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1. Introduction

Let A and B be two invertible positive operators on a finite dimensional Hilbert space. Rela-

tive operator entropy is defined by (see [3])

S(A|B) = A2(logA~ZBA™7)AZ,
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which is an extension of the operator entropy introduced in [13] and [16]. More generally, the
generalized relative operator entropy

1 1

S,(A|B) = A?(A"1BA™2)9(logA 2 BA™2)A?,

for positive operators A and B and g € R was defined in [11]. We notice that when g = 0, we

have Sp(A|B) = S(A|B). Furuta [9] (see also [10]) proved the following inequality for a > 0
(1—1loga)A — éAB_lA < S(A|B) < (loga—1)A+ 23,
as a generalization of the upper and lower bounds of
A—AB 'A< S(A|IB)<B—A,

which was obtained in [4].
For positive operators A, B and 0 < A < 1, Tsallis relative operator entropy is defined as

follows (see [17])

B —

AT(A"2BA 1Y A1 —A A B—A
A N A

where A, B — Az (A_%BA_%)AA% is the A-geometric mean [12]. When A = %, Afiy B is denoted

T)(A|B) =

by A#B and called geometric mean. In particular AfoB = A, A#{B = B and Af_;B = AB™'A.

Tsallis relative operator entropy can be rewritten as

Bl

Ty (A|B) = A2 Iny (A" 2BA™2)A?,

where one-parameter extended logarithmic function Iny ¢ is defined by Injy t = VIT_I fort > 0.
In,, ¢ uniformly converges to the usual logarithmic function log# when A — 0. So Tsallis relative
operator entropy Ty (A|B) is a one-parameter extension of relative operator entropy S(A|B) in
the sense that limy,_,( 7} (A|B) = S(A|B). For more information on the Tsallis relative operator
entropy the reader is referred to [6], [7] and [17].

The relation between S(A|B), T, (A|B) and T (A|B) was considered in [5] and the following

inequalities was proved

T 4(A|B) < S(A|B) < T, (4]B) (L.1)

A—AB 'A< T (AB) <B-A, (1.2)
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and fora >0
1 1 1 1
Ay B— —Afl; B+ (ln;L —)A <71 (A]B) <-B—A- (ln,l —)Ajle. (1.3)
a a a a

In [15], operator (@, 3)-geometric mean for real numbers @, 8 was introduced as a general-

ization of the operator o-geometric mean AfyB as follows
At =A% (4"28a~E) A%,
In particular we have
Abiq)B=AtaB, Af_1pB=APBT'AP, A4, B=4AP, A4, pB=B.

The notion of relative operator (o, 3 )-entropy and Tsallis relative operator (a, B )-entropy was
defined in [14] as a parameter extensions of relative operator entropy and Tsallis relative op-

erator entropy. For invertible positive operators A, B and real numbers «, 3, relative operator
(o, B)-entropy is
B B B\ &% B B B
Sup(AlB) = A" (A‘fBA‘f) <logA_7BA_7> AL,
and Tsallis relative operator (o, )-entropy for o # 0 is

Ty p(AlB) =A% Ing (A‘gBA_§>A§.

In particular S, 1 (A|B) = S,(A|B), So,1(A|B) = S(A|B), Ty, 1 (A|B) = T),(A|B) and limg_,0 Ty, g (A|B) =
SO,B (A|B).

According to the definitions of Tj g(A|B) and Sy g(A|B), the following inequalities were proved

in [14] for A € (0,1] and B >0

T_; p(A|B) < Sy g(A|B) < T, g(A|B), (1.4)
AP —APB~1AP < Ty 5(AIB) < B— AP, (1.5)
and fora > 0
1 1 B 1 B 1
Aﬂ(l,ﬁ)B_;Aﬁ(lfl,B)B_F(ln?L ;)A < Tl7ﬁ(A|B) < EB_A —(hl/l E)Aﬁ(/l’ﬁ)B. (16)

We notice that these three inequalities are a generalization and refinement of the inequalities

(1.1), (1.2) and (1.3).
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In this paper, we introduce three parameter extensions of operator mean, relative operator
entropy and Tsallis relative operator entropy and present some new operator inequalities. Our
results will recover and generalize some existing inequalities in [8], [14] and [18]. A general-
ization of inequalities (1.4) and (1.6) is obtained in Theorem 2.7 and Theorem 2.9. In Theorem
2.11 we will give a refinement of Theorem 2.7. Some theorems of [18] will be extracted accord-
ing to Theorem 2.11. New upper and lower bounds of three parameter Tsallis relative operator
entropy will be introduced in Theorem 2.16. We will obtained tight bounds of Theorem 2.9
when a > 1. The main result of [8] and [18] will be concluded according to Theorem 2.16.
Theorem 2.20 will give precise upper and lower bounds of Theorem 2.7 which recover some
main operator inequalities of [8]. Indeed, we will extend corollary 2.5, propostion 2.3 and pro-
postion 2.4 in [8] by Theorem 2.20. We will get a generalization of the two last results of [8]
in Theorem 2.23 and Theorem 2.25. At the end, in Theorem 2.27 we obtain upper and lower

bounds of three parameter relative operator entropy.
2. Main Results

We introduce three parameter extension of operator mean, relative operator entropy and T-

sallis relative operator entropy in the following:

