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1. Introduction

In 2007, cone metric spaces were reviewed by Huang and Zhang, as a generalization of
metric spaces (see [1]). The distance d(x,y) of two elements x and y in a cone metric space X is
defined to be a vector in an ordered Banach space E, quite different from that which is defined
a non-negative real numbers in general metric space. In 2011, Beg A, Azam A and Arshad

M([2]) introduced the concept of topological vector space-valued cone metric spaces, where
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the ordered Banach space in the definition of cone metric spaces is replaced by a topological
vector space.

Recently, some authors investigated the problems of whether cone metric spaces are equiva-
lent to metric spaces in terms of the existence of fixed points of the mappings and successfully
established the equivalence between some fixed point results in metric spaces and in (topolog-
ical vector space-valued) cone metric spaces, see [3-6]. Actually, they showed that any cone
metric space (X,d) is equivalent to a usual metric space (X,d*), where the real-metric func-
tion d* is defined by a nonlinear scalarization function &, (see [4]) or by a Minkowski function
q.(see[S]). After that, some other interesting generalizations were developed, see [7].

In 2013, Liu and Xu [8] introduced the concept of cone metric spaces over Banach algebras,
replacing a Banach space E by a Banach algebra .7 as the underlying spaces of cone metric
spaces. And the authors in [8-10] discussed and obtained Banach fixed point theorem, Kannan
type fixed point theorem, Chatterjea type fixed point theorem and ¢iri€ type fixed point theorem
in cone metric spaces over Banach algebras. Especially, the authors in [10] gave an example to
show that fixed point results of mappings in this new space are indeed more different than the
standard results of come metric spaces presented in literature.

In this paper, constructing three different contractive conditions, we obtain unique point of
coincidence and unique common fixed point theorems for two mappings on cone metric spaces
over Banach algebras without the assumption of normality and give unique fixed point theorems.

The obtained results generalize and improve the corresponding conclusions in the literature.

2. Preliminaries

Let o always be a Banach algebra. That is, .7 is a real Banach space in which an operation
of multiplication is defined, subject to the following properties(for all x,y,z € o7, & € R):

1. (xy)z = x(v2);

2. x(y+2) =xy+xzand (x+y)z =xz+yz;

3. axy) = (ax)y = x(oy);

4 ey < Ty 1l -
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Here, we shall assume that .7 has a unit (i.e., a multiplicative identity) e such that ex = xe = x

for all x € &7. an element x € <7 said to be invertible if there is an inverse element y € .o/ such
that xy = yx = e. The inverse of x is denoted by x~!. For more detail, we refer to [11].

We say that {x1,x2,---,x,} C o/ commute if x;x; = x;x; forall i, j € {1,2,--- ,n}.

Proposition 2.1. ([11]) Let </ be a Banach algebra with a unit e, and x € /. If the spectral

radius r(x) of x is less than 1, i.e.,
r(x) = lim || x" ||* = inf || 2" ||" < 1.
n—oo n—oo

Then (e — x) is invertible. Actually,
—+oo

(e—x)"!= in.

i=0

Remark 2.1. 1) r(x) <|| x || for any x € < (see [11]).

2) In Proposition 2.1, if r(x) < 1 is replaced by || x ||< 1, then the conclusion remains true.

A subset P of a Banach algebra o7 is called a cone if

1. P is nonempty closed and {0,e} C P;

2. a P+ B P C P for all non-negative real numbers o, f3;

3.P2=PPCP;

4. PN (—P)={0}.

Where 0 denotes the null of the Banach algebra 7.

For a given cone P C o7, we can define a partial ordering < with respect to P by x <y if and
only if y—x € P. x < y stand for x < y and x # y. While x < y will stand for y — x € int P, where
int P denotes the interior of P. A cone P is called solid if int P # 0.

The cone P is called normal if there is a number M > 0 such that for all x,y € o7
0<x<y = |xlI<M|y].

The least positive number satisfying the above is called the normal constant of P.

Here, we always assume that P is a solid and < is the partial ordering with respect to P.

Definition 2.1. ([1, 9-10]) Let X 5 0. Suppose that the mapping d : X x X — o7 satisfies
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1. 0 <d(x,y) for all x,y € X and d(x,y) = 0 if and only if x = y;
2.d(x,y) =d(y,x) forall x,y € X;
3.d(x,y) <d(x,z)+d(z,y) forall x,y,z € X.
Then d is called a cone metric on X and (X,d) is called a cone metric space(over a Banach

algebra 7).

