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of vectors are established. Applications for the approximation of the discrete Fourier and the Melin transforms of

bounded linear operators on a Hilbert space are provided.

Keywords: Grüss inequality; Semi-inner product C∗-modules; C∗-algebra; Bounded linear operator.

2010 AMS Subject Classification: 46L08, 46H25.

1. Introduction

The development of mathematical inequalities (Schwarz, triangle, Bessel, Grüss, Gram,

Hadamard, Landau, Čebys̆ev, Holder, Minkowsky, etc.) has experienced a surge, having been

stimulated by their applications in different branches of pure and applied Mathematics. These

inequalities have been frequently used as powerful tools in obtaining bounds or estimating the

errors for various approximation formulae occurring in the domains mentioned above. There-

fore, any new advancement related to these fundamental facts will have a flow of important

consequences in the mathematical fields where these inequalities have been used before.
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For two Lebesgue integrable functions f ,g : [a,b]→ R, consider the Čebys̆ev functional:

T ( f ,g) :=
1

b−a

∫ b

a
f (t)g(t)dt− 1

b−a

∫ b

a
f (t)dt

1
b−a

∫ b

a
g(t)dt.

In 1934, G. Grüss [7] showed that

(1) |T ( f ,g)| ≤ 1
4
(M−m)(N−n),

provided m,M,n,N are real numbers with the property −∞ < m ≤ f ≤M < ∞ and −∞ < n ≤

g≤ N < ∞ a.e. on [a,b]. The constant 1
4 is best possible in the sense that it cannot be replaced

by a smaller quantity and is achieved for

f (x) = g(x) = sgn
(

x− a+b
2

)
.

The discrete version of (1) states that: If a≤ ai≤A, b≤ bi≤B, (i= 1, ...,n) where a,A,b,B,ai,bi

are real numbers, then

(2)

∣∣∣∣∣1n n

∑
i=1

aibi−
1
n

n

∑
i=1

ai.
1
n

n

∑
i=1

bi

∣∣∣∣∣≤ 1
4
(A−a)(B−b),

where the constant 1
4 is the best possible for an arbitrary n≥ 1. Some refinements of the discrete

version of Grüss inequality (2) are given in [1, 8]. In [4] some new inequalities of Schwarz and

Buzano type for n-tuples of vectors and applications for norm and numerical radius inequalities

for n-tuples of bounded linear operators are given.

In the recent years, the Grüss inequality (1) has been investigated, applied and generalized by

many authors in different areas of mathematics, among others in inner product spaces [3], in the

approximation of integral transforms [11] and the references therein, in semi-inner ∗-modules

for positive linear functionals and C∗-seminorms [5], for positive maps [13], in inner product

modules over H∗-algebras and C∗-algebras [10]. A further extension of Grüss type inequality

for Bochner integrals of vector-valued functions in Hilbert C∗-modules is given in [6].

For an entire chapter devoted to the history of this inequality see [12] where further references

are given. We recall some of the most important Grüss type discrete inequalities for inner

product spaces that are available in [2].
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Theorem 1.1. Let (H;〈·, ·〉) be an inner product space over K; (K = C,R), xi, yi ∈ H, pi ≥

0 (i = 1, ...,n) (n≥ 2) with ∑
n
i=1 pi = 1. If x,X ,y,Y ∈ H are such that

Re〈X− xi,xi− x〉 ≥ 0 and Re〈Y − yi,yi− y〉 ≥ 0

for all i ∈ {1, ...,n}, or, equivalently,∥∥∥∥xi−
x+X

2

∥∥∥∥≤ 1
2
‖X− x‖ and

∥∥∥∥yi−
y+Y

2

∥∥∥∥≤ 1
2
‖Y − y‖

for all i ∈ {1, ...,n}, then the following inequality holds

(3)

∣∣∣∣∣ n

∑
i=1

pi〈xi,yi〉−

〈
n

∑
i=1

pixi,
n

∑
i=1

piyi

〉∣∣∣∣∣≤ 1
4
‖X− x‖‖Y − y‖.