ﬁ ﬁ o Y
( B )B Y ( 7iB 77) £

for positive invertible operators A, B and real numbers a, 8, y. We would remark that Afl(; g ;B =
AV (AEBATR )AL Ay B =AY (ARBTIAR ) AL At p g B = At p)B. Af(0p y B=AT
and Aﬂ(a,l,l)B EAﬂaB

Definition 2.2. Relative operator («, f3,7)-entropy

Y

B B\ & B B
Soc,ﬁ#(A\B) =A2 (ATBAT) (logATBAff)A%

for positive invertible operators A, B and real numbers «, 3, y. In particular we have Sy g ,(A|B) =

Al (1ogA*§BA*§) A%, S, 5 5(AIB) = Sq 5 (A|B) and o1 1(A|B) = S(A|B).
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Definition 2.3. Tsallis relative operator (¢, 3, y)-entropy
Y _B B\ 7
Ty.p.,(A|B) = A% Ing (A 2 BA 2>A2

for positive invertible operators A, B and real numbers a # 0, 3, y. We note that T} g ,(A|B) =
Aﬂ(l’ﬁﬂ)B—Ay, T,l.ﬁ,y(A’B) EAY—Aﬁ(_l.ﬁ’Y)B, Ta,B,B(A‘B) = Ta,B(A’B) and Ta7171(A‘B> =
To(A|B).

Definition 2.4. Let f, g, h be real valued continuous functions on the closed interval I such that

g,h > 0. For invertible positive operators A and B, we define

8=

Or 5n(BIA) = h(A)3 £ (g(4) 2 Bg(A4)™3) (4)*.

We would remark that if ¢ = h, Q. ,(B|A) is equal to generalized perspective function Prxp(B|A)

introduced in [1](see also [2]).

Theorem 2.5. Let r,q,k,g and h be real valued continuous functions on the closed interval 1
such that g,.h > 0. If for t € I we have r(t) < q(t) < k(t), then for invertible positive operators
A and B

Qr,g,h (BlA) < Qq,g7h(B|A> g Qk,g,h(B|A)

Proof. According to the assumption, we have

1

r (g(A)_%Bg(A)_%> <q (g(A)_iBg(A)_%> <k (g(A)_%Bg(A)_%> 7
by multiplying h(A)% from both sides, the desired inequality is obtained. 0

Corollary 2.6. Let fi, f2,..., fn,g& and h be real valued continuous functions on the closed
interval I such that g,h > 0. If fort € I we have fi(t) < fo(t) < f3(t) < ... < fu(¢), then for

invertible positive operators A and B

O gn(BIA) < Qp o n(BIA) < Qpy g n(BIA) < ... < O, o n(BJA).

Theorem 2.7. Let B,y > 0 and A € (0,1]. For any invertible positive operators A and B, we

have

T_; py(A|B) < So g y(A|B) < Ty p,(AlB).
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Proof. Since for t > 0 we have

In_;t <logt <lInyt,
by putting (1) =In_j 1, q(t) = logt, k(t) = Iny t, g(t) = tP, h(r) = t? and using Theorem 2.5,
we obtain the result. U
Remark 2.8. According to Theorem 2.7, we get the inequality (1.4) by replacing y with f3.

Theorem 2.9. Let a, B,y > 0 and A € (0,1]. For any invertible positive operators A and B, we

have

1 1 1 1
At pyB— —Ab1ppB+(Iny 2)AT S T) g, (AIB) < Al p.B—A” — (Iny )AL p 1B

Proof. The following inequality holds for a,# > 0 and A € (0, 1] (see [5])

1 1 1 1

A A—1 A

"t — ()t +(Iny) —) <Inyt < (=)t — (Iny =)™ — 1.
(a) (nl ) A (a) ( A )

Applying Theorem 2.5 for (1) = t* — (a—ll)tl*1 + (Iny, é), q(t)=1Inyt,k(t) = ( Jt—(Iny - Dy 1,
g(1) =B and h(r) =17, give the desired result. O