Remark 2.2. The examples of cone metric spaces(over a Banach algebra .<7) can be found in

[8-10].

Definition 2.2. ([1, 8]) Let (X,d) be a cone metric space over a Banach algebra <7, x € X and
{x»} a sequence in X. Then:

1. {x,} converges to x whenever for each ¢ € &/ with 0 < ¢ there is a natural number N such
that d(x,,x) < ¢ for all n > N. We denote this by lim,,_,e X, = x Or X, — Xx.

2. {x,} is Cauchy sequence whenever for each ¢ € &7 with 0 < ¢ there is a natural number
N such that d(x,,x,) < ¢ for all n,m > N.

3. (X,d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition 2.3. ([12-13]) Let P is a solid cone in a Banach space <. A sequence {u,} C Pisa

c-sequence if for each ¢ > 0 there exists ng € N such that u,, < ¢ for all n > ny.

Proposition 2.2. ([12]) Let P is a solid cone in a Banach space </ and let {x,} and {y,}
be sequences in P. If {x,} and {y,} are c-sequences and a, > 0, then {ox, + By,} is a

c-sequence.

Proposition 2.3. ([12]) Let P is a solid cone in a Banach algebra </ and {x,} a sequence in P.
Then the following conditions are equivalent:

(1) {xn} is a c-sequence;

(2) for each ¢ > 0 there exists nyg € N such that x,, < c for all n > ny;

(3) for each ¢ > 0 there exists ny € N such that x,, < c for all n > n;.

Proposition 2.4. ([10]) Let P is a solid cone in a Banach algebra <. Suppose that k € P is an

arbitrarily given vector and {u, } is a c-sequence in P. Then {ku,} is a c-sequence.
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Proposition 2.5. ([10]) Let <7 be a Banach algebra with a unit e, P a cone in &/ and < be the
semi-order generated by the cone P. The following assertions hold true:
(i) For any x,y € @7, a € P withx <y, ax < ay;
(ii) For any sequences {x,},{yn} C < with x, — x and y, — y as n — oo, where x,y € <,

we have x,y, — Xy as n — oo.

Proposition 2.6. ([10]) Let o7 be a Banach algebra with a unit e, P a cone in &/ and < be the
semi-order generated by the cone P. Let A € P. If the spectral radius r(A) of A is less than 1,
then the following assertions hold true:

(i) Suppose that x is invertible and that x~' > 0 implies x > 0, then for any integer n > 1, we
have A" < A <e.

(it) For any u > 0, we have u % Au,i.e, A\u—u¢P.

(iii) If A > 0, then (e — A)~! > 0.
Proposition 2.7. ([10]) Let (X,d) be a complete cone metric space over a Banach algebra </
and P a solid cone in of . Let {x,} be a sequence in X. If {x,} converges to x € X, then we have

(i) {d(xn,x)} is a c-sequence.

(ii) For any p € N, {d(xn,xn4p)} is a c-sequence.
Lemma 2.1 ([14]) If E is a real Banach space with a cone P and if a < Aa with a € P and

0<A<1, thena=0.

Lemma 2.2. ([15]) If E is a real Banach space with a cone P and if 0 < u < ¢ for all 0 < c,

then u = 0.

Lemma 2.3. ([15]) If E is a real Banach space with a solid cone P and if || x, || — 0 as n — oo,

then for any 0 < c, there exists N € N such that, for any n > N, we have x, < c.

Lemma 2.4. ([10]) If <7 is a Banach algebra and k € </ with r(k) < 1, then || K* |— 0 as

n —r oo,

Lemma 2.5. ([10]) Let <7 be a Banach algebra and x,y € /. If x and y commute, then
(i) r(xy) < r(x)r(y);
(it) r(x+y) < r(x) +7(y);
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(iii) [ r(x) =r(y) |[< r(x—y).
Lemma 2.6. ([10]) Let <7 be a Banach algebra and {x,} a sequence in <7. Suppose that {x,}

converge to x € o/ and that x,, and x commute for all n, then r(x,) — r(x) as n — oo.
Lemma 2.7. ([10]) If k € o7 and 0 < r(k) < 1, then r((e —k)~1) < (1 —r(k))~ L.

