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Abstract. In this paper we have discussed a transformation procedure of the chance constraints, to arrive at the

deterministic constraints, for mathematical programming problem having parameters as Gamma random variables

in chance constraints. We have used geometric inequality and some other inequalities for this transformation. We

solved, the transformed deterministic problem having non-linear constraints, using generic package LINGO 10

and verified the solution using MATLAB 7.6.
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1. Introduction
Stochastic programming [7, 14, 26] is an optimization method which is based on the proba-

bility theory and have been developing in various ways [22, 19], including two stage problems

[17] and chance constrained problems [6]. One of the difficulties that one faces while dealing
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with a mathematical programming problem having chance constraints [6] is that, all or some of

the parameters in the formulation are not constant or deterministic but random in nature.

Charnes and Cooper [6] have first modelled chance constrained programming (CCP). Here,

they have developed a new analytical and conceptual method which reffer to a planning of op-

timal stochastic decision rules under uncertainty. The indefiniteness and risk in planning and

managing problems was examined by Kolbin [16] and presented chance-constraint program-

ming models. For the class of chance-constraint programming problem, Symonds [24] has pre-

sented deterministic solution procedure. A minimum-risk approach to multi-objective stochas-

tic linear programming problems was suggested by Stancu-Minasian [23]. Chance-constraint

programming in stochastic is expanded to fuzzy parameters concept by Liu and Iwamura [18].

They have presented certain equations with chance constraint in some fuzzy concept identi-

cal to stochastic programming. Also Liu and Iwamura [18] have suggested a fuzzy simulation

method for chance constraints for which it is usually difficult to be changed into certain equa-

tions and they have used the concept of genetic algorithm for solving this type of problems and

discussed numerical examples. Hulsurkar et al. [12] extended their studies on multi-objective

stochastic linear programming problems using the concept of fuzzy programming approach.

They first changed the stochastic programming problem into a linear or a nonlinear determin-

istic problem and then used fuzzy programming approach for finding a solution. In the study

of the control of nitrate pollution, Kampas and White [15] have suggested use of probabilistic

programming and adopted a comparative study of this model with the approaches of various

probabilistic constraints. Mohammed [20] has extended his contribution on chance-constraint

fuzzy goal programming containing right-hand side values with uniform random variables. He

demonstrated the core idea regarding the stochastic goal programming and chance-constraint

linear goal programming. Apak and Gken [2] developed new mathematical models for sto-

chastic traditional and U-type assembly lines with a chance-constrained 0-1 integer program-

ming technique. For portfolio selection with fuzzy returns, Huang [11] presented two types of

credibility-based chance-constrained models . In case of transmission system planning in the

competitive electricity market environment, Yang and Wen [28] suggested a chance-constrained
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programming model. Sarkar et al. [25] studied CCP, where the parameters are lognormal in na-

ture and extended their study in some managerial apllications and Fisher’s discriminant function

for separation of populations. For study of uncertainty of municipal solid waste management

a robust hybrid stochastic chance-constraint programming model was suggested by Xu et al.

[27]. Henrion and Strugarek [10] explored the convexity of chance constraints with indepen-

dent random variables. A stochastic algorithm was suggested by Parpas and Rstem [21] for

the global optimization of chance-constrained problems assuming that, the probability measure

used to evaluate the constraints is known only through its moments. A chance-constrained ap-

proach and a compromise programming approach was recomended by Abdelaziz and Masri [1],

to transform the multi-objective stochastic linear program with partial linear information on the

probability distribution into its equivalent uni-objective problem. A polynomial time approx-

imation method was suggested by Goyal and Ravi [9], for the chance-constrained knapsack

problem when item sizes are normally distributed and independent of other items. The concept

of Essen inequality used by Atalay and Apaydin [3], to transform the chance constrained model

into a deterministic model where pameters are independent with Gamma distributions.

Although, many authors studied and solved CCP for the parameters having normal distribu-

tion, uniform distribution, lognormal distribution, and exponential distribution with the linear

chance constraints [22, 4, 5, 19, 25]. But the gamma distribution [13], which has a variety of

applications, has been discussed a little so far. In particular, it can be used to model:

(1) the queuing systems;

(2) the flow of items through manufacturing and distribution processes;

(3) the load on web servers;

(4) the probability of ruin & value (risk management), etc..

The three-parameter gamma distribution is defined in terms of a shape parameter, a scale

parameter and a location parameter. However, the two-parameter version of this distribution is

more commonly used in practice.

The Probability Density Function (pdf) of a three-parameter gamma distribution [13] is,

f (x) = (x−γ)α−1

β α Γ(α) exp(−(x− γ)/β ),
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where, the domain is γ ≤ x < +∞, and the parameter α is the shape parameter (α > 0), β is

the scale parameter (β > 0) and γ is the location parameter. In this model γ ≡ 0 yields the

two-parameter Gamma distribution.

Further, for simplicity one may consider β = 1. But in reality β may not be equal to one. In

that case we have to consider scale transformation so that the scale parameter becomes one.

The Essen inequality apprach were used by Atalay and Apaydin [3], to transform the chance

constrained model into a deterministic model where pameters are independent with Gamma

distributions. In our paper we have reduced the chance constraints with independent Gamma

parameters to deterministic constraints.Here geometric inequality and some other inequalities

are used, where the objective function may be considered as linear or nonlinear with determin-

istic cost coefficient.