Remark 2.10. We notice that Theorem 2.9 recover the inequalities (1.6), if we replace y with
B.
Theorem 2.11. Let a, 3,y > 0 and A € (0, 1]. For any invertible positive operators A and B, we

have

1
(1 —loga)AY — —A]j ~18,9)B At 2.8,y(AlB) — (loga—i—lnl 5) AY
< SO.,B,)/<A|B)
. (2.1)
< (loga)A”+ Ty p 1 (A|B) + (Iny —)ALa.p. B

1
< (loga — 1)AY+ aAﬁ(l,ﬁﬂ)B

Proof. For ¢ > 0 we have the following inequality

In_; (at) < log(at) < 1Iny (ar),
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which is equivalent to the following inequality

(at)™ —1
e

(at)* —1

<l <
og(t) 7

—loga+ —loga,

by easy calculation we get
loga—1In, L 4a? My a—
loga—Iny —+a “In_, t <logt <Inyt+1"1Inya—loga,
a
by putting r(t) = —loga —In;, é +a*In_yt, q(t) =logt, k(t) =Iny t +1*Iny a—loga, g(t) =
tP, h(t) =7 and using Theorem 2.5, we obtain the following inequality
1
-1
T AB)— (1 In; — | AY
a "T_; g (A|B) ( oga—+1Iny a)
<S A|B) (2.2)
< So,.4/(
< —(loga)A” 4Ty, g 4(A|B) + (Iny a)Af() g 1B,

if we replace a with Ult in the right side of the previous inequality, we obtain

1
ailT_;L7ﬁ7},(A|B) — (loga—i—ln;t ;) AY < 507[377,(A|B)
(2.3)

1
< (loga)AY +T, g ,(A|B) + (Iny, Aty B,
which is the second and third part of (2.1).
According to Theorem 2.9, we have T g ,(A|B) < éAﬁ(LB#)B —AY — (Iny, %)Aﬁ(lﬁﬁ)& SO
1 1
(loga)A” +T, g ,(A|B) + (Iny, JALappB < (loga — 1)AY + _AtapyB, (2.4)

which is the last inequality of (2.1).
Let f(A) = A(r—1) — (t* — 1) defined for > 0 and A € (0,1]. Since %f(?t) < 0 and
f(0) = f(1) =0, then f(A) > 0. It means that

A
" —1
<r—1. (2.5)
A
So for % > 0, we have the following inequality
(D=1 1
~atl (=) -1,
A (at)
which is equivalent to
1 A 1 1
Iny —+a "Iny (-) < (—)—1,
ny —+a "I (2) < ()
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if we multiple both sides by (—1), we obtain

By putting r(t) = 1 — L +1Iny 1, g(t) = a*In_y 1, g(t) =P, h(r) =1 and using Theorem 2.5,

we get the following inequality

1
a—’LT_,LM(A|B)>(1+1nl ) ——Ajj L1ppB (2.6)

According to (2.6), we have the following inequality

1
a_)LT—L[S,}/(AlB) — <loga+lnx 5) AY 2 (1 —loga)A — —Alj 1[g 7 (27)

which is the first inequality of (2.1). Now our proof is completed by inequalities (2.3), (2.4) and
2.7). O

The following corollaries are an immediate conclusions of Theorem 2.11:

Corollary 2.12. ([18], Theorem 2.3) If a > 0 and A € (0, 1], then for any invertible positive

operators A and B
(1—1loga)A — éAB_lA <a*T_,(AB) — (loch— (Iny, é)) A
S(A[B)
< (loga)A + T, (A]B) + (in; 1A%, B

1
< (loga—1)A+-B.
a

Proof. We notice that Theorem 2.11 generalize the above inequalities. The result now follows

from Theorem 2.11 by putting y=f = 1. U

Corollary 2.13. ([18], Theorem 2.2) Let a > 0 and A € (0,1]. For any invertible positive

operators A and B, we have

- (loga + (Iny, é)) A+a *T_; (A|B) < S(A|B) < T (A|B) + (Inj a)A#, B — (loga)A,

Proof. By putting y = 8 = 1 in (2.2), we obtain the result. U
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Corollary 2.14. ([18], Theorem 2.1) Let a > 0 and A € (0,1]. For any invertible positive

operators A and B, we have
_2 | B 1
a T,A(A’B) ZA——AB A+(lnl —)A.
a a

Proof. The desired inequality is concluded from inequality (2.6) as y=f8 = 1. 0J
Remark 2.15. Theorem 2.11 recover the inequalities of Theorem 2.7, if we puta = 1.