Definition 2.4. ([16]) Two mappings f,g : X — X are weakly compatible if, for every x € X,
fgx = gfx whenever fx = gx.

Definition 2.5. ([16]) Let f,g: X — X be two mappings. If w = fx = gx for some x,w € X,

then x is called a coincidence point of f and g, and w is a point of coincidence of f and g.

Lemma 2.8. ([16]) If f,g : X — X are weakly compatible and have a unique point of coinci-

dence w = fx = gx, then w is the unique common fixed point of f and g.
3. Main results

Lemma 3.1. If P be a solid cone in </ and {a,B,y} C &/ commute and r(y) < 1, then

- r(a+pB) _ r(e)+r(B)
Proof. By Proposition 2.1, we have
(- =Y 7.
i=0

Since {a, 8,7} commute, so {(e —7)~', &, B} commute. By Lemma 2.5 and Lemma 2.7,

r(a)+r(B)
1—r(y)

o+ )
—r(7)

<

(e=n"@tp) <r(e-n " )arpy <

Remark 3.1. Since r(e) = 1 and r(0) = 0, so Lemma 3.1 reduce to Lemma 2.7 if e = ¢, =0

or o =0, = e. Hence Lemma 3.1 ia a generalization of Lemma 2.7. And by Lemma 3.1,

ol 1 r(o) +r(B)
r((e=7) )Sl—r(y)g T—(y)

forall o, B,y € < withr(y) < 1 and oc 4+ 8 = e and {, 3,7} commute.
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Lemma 3.2. (Cauchy Principle) Let (X,d) be a cone metric space over a Banach algebra <7,

P a solid cone in o/ and k € P with r(k) < 1. If a sequence {x,} C X satisfies that
d(xn-l—l 7-xn+2) < kd<xnaxn+l)7vn =0,1,2,---.
Then {x,} is a Cauchy sequence.

Proof. By mathematical induction,
d(Xpi1,%n42) < k”“d(xo,xl),Vn =0,1,2,---,

hence for any n, p € N, using Proposition 2.1, we have

n+p—1 n+p—1 o
d(xn,xnsp) <Y, dxixipn) <Y Kd(xo,x1) <K*Y Kd(xo,x1) =K'(e—k)'d(x0,x1).

Since r(k) < 1, so || k¥ ||~ 0 as n — oo by Lemma 2.4, hence {k"(e —k)~'d(xp,x1)} is a c-
sequence by Lemma 2.3 and Definition 2.3 and Proposition 2.4 and Proposition 2.6. Therefore

for any ¢ > 0 there is a N € N such that k" (e — k) ~'d(xo,x1) < c for all n > N, hence
d(Xp, Xy p) < K'(e — k) d(x0,x1) < ¢, Vn > N.
This shows that {x, } is a Cauchy sequence.

Remark 3.2. the condition ‘k € P with r(k) < 1 in Lemma 3.2 can be replaced by ‘k € P with
| k ||< 1° by Remark 2.1.

Lemma 3.3. Let (X ,d) be a cone metric space over a Banach algebra <7, P a solid cone in <f

and {x,} C X a sequence. If {x,} is convergent, then the limits of {x,} is unique.

Proof. Suppose that x,y € X are both limits of {x,}, then for each ¢ > c there exist N € N such
that for all n > N,
c c
d(xnax) < ) d(xnvy) < N
2 2
hence forn > N,

d(x,y) < d(xn,x) +d(xn,y) < §+§ —ec.

so x =y by Lemma 2.2, this shows that x is the unique limit of {x,}.

At first, we obtain a unique common fixed point theorem for generalized Banach-Kannan

type mappings.
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Theorem 3.1. Let (X,d) be a cone metric space over a Banach algebra </ and P a solid cone

ino/ and f,g: X — X two mappings satisfying fX C gX. Suppose that for each x,y € X ,x #y,

d(fx,fy) < ad(gx,gy)+ Bld(gx, fx) +d(gy, fy)] + yu(x,y), (3.1)

where u(x,y) € {d(gx, fy),d(gy, fx)} and {c, B,y} C P satisfies r(o) +2r(B) +2r(y) < 1 and
commute. If fX or gX is complete, then f,g have a unique point of coincidence. Furthermore,

if f and g are weakly compatible, then f,g have a unique common fixed point.