The constant 1
4 is best possible in the sense that it cannot be replaced by a smaller quantity.

Theorem 1.2. Let (H;〈·, ·〉) and K be as above and x = (x1, ...,xn) ∈Hn, α = (α1, ...,αn) ∈Kn

and p = (p1, ..., pn) a probability vector. If x,X ∈ H are such that

Re〈X− xi,xi− x〉 ≥ 0 f or all i ∈ {1, ...,n},

or, equivalently, ∥∥∥∥xi−
x+X

2

∥∥∥∥≤ 1
2
‖X− x‖ f or all i ∈ {1, ...,n},

holds, then the following inequality holds∥∥∥∥∥ n

∑
i=1

piαixi−
n

∑
i=1

piαi

n

∑
i=1

pixi

∥∥∥∥∥≤ 1
2
‖X− x‖

n

∑
i=1

pi

∣∣∣∣∣αi−
n

∑
j=1

p jα j

∣∣∣∣∣
≤ 1

2
‖X− x‖

 n

∑
i=1

pi|αi|2−

∣∣∣∣∣ n

∑
i=1

piαi

∣∣∣∣∣
2
 1

2

.(4)

The constant 1
2 in the first and second inequalities is best possible.

Motivated by the above results in the present paper, we obtain some further generalization of

Grüss type inequalities in semi-inner product modules over C∗-algebras. we give some analogue

of the discrete Grüss inequality (2) for n-tuples of vectors, which are generalizations of Theorem

1.1 and Theorem 1.2. We also give some their applications for the approximation of the discrete

Fourier and Melin transforms. In order to do that we need the following preliminary definitions

and results.
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2. Preliminaries

The theory of Hilbert spaces plays a central role in contemporary mathematics with numer-

ous applications for linear operators, matrix analysis, partial differential equations, nonlinear

analysis, approximation theory, optimization theory, numerical analysis, probability theory, sta-

tistics and other fields. Hilbert spaces have a rich geometric structure because they are endowed

with an inner product that allows the introduction of the concept of orthogonality of vectors.

Hilbert C∗-modules are used as the framework for Kasparov’s bivariant K-theory and form the

technical underpinning for the C∗-algebraic approach to quantum groups. Hilbert C∗-modules

are very useful in the following research areas: operator K-theory, index theory for operator-

valued conditional expectations, group representation theory, the theory of AW ∗-algebras, non-

commutative geometry, and others. Hilbert C∗-modules form a category in between Banach

spaces and Hilbert spaces and obey the same axioms as a Hilbert space except that the inner

product takes values in a general C∗-algebra rather than the complex number C. This sim-

ple generalization gives a lot of trouble. Fundamental and familiar Hilbert space properties like

Pythagoras’ equality, self-duality and decomposition into orthogonal complements must be giv-

en up. Moreover, a bounded module map between Hilbert C∗-modules does not need to have

an adjoint; not every adjointable operator needs to have a polar decomposition. Hence to get its

applications, we have to use it with great care.

Let A be a C∗-algebra. A semi-inner product module over A is a right module X over A

together with a generalized semi-inner product, that is with a mapping 〈., .〉 on X ×X , which is

A -valued and has the following properties:

(i) 〈x,y+ z〉= 〈x,y〉+ 〈x,z〉 for all x,y,z ∈ X ,

(ii) 〈x,ya〉= 〈x,y〉a for x,y ∈ X ,a ∈A ,

(iii) 〈x,y〉∗ = 〈y,x〉 for all x,y ∈ X ,

(iv) 〈x,x〉 ≥ 0 for x ∈ X .

We will say that X is a semi-inner product C∗-module. The absolute value of x ∈ X is defined

as the square root of 〈x,x〉, and it is denoted by |x|.

If, in addition,
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(v) 〈x,x〉= 0 implies x = 0,

then 〈., .〉 is called a generalized inner product and X is called an inner product module over A

or an inner product C∗-module.