Theorem 2.16. Let a, 3,7y >0, A € (0,1] and t € |0, 1]. For any invertible positive operators A
and B, the following inequalities (i) and (ii) hold.
(i) If 0 <a <1, then

1 1
Ay py)B— ;Aﬁ(x—l,ﬁ,y)B + (Iny, 5)147 < BAY BB —LAL 18,8 —DbA”

< T/l,ﬁ,y(A‘B>

(2.8)
< l]Aﬂ(]ﬁ’y)B+12A|j(17ﬁ7},)3 — l3Ay
1 1
< aAﬁ(lvﬁaY)B — (ln;L ;)Aﬁ(l,ﬁ,y)B —Ay.
(ii) If a > 1, then
1 1
l3Aﬂ(/1,[3,7/)B — llAﬁ(l—l,ﬁ,y)B — ley g Alj(/'l,,[i,y)B — 5A|j(l—l,ﬁ,y)B+ (ln;L ;)Ay
< T py(A[B)
(2.9)

1 1
S At pyB— (g 2)Alp 9B —AT
< LAt g,y B+ DhAf gy B—BAY,
where

Aa*! t(a* —1) _ A+ (—1)(d* - 1)

TAfE (0] 2T A (0] BT A (1)

Proof. (i) The inequalities which is obtained in ([18], Theorem 2.4), can be rewritten as follows

fort >0

Lt — LA = <Ingt < Lt + bt — 1.
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by putting r(r) = lst* — 1A~ — b, q(t) = Iny 1, k(1) = it + lot* — 13, g(t) =B, h(r) =17 and
using Theorem 2.5, we obtain the following inequality

LAYy B — 1AL -1 p.y)B — LAY < T) g 4(AlB)

(2.10)
< LAt gy B+ hAR( gyB—BAY,

which is the second and third part of inequalities (2.8).
According to the proof of Furuichi’s main theorem [8], we have the following inequalities for

t>0and0<a<l

1 1
== (ny =) < Bt — LA -
a a

1
Lit+bht* —13 < ~t —
a

We put rq (l‘) = l‘)L — ét’lil + (ll’l;t é), ql(t) = l3t/l —lll‘lfl — D, rz(l‘) = lll‘—f—lzl‘)L — I3 and qg(t) =

1)
In, =)t —1
(nza)

ét — (Iny, é)ﬁL — 1. Since r1(t) < qi1(t) and ra(t) < q2(¢), by putting g(t) = B, h(r) = 17 and

using Theorem 2.5, we get the following inequalities
1 1
AfpyB— A1 pyB+(ny )AT SBALG gy B—hASG 1 ppB—0AT,  (211)

1 1
llAjj(17ﬁ7y)B—|—leﬁ(Lﬁ’},)B — l3AY < EAJj(l,ﬁ,y)B — (ln,l E)Aﬁ(lvﬁ#)B —A7. (2.12)
According to the inequalities (2.10), (2.11) and (2.12) the proof of (i) is completed.
(ii) According to the proof of Furuichi’s main theorem [8], the following inequalities are

obtained fora >1andt >0

1 1
== e (Iny =) > Bt — LA — D,
a

1 1
Lt +Dt* —13 > —t — (Iny —)* — 1.
a

_l‘_
a

We define rq (Z‘) = 131‘7L —lll‘/l_l — by, q1 (l‘) 21‘7L — %t’l_l +(1n,1 L_lz)’ rz(t) = %t— (ln;L %)tl —1and
q2(t) = Iyt + Ipt* — 3. Since r|(t) < g1 (t) and r5(t) < ¢2(t), by putting g(t) =P, h(r) =17 and

using Theorem 2.5, we get the following inequalities
1 1
BALG BB —liA -1 py)B— AT SABGpyB— At ppB+(m)A%,  (2.13)

1 1
aAlj(l,ﬁ,y)B — (ln;L ;)Aﬂ(l,ﬁ,y)B —AY < llAﬁ(17ﬁ7y)B—|— leﬂ(;L7577’)B — I3A7. (2.14)

Now inequalities (2.9) of (ii) are obtained by Theorem 2.9, inequalities (2.13) and (2.14). U
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Corollary 2.17. ([8], Theorem 2.1) Let a > 0 and A € (0, 1]. For any invertible positive opera-
tors A and B, the following inequalities (i) and (ii) hold.
(i) If 0 <a < 1, then
1 1
A]j/lB — aAﬂ)L,IB—{— (ln;L 5)14 < BAf)B— llAﬁ)Lle —hA
< T).(A|B)
< B+ hAt),B— 1A
1 1
<-B-— (11’1,1 —)AﬁAB—A.
a a
(ii) If a > 1, then
1 1
[3Af; B— 1Ay _1B—hA < At B— EAﬂl—lB—'_ (ln;L Z)A
< T(A|B)
1 1
< —B—(Inp —)ApB—A
a a