Proof. Take an xo € X and construct two sequence {x,} and {y,} in X by fX C gX as follows
Yn = fXn = gXn+1,VR=0,1,2,---. (3.2)

If there exists n such that x,, = x,,41, then y, = fx, = gx,,, hence y, is the point of coincidence of
f and g. So from now on, we can assume that x,, # x,+1,Vn=0,1,2,--- . For any fixed n € N,

by 3.1),
d(Ynt1,¥n+2) = d([Xnt1, fXn12)
< ad(gxn+1,8%n+2) + Bld(gXn+1, fXnt1) +d(8Xn+2, fXni2)] + Yu(Xnt1,%n+2),
1.e.,
d(Vnt+1,Yn+2) < Qd(Vn,Yn+1) + BldGn, ynt1) +dOnt1, Yur2)] + Yu(Xns1,X042), (3.3)

where
u(xn+17xn+2) € {d(gxn—i-l7fxn+2)7d(gxn+27fxn+l)} = {d(ynvyn+2)70}'

If u(xpt1,%0+2) = d (Y, Ynt2), then using (3.3), we obtain

d()’n-ﬁ-l 7)’n+2) < ad()’m}’n+1) +B [d(Yn;)’n—i-l) +d(yn+l ayn+2)] + Y[d(}’nayn+1) ""d()’m—l vYn+2)]7

hence

[e— (B+M]d(n+1,Yn4+2) < (@ + B +7V)dVn, Yns1)- (3.4)
If t(xps1,Xps2) = O, then by (3.3),
e — Bld(yn+1,9n+2) < (00+B)d(Vn, Ynt1)- (3.5)

Since {a, 3,7} CP,soe—(B+7y) <e—Pand o+ B < oo+ B + ¥, hence (3.5) implies (3.4).
Therefore in any case, (3.4) holds for all n € N. And since r(B+7) <r(B)+r(y) <r(a)+
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2r(B) 4 2r(y) < 1 by Lemma 2.5, so [e — (B + 7)] is invertible and [e — (8 + 7)]~! > 0 by

Proposition 2.6 and "W BN < 1 Letk = [~ (B+7)] " (@+ B +7). then r(k) < 1 by

Lemma 3.1, hence by (3.4), we have

(yn-i-]ayn-l—Z) Skd()’nayn-i-l)’vnEN' (36)

Therefore {y,} is a Cauchy sequence by Lemma 3.2.
Suppose that gX is complete, then there exist u, p € X such that y, — u = gp as n — oo. Using
(3.1), we have

d(yn, fr) = d(fxn, [ ) < d(gxn,8p) + Bld(gxn, fxn) +d(gp, fP)] + Yu(xn, ),

1.e.,
d(yn, fr) < ad(yp—1,u) + Bld(yu—1,yn) +d(u, fp)] + yu(x,, p), (3.7)

where

u(xn,p) € {d(8xn, fp),d(gp; foxn)} = {d(yn—1,fp),d(u,yn)}.
If u(xy, p) = d(Y_1, £ ), then from (3.7),
d(yn, fp) < 0d(yn—1,u) + Bld(Yn—1,yn) +d(u, fP)] +vd(yn-1,fP),

which implies that

d(yn, fp) < 0td(yn—1,u) + Bld(yn—1,yn) +d(u,yn) +d(yn, fP)] + Vd(yn—1,yn) +d(yn, fP)],
hence

[e—=(B+V))d(yn, fp) < d(yn—1,u) +Bld(Yn—1,Yn) +d(u,y0)] + ¥d(yn—1,3n);

50

d(yn, fp) < [e~ (B+7)]" {od (va-1,u) +Bld (-1, yn) +d(1t,ya)] +¥d (n-1,30) }, V1. (3.8)

