi-arithmetic means, as well as their refinements,

were considered in the paper [7].

Further Research

Further research of the problem considered in this paper may be continued with the functions

of several variables. The basic problem is, what the bounded interval of real numbers should be

replaced with in higher dimensional Euclidean spaces. To continue studying, we can implement

the simplexes (simplices) as the smallest convex sets.
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