<UB+DbAfB— 1A,

where
. Aar! L t(a* —1) z _Adr (- 1)(a* 1)
A (-] P A+ (-] O Afrat+(1-1)]
Proof. It follows from Theorem 2.16 by putting y= 8 = 1. 0

Corollary 2.18. ([18], Theorem 2.4) Let a > 0 and A € (0,1] and t € [0,1]. For any invertible

positive operators A and B, we have

I3A, B— 1A, _1B—hA < Ty (A|B) < 1B+ LA#3 B— A,

where
B Aa*! 5 t(a* —1) e rar +(t—1)(a* —1)
A+ (-0 7 A+ (-0 O Afd+(1-1)]

Proof. We obtain the result by using inequalities (2.10) with y = = 1. 0

Remark 2.19.
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(1) Inequalities (2.8) give precise bounds of inequalities (2.10) when 0 < a < 1.
(i1) The inequalities (2.9) are a refinement of Theorem 2.9. Indeed, the inequalities (2.9) shows

that we can obtain tight bounds of Theorem 2.9 when a > 1.

Theorem 2.20. Let a, 3,y > 0 and A € (0,1]. For any invertible positive operators A and B we

have

(i) If 0 <a < 1, then

1 1
AT — ()R ppB+(Ing )AL 3B

< (a* —1ny a)A”—a’l’IAﬁ(_ B

.B,7)

S T3 py(AlB) < Sop y(AlB) < Ty g 4(A|B) (2.15)

< (ln,l a —al)Ay—f-al_lAﬁ(Lﬁ’},)B

1 1
< A% pyB—A—(Iny ~)AlGp B

(ii) If a > 1, then
(al - ln,l a)Ay—al_lAJi(_lﬁ’},)B

1 1
SAT=(D)A8 1 py B+ (Iny )AB 15y B

ST 5. py(AlB) < Sopy(AlB) < Ty g 4(A|B) (2.16)
< éAﬁ(l,Bﬁ)B — AT~ (Iny £>Aﬁ<x.ﬁ,w3

< (Inya—a*)A"+a*'A4(, 5B
Proof. (i) According to (2.5), the following inequality holds for t,a > 0

t
<__17

which is equivalent to
lnlt (111/161 a )‘I‘dl_ll
by putting r(¢) = Iny 1, g(t) = (Iny a —a*) +a*~'t, g(t) =P, h(r) =" and using Theorem 2.5,

we get the following inequality

Ty, p.4(A|B) < (Ing a — aA)AY—f—aA*lA]j(l_ﬁ’y)B. (2.17)
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According to Theorem 2.7, inequalities (2.6) and (2.17) we get
1+l D)a*A” — 1A BLT AlB
( +1Iny a)a —a ﬁ(fl,B,y) = —l,ﬁJ’( | )
< Sopy(AlB) (2.18)
< Ty py(AIB) < (Inya—a*)A” +a* Aty g B
Now it remains to prove the first and last inequalities of (2.15). For 0 < a < 1, the following
inequality holds by Theorem 2.16

1
hAS1p.yB+0ALGp 9B —BAT < Al ppB—(Iny ~ )Alj 2.8.nB—AT.

If we putt =0, we have [| = al_l, b =0and /3 = at — Iny a. So
. 2 y_ 1 1 y 519
Ab,pyB— (0" —Ing a)AT < —Ab1p. B — (Iny —)ALa g B — A, (2.19)
which is the last inequality of (2.15). The inequality (2.19) is equivalent to
Al (A 1 1
a* t—(a" —1Inja) < —t—(Iny —)t* —1, (2.20)
a a

for t > 0. Replacing 7 with % in (2.20) and then multiplying both sides by (—1), we get

A 0) (@ @) > 1= (5)(5) (I L

by putting r(t) = 1 — (1) (1) + (ng 1), g(t) = —a* (1) + (a* —In; a). g(r) = 1P h(t) = 1"

and using Theorem 2.5, we obtain the following inequality
_ 1
—d lAij(,LB,},)B—l— (a’l —Iny a)AY > AY — ( JA$ (1,9 B+ (Iny — )A]j .88 (2.21)

So according to (2.18), (2.19) and (2.21), the proof of (i) is completed.
(ii) For t > 0, the following inequality [5] holds for a > 0

1 11 1.,
Iny - < —(=)— (Iny, =)t * —1,
- < () = (g )

Q

which can be rewritten as follows

1.1
In ll 1——(;)4—(1111 —)l‘_l.
a
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by putting (1) = 1 — (1) + (In, )t‘l, q(t) =In_j, 1, g(t) =B, h(r) =1 and using Theorem
2.5, we get the following inequality
y ] 1