As we can see, an inner product module obeys the same axioms as an ordinary inner product

space, except that the inner product takes values in a more general structure rather than in the

field of complex numbers. If A is a C∗-algebra and X is a semi-inner product A -module, then

the following Schwarz inequality holds:

(5) 〈x,y〉〈y,x〉 ≤ ‖〈x,x〉‖〈y,y〉 (x,y ∈ X)

(e.g. [9, Proposition 1.1]). It follows from the Schwarz inequality (5) that

(6) |〈x,y〉|2 ≤ ‖〈x,x〉‖〈y,y〉 (x,y ∈ X)

(where, for a ∈ A , |a| = (a∗a)
1
2 ). Now let A be a ∗-algebra, ϕ a positive linear functional

on A , and let X be a semi-inner A -module. We can define a sesquilinear form on X ×X by

σ(x,y) = ϕ (〈x,y〉); the Schwarz inequality for σ implies that

(7) |ϕ〈x,y〉|2 ≤ ϕ〈x,x〉ϕ〈y,y〉.

In [5, Proposition 1, Remark 1] the authors present two other forms of the Schwarz inequality

in semi-inner A -module X , one for a positive linear functional ϕ on A :

(8) ϕ(〈x,y〉〈y,x〉)≤ ϕ〈x,x〉r〈y,y〉,

where r is the spectral radius, and another one for a C∗-seminorm γ on A :

(9) (γ〈x,y〉)2 ≤ γ〈x,x〉γ〈y,y〉.

3. Grüss type inequalities in inner product C∗-modules

Let X be an inner product C∗-module and x,y,e ∈ X , and let 〈e,e〉 be an idempotent, we put

Ge(x,y) := 〈x,y〉−〈x,e〉〈e,y〉.
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By [5, Lemma 2] or, a straightforward calculation shows that

〈e〈e,e〉− e,e〈e,e〉− e〉= 〈e〈e,e〉 ,e〈e,e〉〉−〈e〈e,e〉 ,e〉−〈e,e〈e,e〉〉+ 〈e,e〉

= 〈e,e〉〈e,e〉〈e,e〉−〈e,e〉〈e,e〉−〈e,e〉〈e,e〉+ 〈e,e〉

= 0,

therefore e〈e,e〉− e = 0. This implies that

〈e,e〉〈e,x〉= 〈e,x〉 , 〈x,e〉= 〈x,e〉〈e,e〉 .

Lemma 3.1. Let X be an inner product A -module over C∗-algebra A and x,y,e ∈ X. If 〈e,e〉

be an idempotent in A , then for every a,b ∈A , we have

(i) Ge(x,x) = 〈x,x〉−〈x,e〉〈e,x〉 ≥ 0,(10)

(ii) Ge(x,x)≤ 〈x− ea,x− ea〉,(11)

(iii) Ge(x− ea,y− eb) = 〈x− ea,y− eb〉−〈x− ea,e〉〈e,y− eb〉(12)

= 〈x,y〉−〈x,e〉〈e,y〉= Ge(x,y).

Proof. By a simple calculation, we get

Ge(x,x) = 〈x,x〉−〈x,e〉〈e,x〉= 〈x− e〈e,x〉,x− e〈e,x〉〉 ≥ 0

and

〈x− ea,x− ea〉= 〈x− e〈e,x〉,x− e〈e,x〉〉+ 〈a− e〈e,x〉,a− e〈e,x〉〉.

Therefore,

Ge(x,x) = 〈x− e〈e,x〉,x− e〈e,x〉〉 ≤ 〈x− ea,x− ea〉.
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A straightforward calculation shows that

Ge(x− ea,y− eb) = 〈x− ea,y− eb〉−〈x− ea,e〉〈e,y− eb〉

= 〈x,y〉−〈x,e〉b−a∗〈e,y〉+a∗〈e,e〉b− [〈x,e〉−a∗〈e,e〉] [〈e,y〉−〈e,e〉b]

= 〈x,y〉−〈x,e〉b−a∗〈e,y〉+a∗〈e,e〉b

−〈x,e〉〈e,y〉+ 〈x,e〉b+a∗〈e,y〉−a∗〈e,e〉b

= 〈x,y〉−〈x,e〉〈e,y〉= Ge(x,y).