Since {y,} is Cauchy and y, — u as n — oo, so the right-hand side of (3.8) is a c-sequence by
Proposition 2.2, Proposition 2.4 and Proposition 2.7, hence for each ¢ > 0 there exists N| € N

such that for all n > N,

d(yn, fp) <le—(B+7)]{adyn—1,u)+Bldn-1,yn)+d(u,y0)]+¥d(Yn—1,y0)} <c. (3.9)
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If u(x,, p) = d(u,y,), then from (3.7),

d(yn, fp) < ad(yp—1,u)+ [d<yn717yn) +d(u,fp)] + vd(u,yn),

which implies that

d(yn, fr) < 0d(yp—1,u) +B[d(ynflayn) +d(u, yn) +d(ynafp>] + yd(”?)’n)]a

hence
le = Bld(yn, fp) < ad(yn—1,u) + Bld(yu—1,Yn) +d(u,yn)] + vd(u,yn)),

SO

d(yn, fp) < [e— Bl {ad(yu—1,u) +Bld(Yn—1,yn) +d(u,yn)] + ¥d(,ya) },¥n.  (3.10)

Similarly, the right-hand side of (3.10) is a c-sequence, hence for each ¢ > 0 there exists Ny € N

such that for all n > N,,

d(yn, fp) < le— B~ {ad(yu—1,u) + Bld(yu1,yn) +d(,y)] +¥d (u,yn)} < e (3.11)

Summing up (3.9) and (3.11) implies that for each ¢ > 0 there exists N > max{N;,N,} such

that

d(yn, fp) <c,Vn>N. (3.12)

Hence y, — fp as n — oo, therefore u = gp = fp by Lemma 3.3. If fX is complete, then there
exist u, po, p € X such thaty, — u = fpo= gp. Similarly, we obtain u = fp = gp. Hence in any
case, u = fp = gp, so u is a point of coincidence of f and g. If v is also a point of coincidence

of f and g, then there exists g € X such that v = fg = gq. By (3.1),

d(u,v) =d(fp,fq) < ad(gp,gq)+ Bld(gp, fp) +d(8q, fq)] + yu(p,q) = ad(u,v) + yu(p,q),
(3,13)

where u(p,q) € {d(gp, fq).d(gq, fpr)} = {d(u,v)}. Hence (3.13) reduce to

d(u,v) < (a+7v)d(u,v) = [e— (a+7y)]d(u,v) <O0.

Since r(a +7y) < 1 implies that [e — (¢ +¥)] ™! >0, so d(u,v) =0, i.e., u = v. Hence u is the
unique point of coincidence point of f and g. If f and g are weakly compatible, then u is the

unique common fixed point of f and g by Lemma 2.8.
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Using Theorem 3.1, we give two fixed point theorems:

Corollary 3.1. Let (X,d) be a cone metric space over a Banach algebra </ and P a solid cone

in .o and f: X — X a mapping satisfying fX = f>X. Suppose that for each x,y € X,
d(fx,fy) < ad(f?x, f2y) + Bld(f2x. fx) +d(f2y. f3)] + yu(x,y),
where u(x,y) € {d(f*x, fy),d(f?y, fx)} and {a. B, v} C P satisfies r(a) +2r(B) +2r(y) <1

and commute. If X is complete, then f has a unique fixed point.

Corollary 3.2. Let (X,d) be a complete cone metric space over a Banach algebra </ and P a

solid cone in o/ and g : X — X a onto mapping. Suppose that for each x,y € X ,x # y,

d(x,y) < oud(gx,8y) + Bld(gx,x) +d(gy,y)] + yu(x,y),

where u(x,y) € {d(gx,y),d(gy,x)} and {a,B,y} C P satisfies r(ot) +2r(B) +2r(y) < 1 and
commute. Then g has a unique fixed point.
Modifying the proof of Theorem 3.1, we can obtain the following unique common fixed point

theorem for generalized Banach-Chatterjea-type mappings:

Theorem 3.2. Let (X,d) be a cone metric space over a Banach algebra </ and P a solid cone

ino/ and f,g: X — X two mappings satisfying fX C gX. Suppose that for each x,y € X ,x #y,

d(fx, fy) < ad(gx,gy) + Bv(x,y) + yld(gx, fy) +d(gy, fx)], (3.14)

where u(x,y) € {d(gx, fx),d(gy, fy)} and {a, B,y} C P satisfies r(o) +2r(B) +2r(y) < 1 and
commute. If fX or gX is complete, then f,g have a unique point of coincidence. Furthermore,

if f and g are weakly compatible, then f,g have a unique common fixed point.