T 3 p(AlB,Y) 2 AT = (Z)Al(-1pyB+(In2 ~)A8(a 5.5)B. (2.22)

So according to Theorem 2.7, Theorem 2.9 and inequality (2.22) we deduce
1 1
AT = ()A8 1 pyB+ (g )AL p.y)B
ST apy(AlB)

< So,.(A[B)

(2.23)

1
STopyAIB) < Al p.pB—A" = (In ~ )Aﬂ 2818
To complete the proof, we must obtain the first and last inequalities of (2.16). For a > 1,

according to Theorem 2.16 we have
1 1
JAL gy B — (g 2)ALG p ) B—AT S LAY g B +DbALGp B —BAT,

since for t = 0 we have [} = al_l, lh=0and Iz = at — Iny, a, then we deduce the following

inequality
1 1 _
ApyB = (I )AbapyB—AT <a* Ak p B~ (¢" —Ing @)AT, (2.24)

which is equivalent to the following scalar inequality

1 1
~t—(Iny, 2)* =1 <d* i — (d* —Iny a),
a a

for t > 0. Now by replacing ¢ with % and multiplying both sides by (—1), we get

b 1

1
1+ (Iny, ;)t ) = —a}”_l(;) +(a* —1nj a).

by putting r(t) = —a*~' (1) + (a* ~Iny a), q(r) = 1+ (Iny D)=t — 1(1). g(r) = 1B h(o) = 17

and using Theorem 2.5, we obtain the following inequality
A+ (Iny )Ajj appB- ( JAR(1ppB > (a* —Inja)AT —a* A g 0B (2.25)

Now according to inequalities (2.23), (2.24) and (2.25), we get the inequalities (2.16) and this

completes the proof of (ii). U
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Corollary 2.21. ([8], Corollary 2.5) Let a > 0 and A € (0,1]. For any invertible positive

operators A and B we have
(i) If 0 <a < 1, then
1 1
A—(=)AB7'A+(Iny 2)Af_; B < (a* —Iny a)A—a* "' (AB~'A)
a a
ST, (A[B) < S(AB) < T).(A|B)
<(Inja—d )A+d*"'B
1 1
< -B—A— (ll’ll —)AﬁAB.
a a
(ii) If a > 1, then
1 1
(a* —Iny a)A—a*'"AB™'A <A—(=)AB~'A+ (In; —)A#_, B
a a

ST (A|B) < S(A|B) < T),(A|B)
1 1

< -B—A—(Iny —)A4,B
a a

< (Inja—d*)A+d*7'B.

Proof. By putting y = 8 = 1 in Theorem 2.20, we get the result. U

Remark 2.22.

(i) Putting y = = 1 in (2.18), we get the inequalities shown in ([8], Proposition 2.3). More-
over, the inequalities (2.23) are a generalization of the inequalities obtained in ([8], Propo-
sition 2.4).

(i) Theorem 2.20 give precise upper and lower bounds of Theorem 2.7 when 0 < a < 1 and
a>1.

Theorem 2.23.

(i) If A € [5,1], @ € [~1,0)U(0,1], B,y > 0and 0 < AP < B, then

NIR

A B4+AY\ !
0<T_15,(AB) < T p,(A|B) <243 [1—A3 (%) A5] A

v (AT A g B\ 1| 1
[I—A2< 2“”‘“ ) A A% < Sop,(AlB)

Aﬁ a B—Aﬂ _a B
< A TIEERIE <at ) B AT (4715 5 0B ) AT < T (AIB) < Ti g 4(AIB).

IR

<2a
a
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(ii) fA € [3,1], a €

T_]7ﬁ7’}/(A|B) <

< Sup(AlB) < A?

<2A%

1
Proof. (i) According to ([8], Lemma 2.6), for A € [5, 1],x e

0

Define fi(t) =0, fo(t) =
fr(t) =172 Ingt, f3(t)

T 5.p4(AB) <

M.B. GHAEMI, N. GHARAKHANLU, S. FURUICHI

[—1,0)U(0,1], B,y>0and 0 < B < AP, then

Afe pypB—Al(—¢ppB
(04

_AY(A] -1 Y

Y —1
AL (A +Aﬁ(a7ﬁm3) Al
o 2

7N 1
1Al (Ah(l,ﬁ,yz)B+A ) A

2

~

Y
2

A

=2

A

< Ty py(AIB) <Tj g 4(A|B) <O

[—1,0)U(0,1] and 7 > 1, we have
l—léln_lt < 2(t—1) < 2Ingt
t t+1 * 41
< logt (2.26)
<t gt < <<
X n — xn X P
(04 \/; A
2(t-1)
L= A0 =030, falr) = 5 f5(0) = 38 falr) = logt,
= % fo(t) =1ny t and f1o(t) =t — 1. Apply Corollary 2.6 with g(z) =