Theorem 3.2. Let X be an inner product A -module over C∗-algebra A and x,y,e ∈ X. If 〈e,e〉

be an idempotent in A , then for every a,b,c,d ∈A , we have

(13) |〈x,y〉−〈x,e〉〈e,y〉| ≤
∥∥∥∥x− e

(
a+b

2

)∥∥∥∥ ∣∣∣∣y− e
(

c+d
2

)∣∣∣∣
=

∥∥∥∥1
4
|e(a−b)|2−Re〈x− ea,eb− x〉

∥∥∥∥ 1
2
(

1
4
|e(c−d)|2−Re〈y− ec,ed− y〉

) 1
2

.

furthermore, if

Re〈x− ea,eb− x〉 ≥ 0, Re〈y− ec,ed− y〉 ≥ 0,

then

|〈x,y〉−〈x,e〉〈e,y〉| ≤ 1
4
‖e(a−b)‖ |e(c−d)|.

Proof. It is easy to show that Ge(·, ·) is an A -value semi-inner product on X . Using Schwarz

inequality (6), we obtain

|〈x,y〉−〈x,e〉〈e,y〉|2 ≤ ‖〈x,x〉−〈x,e〉〈e,x〉‖
(
〈y,y〉−〈y,e〉〈e,y〉

)
.

From (11), we get

〈x,x〉−〈x,e〉〈e,x〉 ≤
〈

x− e
(

a+b
2

)
,x− e

(
a+b

2

)〉
and

〈y,y〉−〈y,e〉〈e,y〉 ≤
〈

y− e
(

c+d
2

)
,y− e

(
c+d

2

)〉
.



8 A. G. GHAZANFARI, S. SOLEIMANI

Since for any y,x,x′ ∈ X

1
4
|x′− x|2−

∣∣∣∣y− x′+ x
2

∣∣∣∣2 = Re〈y− x′,x− y〉,

therefore, we have ∣∣∣∣x− e
(

a+b
2

)∣∣∣∣2 = 1
4
|e(a−b)|2−Re〈x− ea,eb− x〉,

∣∣∣∣y− e
(

c+d
2

)∣∣∣∣2 = 1
4
|e(c−d)|2−Re〈y− ec,ed− y〉.

The rest follows from these facts and we omit the details.

Example 3.3. Let L1(H) be the set of all trace class operators on the Hilbert space H. It is

known that L1(H) is a Hilbert B(H)-module with the inner product defined by 〈X ,Y 〉 := X∗Y .

If E is a trace class operator such that |E| is an idempotent in B(H) then for every A,B,C,D ∈

B(H) and X ,Y ∈ L1(H) we have

|X∗Y −X∗EY |2 ≤
∥∥∥∥1

4

∣∣E(A−B)
∣∣2−Re〈X−EA,EB−X〉

∥∥∥∥
×
∣∣∣∣14∣∣E(C−D)

∣∣2−Re〈Y −EC,ED−Y 〉
∣∣∣∣

=

∥∥∥∥X−E
(

A+B
2

)∥∥∥∥2 ∣∣∣∣Y −E
(

C+D
2

)∣∣∣∣2 .

4. Grüss type inequalities in semi-inner product C∗-modules

Before stating the main results in this section, let us fix the rest of our notation. We assume

unless stated otherwise, throughout this paper A is a C∗-algebra and p = (p1, ..., pn) ∈ Rn a

probability vector i.e. pi ≥ 0 (i = 1, ...,n) and ∑
n
i=1 pi = 1. If X is a semi-inner product

C∗-module and x = (x1, ...,xn),y = (y1, ...,yn) ∈ Xn we put

Gp(x,y) :=
n

∑
i=1

pi〈xi,yi〉−

〈
n

∑
i=1

pixi,
n

∑
i=1

piyi

〉
.
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Lemma 4.1. Let X be a semi-inner product C∗-module, a,b∈X, x=(x1, ...,xn),y=(y1, ...,yn)∈

Xn,α = (α1, ...,αn) ∈Kn; (K= C,R) and p = (p1, ..., pn) ∈ Rn a probability vector, then

(14)
n

∑
i=1

piαixi−
n

∑
i=1

piαi

n

∑
i=1

pixi =
n

∑
i=1

pi

(
αi−

n

∑
j=1

p jα j

)
(xi−a),

and

(15) Gp(x,y) =
n

∑
i=1

pi 〈xi−a,yi−b〉−

〈
n

∑
i=1

pi(xi−a),
n

∑
i=1

pi(yi−b)

〉
.