Proof. Adopting up the method similar to the proof of Theorem 3.1, we can construct two

sequence {x,} and {y,} in X satisfying
Yn = fxn :gxn-l-lavn =0,1,2,---

and prove that the limit u of the Cauchy sequence {y,} is a point of coincidence of f and g. If v

is also a point of coincidence of f and g, there there exist p,q € X satisfying u = fp = gp and
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v=fq=gq. By (3.14),
d(u,v)=d(fp,fq) < ad(gp,8q)+Bv(p,q)+vld(gp, fq)+d(gq, fp) = (a+2y)d(u,v)+Bv(p,q),

where v(p,q) € {d(gp,fp),d(gq, fq)} = 0. Hence we have
[e— (a+27y)]d(u,v) <0.

But r(a+2y) < r(a) +2r(y) < 1, hence [e — (¢ +2y)]~! > 0. So d(u,v) = 0 by Proposition
2.6, therefore u is the unique point of coincidence of f and g. If f and g are weakly compatible,

then u is the unique common fixed point of f and g by Lemma 2.8.

Remark 3.3.If f =y=0or @ = y=0in Theorem 3.1 and B =y=0or o = f = 0 in Theorem
3.2 respectively, then Theorem 3.1 and Theorem 3.2 reduce to the corresponding results in [17];
ifg=lyandf=y=0ora=7y=0inTheorem3.1andg=1yand f=y=0ora=8=0
in Theorem 3.2 respectively, then Theorem 3.1 and Theorem 3.2 reduce to the corresponding
results in [8,10], i.e., Banach contraction principle, Kannam fixed point theorem and Chatterjea
fixed point theorem on cone metric spaces with Banach algebras. If g =1y and « = 3 =0 in
Theorem 3.1 and g = Ix and @ = ¥y = 0 in Theorem 3.2 respectively, then Theorem 3.1 and
Theorem 3.2 are both particular forms of the corresponding result( i,e., Ciri¢ type fixed point
theorem) in [9].

Now, we give an unique common fixed point theorem for Banach-semi-Ciri¢ type mappings.

Theorem 3.3 Let (X,d) be a cone metric space over a Banach algebra </ and P a solid cone

ingo/ and f,g: X — X two mappings satisfying fX C gX. Suppose that for each x,y € X ,x #y,
d(fx, fy) < ad(gx,gy) + Bv(x,y) + yu(x,y), (3.15)

where v(x,y) € {d(gx, fx),d(gy, fy)}, u(x,y) € {d(gx, fy),d(gy, fx)} and {&,B,y} C P satis-
fies r(o) +2r(B) +2r(y) < 1 and commute. If fX or gX is complete, then f,g have a unique

point of coincidence. Furthermore, if f, g is weakly compatible, then f,g have a unique common

fixed point.

Proof. Consider two sequences {x, } and {y,} in Theorem 3.1 and Theorem 3.2. By (3.15),

d(yn+17yn+2> = d(fxn+17fxn+2) < ad(ynayn+l) +Bv(xn+laxn+2) +W(xn+laxn+2)a (316>
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where
V(Xn+1,%+2) € {d(8Xn+1, [Xnt1),d(8Xn+2, fXn+2) } = {d (Vs Ynt1),d(Ynt1,n12) }s - (3.17)
U(Xnt1,Xn+2) € {d(Xn+1, fxni2),d(8Xn+2, [Xn+1)} = {d(yn, ynt2),0}. (3.18)
Case 1. If v(xy11,%n42) = d(Yn,Ynt1) and u(xp41,%04+2) = d(Yn, Yut2), then by (3.16),
(e =V)d(Ynt1,¥n42) < (@ + B +7)d(yn,Ynt1), (3.19)
Case 2. If v(xy41,X042) = d(Yn, Yu+1) and u(x,41,%,42) = 0, then by (3.16),
d(Yn+1,yn+2) < (004 B)d(Yn; yn+1), (3.20)
Case 3. If v(xy11,%n42) = d(Ynt1,Vn+2) and u(x,+1,X042) = d(Yn,Yn+2), then by (3.16),
[e = (B+PVNdn+1,9n+2) < (@+7)d (Vs Ynt1), (3.21)
Case 4. If v(xy11,%42) = d(Ynt1,Vn+2) and u(x,41,X,42) = 0, then by (3.16),
(e—=B)d(ynt1,yn12) < Ad(Yn,Ynt1)- (3.22)