tP and h(r) = 1 to conclude the following inequality

0 <AY - Af

We notice that r >

A-5BA-5 1
L aB<T 4 g (AB) <2ab |ABAT 2D g
BB By _B_._B
(A~5BA5 1 1)
B B
2Ing(A~5BAS
<Ak | 2l B ) 4Ly alB)
A-5Ba-)ye 41
( ; )%+ o (2.27)
<At la~2BA~ ) %ma(A*fBA*f)}A%
Y[ 1 1 Y
<a¥|(a=tpam)r—(a72pam2) 3] Ad

1 implies 0 < AP <B. By some mathematical calculation we get
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(a)
AiBA R -1 Al iBah—1Al  AduppB-AY
ASBAS 11 A¥a-hBahab AlapyBHAY
_, 2A7
Al pyB+AY
Ab(1p.pB+AT
—J_A} o, 2 ) A%.
(b)
8,8 B By
Al ZIHO;(A ZﬁBA 2) A%—EA% (A ;BA Z) —1 Al
(A"2BA=2)% + 1 @ (A zBA )2+
—%A% Aﬁ“BYB_Ay 3
o |AdepyBtAY
2 4| 2AY Y
= ZA2 |1 A2
o Aﬁ(aﬁ’y)B—f—Ay
[ Y
_ 20 Ad (Aﬂ B+A) A% A3
o 2
(©)
y ;o[ BATHS —(atBa5)]
AT [(A=TBA ) F Ing (A zBA")]Af:Ai p ]Az
_AlgppB-Al-gpy
o
(d)
Y B.1 B, 1 Y B % Y
Al (A—zBA—f)f—(A—zBA‘f)‘f]Af:Aﬁ(%ﬁy)B A? (AfB_lAf) ]Az

So according to inequalities (2.27) and the previous calculations, we obtain the inequalities of

(i) and this completes the proof.
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1
(ii) For A € [5,1], o€ [—1,0)U(0,1] and 0 < ¢ < 1, we have ([8], Lemma 2.6)

r—1 _a
1—?<1n_ll<7<l 21nat

<log! (2.28)

21nat<2(t—1)
S |

<y r<r—1<0.

The proof is completed similarly as in (i) according to Corollary 2.6. We notice that 0 <t < 1
is equivalent to 0 < B < AB. OJ

Corollary 2.24. ([8], Theorem 2.8)

(i) If A € [3,1], ¢ € [-1,0)U(0,1] and 0 < A < B, then

A+B\ !
0< T 1(A|B) < T ,(A|B) < 242 ll—Ai (L> AEIA%

2
2 A+AtB\ !
<&A% I—A‘( Al ) A5]A5<S(AIB)
AtaB—Af_oB o
- <A|j%B—A<A’ 4B )A<T,1(A|B) < Ti(A|B).

| . AteB—Af_oB
T 1(A[B) < T_1(AlB) < Aty B—A (A’ 8B )A <—=—
—1
<S(A|B)<§A§ [—A? (f%m) Az | A2

1

A+B\ !
<242 ll—A% (%) A2 | AT < Ty (A|B) < Ty(A|B) <0.

Proof. We note that Theorem 2.23 is a generalization of the above inequalities. Indeed, the

result follows from Theorem 2.23 by putting y=f = 1. U

Theorem 2.25. We have
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(i) If & € (0,1), B,y > 0 and 0 < AP < B, then

2y v (AT+AL gy B RN
0T AB)<T_ A|B) < A2 |[-A2 A2| A2
54(AIB) < T g AIB) < 3 [ (et
At x p \B—A8 1, ..B
(77133’)/) (773137’)/)
< Sop ylAlB) < — 2L
< Ty py(A|B) < Ty g 4(AlB).
(i) If A € (0,1], B,y > 0and 0 < B < AP, then
At x o \B—A#, 2, ..B
(77B7 ) (7751377)
T 1 py(AB) ST pyAlB) S — 5
2 7 y (AT+ Al B\ ' 1] 1
< A|B) < A2 |[-A2 = A2| A2
Sp A(AIB) < 7 [ (et
<T)p,(AlB) <T g,(AlB) <O.
Proof. According to the inequalities (2.26) and (2.28), we have
(i)If A € (0,1] and ¢ > 1, then
2Iny ¢ A
In_; < T <logt <t 2Inyzr <lInyt. (2.29)
(ii) If A € (0,1] and 0 < 7 < 1, then
21ny ¢
In_jyt <t FIngr <logr < Al <iny s, (2.30)

Now the proof of the Theorem can be completed by using Corollary 2.6, Theorem 2.23 and

inequalities (2.29) and (2.30). ]

Corollary 2.26. ([8], Corollary 2.9)

(i) If A € (0,1] and 0 < A < B, then

< S(A|B) <

< T (AlB) < Ti(AlB).