In particular

(16) Gp(x,x) =
n

∑
i=1

pi |xi−a|2−

∣∣∣∣∣ n

∑
i=1

pixi−a

∣∣∣∣∣
2

≤
n

∑
i=1

pi |xi−a|2 .

Proof. For every a ∈ X a simple calculation shows that

n

∑
i=1

pi

(
αi−

n

∑
j=1

p jα j

)
(xi−a) =

n

∑
i=1

piαixi−
n

∑
j=1

p jα j

n

∑
i=1

pixi

−a
n

∑
i=1

piαi +a
n

∑
i=1

pi

n

∑
j=1

p jα j

=
n

∑
i=1

piαixi−
n

∑
i=1

piαi

n

∑
i=1

pixi.

For every a,b ∈ X , a simple calculation shows that

n

∑
i=1

pi 〈xi−a,yi−b〉−

〈
n

∑
i=1

pi(xi−a),
n

∑
i=1

pi(yi−b)

〉

=
n

∑
i=1

pi
(
〈xi,yi〉−〈xi,b〉−〈a,yi〉+ 〈a,b〉

)
−

〈
n

∑
i=1

pixi−a,
n

∑
i=1

piyi−b

〉

=
n

∑
i=1

pi〈xi,yi〉−

〈
n

∑
i=1

pixi,
n

∑
i=1

piyi

〉

= Gp(x,y).
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In particular for a = b,xi = yi we have

Gp(x,x) =
n

∑
i=1

pi 〈xi−a,xi−a〉−

〈
n

∑
i=1

pi(xi−a),
n

∑
i=1

pi(xi−a)

〉

=
n

∑
i=1

pi |xi−a|2−

∣∣∣∣∣ n

∑
i=1

pi(xi−a)

∣∣∣∣∣
2

≤
n

∑
i=1

pi |xi−a|2 .

In the following Theorem we give a generalization of Theorem 1.1 for semi-inner product

C∗-modules.

Theorem 4.2. Let X be a semi-inner product C∗-module, a,b ∈ X and p = (p1, ..., pn) ∈ Rn a

probability vector. If x = (x1, ...,xn),y = (y1, ...,yn) ∈ Xn, then the following inequality holds

(17)

∣∣∣∣∣ n

∑
i=1

pi 〈xi,yi〉−

〈
n

∑
i=1

pixi,
n

∑
i=1

piyi

〉∣∣∣∣∣
2

≤

∥∥∥∥∥∥
n

∑
i=1

pi |xi−a|2−

∣∣∣∣∣ n

∑
i=1

pixi−a

∣∣∣∣∣
2
∥∥∥∥∥∥
 n

∑
i=1

pi |yi−b|2−

∣∣∣∣∣ n

∑
i=1

piyi−b

∣∣∣∣∣
2


≤

(
n

∑
i=1

pi ‖xi−a‖2

)(
n

∑
i=1

pi |yi−b|2
)
.

Proof. A simple calculation shows that

n

∑
i=1

pi〈xi,yi〉−

〈
n

∑
i=1

pixi,
n

∑
i=1

piyi

〉
=

1
2

n

∑
i, j=1

pi p j
〈
xi− x j,yi− y j

〉
,

therefore

Gp(x,x) =
1
2

n

∑
i, j=1

pi p j
〈
xi− x j,xi− x j

〉
≥ 0.