Sincee—(f+7y)<e—f<e, e—(fty)<e—r<ea<atf<a+f+y,asaty<
o+ B + 7, so combining (3.19)-(3.22), we have that for each n,

le = (B+V)d(nt1,n12) < (@+B +7)dVn, Ynr1)- (3.23)

So we obtain (3.6), hence {y, } is a Cauchy sequence.
Suppose that gX is complete, then there exist u, p € X such that y, — u = gp as n — oo. Using
(3.15), we have

d(Yn, fP) = d(fxn, fp) < Ad(Yn—1,u) + Bv(xn, p) + Yu(xn, p), (3'24>

where
V(Xn, p) € {d(Yn—1,¥n),d(u, fP) }, u(xn, p) € {d(Yn—-1,1P),d(u;yn)}

Case i. If v(xp,, p) = d(yn—1,¥n), u(xn, p) = d(yn—1, fp), then by (3.24),

d(yn, fp) < 0d(yp—1,u) +Bd(Yn—1,Yn) + Yd(Yn—1,fP),
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hence we have

[6— (ﬁ +}’)]d()’n,fp) < (e_Y)d(ymfp) < (Xd(yn_],l/l> +Bd(yn—1;yn) +yd(yn—17yn)7

SO
d(yn, fp) < le—(B+7)] " [ad(yn-1,u) + Bd(yn—1,¥n) + ¥d(¥n—1,n)]. (3.25)
Case ii. If v(x,,, p) = d(yn—1,¥n), u(xn, p) = d(u,yn), then by (3.24),
le— (B+V)d(n, fP) <d(yn, fp) < 0d(yn—1,u) +Bd(yn—1,yn) +vd(u,yn),
SO

d(ynafp) < [e - (ﬁ + Y)]il[ad(%l—lvu) +Bd<Yn—17yn) + yd(uayn)]- (3'26)

Case iii. If v(x,, p) = d(u, fp), u(xy, p) = d(yn—1, fP), then by (3.24),

d(.ynafp) < ad<yﬂ—17u>+ﬁd(uafp) —l—}’d(yn_l,fp),

hence we have

le—(B+Y)d(yn, fp) < ad(yn—1,u) + Bd(yn,u) +¥d(Yn—1,¥n),
SO
d(yn, fp) < le— (B+1)]ad(yu_1,u) + Bd(yn,u) + yd(Yn—1,yn)]. (3.27)

Case iv. If v(x,, p) =d(u, fp)}, u(xn,p) = d(u,y,), then by (3.24),

d(yn, fr) < ad(yp—1,u)+ Bd(u, fp) + yd(u,yn),

hence we have

le—(B+7)]d(yn, fp) < (e—=B)d(yn,fp) < ad(yp—1,u) + Bd(yn,u) +yd(u,yn),

SO

d(yn, fp) < [e— B+ [0d (yn1,u) + B (yn, u) + vl (14, y)]. (3.28)
Using Proposition 2.2, Proposition 2.4 and Proposition 2.7, we know the right-hand sides of
(3.25)-(3.28) are all c-sequences, hence {d(y,, fp)} is also a c-sequence by summing up cases
(1)-(iv). Soy, — fpasn — o hence fp =u = gp. If fX is complete, then there exist u, py, p €

X such that y, — u = fpo = gp. Similarly, we obtain u = fp = gp. Hence in any case, u = fp =
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gp, so u is a point of coincidence of f and g. Suppose there exist v,qg € X such that v = fg = gq.
By (3.15),

d(u,v) =d(fp,fq) < ad(gp,gq) + Bv(p,q) + yu(p,q) = ad(u,v) +Bv(p,q) +yu(p,q),
(3.29)

where

v(p,q) €{d(gp,fp),d(gq,fq)} = {0}, u(p,q) € {d(gp,fq),d(gq, fp)} = {d(u,v)}.

Hence from (3.29),
[e— (o +7)|d(u,v) <0.

Which implies that u = v since r(a +7y) < r(a) +r(y) < 1 implies [e — (@ + 7)] is invertible
and [e — (ot +7)]~! > 0. Hence u is the unique point of coincidence of f and g. Finally, If f and

g are weakly compatible, then u is the unique common fixed point of f and g by Lemma 2.8.
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