20 M.B. GHAEMI, N. GHARAKHANLU, S. FURUICHI

(ii) If L € (0,1] and 0 < B < A, then

T_1(A|B) <T_,(A|B) < — 2
1
[—Az (W) Ai] Al

< T,(AIB) < Ty(A[B) <0.

< S(A|B) < A2

L)

Proof. The desired inequalities is obtained by putting ¥ = 8 = 1 in Theorem 2.25. U

Theorem 2.27. Let a,3,y > 0 and A € (0,1]. For any invertible positive operators A and B we

have
1 1 ¥
Abpy)B— _AbG-1pyB+ (g —)AT< 53 6 (A[B)

1 1
< ZAlarpyB — (g —)A%02 B — Al p.yB.

Proof. We have the following inequality for ¢ > 0 (see [14])
1 1 1 1
* — = +1ny = <tlogr < i (—t — (Iny, =)t — 1) .
a a a a

Applying Theorem 2.5 for r(r) = t* — %t’l’l +1Iny % q(t) =r*logt, k(t) =t* Gt — (Iny, é)ﬁL - 1) ,

g(t) =B, h(r) =17, we obtain the desired result.

Corollary 2.28. ([14], Corollary 3.4) Let a,3 > 0 and A € (0,1]. For any invertible positive

operators A and B we have
1 1.8
Ab(2.p)B — ~Ab-1p)B+ (Iny —)A” < 53 p(A[B)

1 1
< ;An(l—ﬁ—l,ﬁ)B — (ln;L E)Ajj(27hﬁ)B _Aﬂ(l,ﬁ)B-

Proof. It follows from Theorem 2.27 by replacing y with 3.

Conflict of Interests

The authors declare that there is no conflict of interests.



OPERATOR INEQUALITIES ASSOCIATED WITH RELATIVE OPERATOR ENTROPIES 21

REFERENCES

[1] A. Ebadia, I. Nikoufar, M. Eshaghi Gordji, Perspective of matrix convex functions, Proc. Natl. Acad. Sci.
USA. 108 (2011), 7313-7314.
[2] E. G. Effros, A matrix convexity approach to some celebrated quantum inequalities, Proc. Natl. Acad. Sci.
USA. 106 (2009), 1006-1008.
[3] J.I. Fujii, E. Kamei, Relative operator entropy in noncommutative information theory, Math. Jpn. 34 (1989),
341-348.
[4] J. L. Fujii, E. Kamei, Uhlmann’s interpolational method for operator means, Math. Jpon. 34 (1989), 541-547.
[5] S. Furuichi, K.Yanagi, K.Kuriyama, A note on operator inequalities of Tsallis relative operator entropy,
Linear Algebra Appl. 407 (2005), 19-31.
[6] S. Furuichi, K. Yanagi, K. Kuriyama, Fundamental properties of Tsallis relative entropy, J. Math. Phys. 45
(2004), 4868-4877.
[7] S. Furuichi, Inequalities for Tsallis relative entropy and generalized skew information, Linear Multilinear
Algebra. 59 (2011), 1143-1158.
[8] S. Furuichi, Precise estimates of bounds on relative operator entropies, Math. Ineq. Appl. 18 (2015), 869-877.
[9] T. Furuta, Furuta’s inequality and its application to the relative operator entropy, J. Operator Theory. 30
(1993), 21-30.
[10] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London and New York, (2001).
[11] T. Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear
Algebra Appl. 381 (2004), 219-235.
[12] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 246 (1979-1980), 205-224.
[13] M. Nakamura, H. Umegaki, A note on the entropy for operator algebras, Proc. Japan Acad. 37 (1967), 149-
154.
[14] I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376-383.
[15] I. Nikoufar, A. Ebadian, M. EshagiGordji, The simplest proof of Lieb concavity theorem, Adv. Math. 248
(2013), 531-533.
[16] H. Umegaki, Conditional expectation in operator algebra IV (entropy and information), Kodai Math. Sem.
Rep. 14 (1962), 59-85.
[17] K.Yanagi, K.Kuriyama, S.Furuichi, Generalized Shannon inequalities based on Tsallis relative operator en-
tropy, Linear Algebra Appl. 394 (2005), 109-118.
[18] L. Zou, Operator inequalities associated with Tsallis relative operator entropy, Math. Ineq. Appl. 18 (2015),
401-406.