It is easy to show that Gp(., .) is an A -value semi-inner product on Xn, so Schwarz inequality

(6) holds i.e.,

(18) |Gp(x,y)|2 ≤ ‖Gp(x,x)‖Gp(y,y).
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From (16), we get

(19) ‖Gp(x,x)‖=

∥∥∥∥∥∥
n

∑
i=1

pi |xi−a|2−

∣∣∣∣∣ n

∑
i=1

pixi−a

∣∣∣∣∣
2
∥∥∥∥∥∥≤

n

∑
i=1

pi ‖xi−a‖2

and

(20) Gp(y,y) =
n

∑
i=1

pi |yi−b|2−

∣∣∣∣∣ n

∑
i=1

piyi−b

∣∣∣∣∣
2

≤
n

∑
i=1

pi|yi−b|2.

From inequalities (18), (19) and (20) we obtain the inequality (17).

Since every inner-product space H can be regarded as an inner product C-module, therefore

the following inequality (22) is a generalization of inequality (3).

Corollary 4.3. Let X be a semi-inner product C∗-module, a,b ∈ X and p = (p1, ..., pn) ∈ Rn a

probability vector. If x = (x1, ...,xn),y = (y1, ...,yn) ∈ Xn, r ≥ 0,s≥ 0 are such that

(21) ‖xi−a‖ ≤ r, ‖yi−b‖ ≤ s, for all i ∈ {1, ...,n},

then the following inequality holds

(22)

∥∥∥∥∥ n

∑
i=1

pi 〈xi,yi〉−

〈
n

∑
i=1

pixi,
n

∑
i=1

piyi

〉∥∥∥∥∥≤ rs.

The constant 1 coefficient of rs in the inequality (22) is best possible in the sense that it cannot

be replaced by a smaller quantity.

Proof. From inequalities (17) and (21) we obtain (22). To prove the sharpness of the con-

stant 1 in the inequality in (22), let us assume that, under the assumptions of the theorem, the

inequalities hold with a constant c > 0, i.e.,

(23) ‖Gp(x,y)‖ ≤ crs.

Assume that n = 2, p1 = p2 =
1
2 and e is an element of X such that ‖〈e,e〉‖= 1. We put

x1 = a+ re, y1 = b+ se

x2 = a− re, y2 = b− se,

then, obviously,

‖xi−a‖ ≤ r, ‖yi−b‖ ≤ s, (i = 1,2),
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which shows that the condition (21) holds. If we replace n, p1, p2,x1,x2,y1,y2 in (23), we obtain

‖Gp(x,y)‖= rs≤ crs,

from where we deduce that c≥ 1, which proves the sharpness of the constant 1.

The following Remark 4.4 (ii) is a generalization of Theorem 1.2 for semi-inner product

C∗-modules.

Remark 4.4.

(i) Let A be a C∗-algebra, and p = (p1, ..., pn) ∈ Rn a probability vector. If a,b,ai,bi,(i =

1,2, ...,n) ∈A ,r ≥ 0,s≥ 0 are such that

‖ai−a‖ ≤ r, ‖bi−b‖ ≤ s, for all i ∈ {1, ...,n},

it is known that A is a Hilbert C∗-module over itself with the inner product defined by

〈a,b〉 := a∗b. In this case (22) implies that∥∥∥∥∥ n

∑
i=1

pia∗i bi−
n

∑
i=1

pia∗i .
n

∑
i=1

pibi

∥∥∥∥∥≤ rs.

Since

‖a∗i −a∗‖ ≤ r, for all i ∈ {1, ...,n},

we deduce ∥∥∥∥∥ n

∑
i=1

piaibi−
n

∑
i=1

piai.
n

∑
i=1

pibi

∥∥∥∥∥≤ rs.

(ii) Let X be a semi-inner product C∗-module, a∈X ,α =(α1, ...,αn)∈Kn and p=(p1, ..., pn)∈

Rn a probability vector. If x = (x1, ...,xn) ∈ Xn,r ≥ 0 are such that

‖xi−a‖ ≤ r, for all i ∈ {1, ...,n},

holds, from equality (14) we obtain∥∥∥∥∥ n

∑
i=1

piαixi−
n

∑
i=1

piαi

n

∑
i=1

pixi

∥∥∥∥∥≤ r
n

∑
i=1

pi

∣∣∣∣∣αi−
n

∑
i=1

p jα j

∣∣∣∣∣(24)

≤ r

 n

∑
i=1

pi|αi|2−

∣∣∣∣∣ n

∑
i=1

piαi

∣∣∣∣∣
2
 1

2

.
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The constant 1 in the first and second inequalities in (24) is best possible. Since every

Hilbert space is a Hilbert C-module, the inequality (24) is a generalization of (4).

5. Applications

In this section we give applications of Theorem 4.2 for the approximation of some discrete

transforms such as the discrete Fourier and the Melin transforms for bounded linear operators

on a Hilbert space.

Let X be a semi-inner product C∗-module on C∗-algebra A and x=(x1, ...,xn),y=(y1, ...,yn)∈

Xn. For a given ω ∈ R, define the discrete Fourier transform

Fω(x)(m) =
n

∑
k=1

exp(2ωimk)× xk, m = 1, ...,n.

The element ∑
n
k=1 exp(2ωimk)×〈xk,yk〉 of A is called Fourier transform of the vector

(〈x1,y1〉, ...,〈xk,yk〉) ∈A n

and will be denoted by

Fω(x,y)(m) =
n

∑
k=1

exp(2ωimk)×〈xk,yk〉 m = 1, ...,n.

We can also consider the Mellin transform

M (x)(m) =
n

∑
k=1

km−1xk, m = 1, ...,n.

of the vector x= (x1, ...,xn)∈Xn. The Mellin transform of the vector (〈x1,y1〉, ...,〈xk,yk〉)∈A n

is defined by

∑
n
k=1 km−1〈xk,yk〉 and will be denoted by

M (x,y)(m) =
n

∑
k=1

km−1〈xk,yk〉.

Example 5.1. Let A1, ...,An and B1, ...,Bn be bounded linear operators in B(H1,H2). It is

known that B(H1,H2) is a Hilbert C∗-module over B(H1) with the inner product defined by

〈X ,Y 〉 := X∗Y , therefore for every A,B ∈ B(H1), from the inequality (17) we obtain
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(25)

∣∣∣∣∣ n

∑
k=1

exp(2ωimk)A∗kBk−

(
1
n

n

∑
k=1

A∗k

)(
n

∑
k=1

exp(2ωimk)Bk

)∣∣∣∣∣
2

≤

∥∥∥∥∥∥
n

∑
k=1
|Ak−A|2−

∣∣∣∣∣1n n

∑
k=1

Ak−A

∣∣∣∣∣
2
∥∥∥∥∥∥

×

 n

∑
k=1
|exp(2ωimk)Bk−B|2−

∣∣∣∣∣1n n

∑
k=1

exp(2ωimk)Bk−B

∣∣∣∣∣
2


≤

(
n

∑
k=1
‖Ak−A‖2

)(
n

∑
k=1
|exp(2ωimk)Bk−B|2

)
.

and

(26)

∣∣∣∣∣ n

∑
k=1

km−1A∗kBk−

(
1
n

n

∑
k=1

A∗k

)(
n

∑
k=1

km−1Bk

)∣∣∣∣∣
2

≤

∥∥∥∥∥∥
n

∑
k=1
|Ak−A|2−

∣∣∣∣∣1n n

∑
k=1

Ak−A

∣∣∣∣∣
2
∥∥∥∥∥∥

×

 n

∑
k=1
|km−1Bk−B|2−

∣∣∣∣∣1n n

∑
k=1

km−1Bk−B

∣∣∣∣∣
2


≤

(
n

∑
k=1
‖Ak−A‖2

)(
n

∑
k=1
|km−1Bk−B|2

)
.

Example 5.2. Let B,A,A1, ...,An be bounded linear operators on the Hilbert space H, α =

(α1, ...,αn) ∈Kn. and I be identity operator on H from inequality (17) we obtain

(27)

∣∣∣∣∣ n

∑
k=1

pkαkAk−

(
n

∑
k=1

pkαk

)(
n

∑
k=1

pkAk

)∣∣∣∣∣
2

=

∣∣∣∣∣ n

∑
k=1

pk 〈αkI,Ak〉−

〈
n

∑
k=1

pkαkI,
n

∑
k=1

pkAk

〉∣∣∣∣∣
2

≤

∥∥∥∥∥∥
n

∑
k=1

pk |αkI−A|2−

∣∣∣∣∣ n

∑
k=1

pkαkI−A

∣∣∣∣∣
2
∥∥∥∥∥∥
 n

∑
k=1

pk |Ak−B|2−

∣∣∣∣∣ n

∑
k=1

pkAk−B

∣∣∣∣∣
2
 ,
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for A = B = 0 we get

(28)

∣∣∣∣∣ n

∑
k=1

pkαkAk−

(
n

∑
k=1

pkαk

)(
n

∑
k=1

pkAk

)∣∣∣∣∣
2

≤

 n

∑
k=1

pk |αk|2−

∣∣∣∣∣ n

∑
k=1

pkαk

∣∣∣∣∣
2
 n

∑
k=1

pk |Ak|2−

∣∣∣∣∣ n

∑
k=1

pkAk

∣∣∣∣∣
2
 .

A simple calculation shows that (see the proof of Theorem 59 in [2]),

n

∑
k=1

exp(2ωimk) =
sin(ωmn)
sin(ωm)

× exp[ω(n+1)im].

Putting αk = exp(2ωimk), pk =
1
n , in (28), we get

(29)

∣∣∣∣∣ n

∑
k=1

exp(2ωimk)Ak−
sin(ωmn)
sin(ωm)

exp[ω(n+1)im]× 1
n

n

∑
k=1

Ak

∣∣∣∣∣
2

≤
[

n2− sin2(ωmn)
sin2(ωm)

]1
n

n

∑
k=1
|Ak|2−

1
n2

∣∣∣∣∣ n

∑
k=1

Ak

∣∣∣∣∣
2
 .

Also, Putting αk = km−1, pk =
1
n , in (28), we obtain

(30)
∣∣∣ n

∑
i=1

km−1Ak−Sm−1(n).
1
n

n

∑
k=1

Ak

∣∣∣2
≤
[
nS2m−2(n)−S2

m−1(n)
]1

n

n

∑
k=1
|Ak|2−

1
n2

∣∣∣∣∣ n

∑
k=1

Ak

∣∣∣∣∣
2
 ,m ∈ {1, ...,n},

where Sp(n), p ∈ R,n ∈ N is the p-powered sum of the first n natural numbers, i.e.,

Sp(n) :=
n

∑
k=1

kp.

For the following particular values of Mellin Transform (see [3, Corollary 4]), we have

∣∣∣∣∣ n

∑
k=1

kAk−
n+1

2

n

∑
k=1

Ak

∣∣∣∣∣
2

≤
[

n2(n−1)(n+1)
12

]1
n

n

∑
k=1
|Ak|2−

1
n2

∣∣∣∣∣ n

∑
k=1

Ak

∣∣∣∣∣
2


≤
[

n(n−1)(n+1)
12

] n

∑
k=1
|Ak|2,
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and

∣∣∣ n

∑
k=1

k2Ak−
(n+1)(2n+1)

6

n

∑
k=1

Ak

∣∣∣2
≤
(

n2(n−1)(n+1)(2n+1)(8n+11)
180

)1
n

n

∑
k=1
|Ak|2−

1
n2

∣∣∣∣∣ n

∑
k=1

Ak

∣∣∣∣∣
2


≤
(

n(n−1)(n+1)(2n+1)(8n+11)
180

) n

∑
k=1
|Ak|2.

There exist other examples for the approximation of some discrete transforms such as poly-

nomials with coefficients in a semi-inner product C∗-module. However, the details are omitted

but each of them can be proven in a similar manner as this section.
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[13] M. S. Moslehian and R. Rajić, Gruss inequality for n-positive linear maps, Linear Algebra Appl. 433 (2010),

1555-1560.