2. Mathematical model with linear constraints
2.1 Mathematical model with linear probabilistic constraints

Let us consider an optimization problem having linear probabilistic constraints that can be mod-

eled as follows:

To find X = (x1,x2,x3, ..............,xn) so as to,

(1) Minimize f (X)

subject to chance constraints,

(2) Pr[
n

∑
j=1

ai jx j ≤ bi]≥ 1− pi , i = 1,2,3, ..........,m,

(3) x j ≥ 0 , j = 1,2,3, ...............,n.

where, 0 < pi < 1 and bi > 0, for i = 1,2,3, ..........,m, are given constants and ai j ’s are in-

dependently distributed gamma random variable with parameters αi j(> 0),βi j(> 0)and γi j(≥

0), which are respectively shape parameter, scale parameter and location parameter for i =
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1,2,3, ..........,m and j = 1,2,3, ...............,n. Let us consider the following transformation

in respect of location and scale as a
′
i j =

ai j−γi j
βi j

.

Then the event ∑
n
j=1 ai jx j ≤ bi, i = 1,2,3, ..........,m is equivalent to the following event:

n

∑
j=1

[a
′
i jβi jx j + γi jx j]≤ bi, i = 1,2,3, ..........,m

i.e.,

∑
n
j=1 a

′
i j(βi jx j)≤ bi−∑

n
j=1 γi jx j = b

′
i (say), i = 1,2,3, ..........,m.

So, the original problem (1) – (3) can be equivalently expressed in the following form:

To find X = (x1,x2,x3, ..............,xn) so as to,

(4) Minimize f (X)

subject to chance constraints,

(5) Pr[
n

∑
j=1

a
′
i jβi jx j ≤ b

′
i]≥ 1− pi , i = 1,2,3, ..........,m,

(6) x j ≥ 0 , j = 1,2,3, ...............,n

where, 0 < pi < 1 and b
′
i = bi−∑

n
j=1 γi jx j, i = 1,2,3, ..........,m are constants and a

′
i j ’s are

independently distributed gamma random variable with parameter αi j(> 0), i.e., a
′
i j ∼ G(αi j)

for i = 1,2,3, ..........,m and j = 1,2,3, ...............,n .

2.2 Deterministic reduction of the model

Here we shall reduce the probabilistic liner constraints (5) to deterministic non-linear con-

straints as follows:

Let us consider the event b
′
i ≥ ∑

n
i=1 a

′
i jβi jx j .

This can be written as,

b
′
i ≥ ∑

n
j=1(a

′
i j +1)βi jx j −∑

n
j=1 βi jx j, i = 1,2,3, ..........,m
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i.e.,

(7) b
′
i ≥ n(

1
n

n

∑
j=1

(a
′
i j +1)βi jx j )−

n

∑
j=1

βi jx j, i = 1,2,3, ..........,m.

Now from geometric inequality (G.I.) we have,

(8) n(
1
n

n

∑
j=1

(a
′
i j +1)βi jx j )≥ n(

n

∏
j=1

[(a
′
i j +1)βi jx j]

1
n ), i = 1,2,3, ..........,m

Thus from (7) and (8) we get,

b
′
i ≥ n(

n

∏
j=1

[(a
′
i j +1)βi jx j]

1
n )−

n

∑
j=1

βi jx j, i = 1,2,3, ..........,m,

i.e.,

∏
n
j=1(a

′
i j +1)

1
n ∏

n
j=1(βi jx j)

1
n ≤ 1

nb
′
i +

1
n ∑

n
j=1 βi jx j, i = 1,2,3, ..........,m,

i.e.,

(9)
n

∏
j=1

(a
′
i j +1)≤ (

1
n

b
′
i +

1
n

n

∑
j=1

βi jx j)
n/

n

∏
j=1

(βi jx j), i = 1,2,3, ..........,m.

Now, as 1+∑
n
j=1 a

′
i j ≤∏

n
j=1(1+a

′
i j) , i = 1,2,3, ...........,m for non negative a

′
i j’s, so from the

inequality (9) we have,

1+
n

∑
j=1

a
′
i j ≤ (

1
n

b
′
i +

1
n

n

∑
j=1

βi jx j)
n/

n

∏
j=1

(βi jx j), i = 1,2,3, ..........,m,

i.e.,

(10)
n

∑
j=1

a
′
i j ≤ (

1
n

b
′
i +

1
n

n

∑
j=1

βi jx j)
n/

n

∏
j=1

(βi jx j)−1, i = 1,2,3, ..........,m.

Therefore the probabilistic constraints (5) can be written, using the implicative relation (10) as

follows:

(11) Pr[
n

∑
j=1

a
′
i j ≤ (

1
n

b
′
i +

1
n

n

∑
j=1

βi jx j)
n/

n

∏
j=1

(βi jx j)−1]≥ 1− pi, i = 1,2,3, ..........,m.
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Let, Ai = ∑
n
j=1 a

′
i j, ∀i = 1,2,3, ....,m. Since,∀i, j , a

′
i j ’s follows independent G(αi j), so

(12) Ai ∼ G(
n

∑
j=1

αi j),∀i = 1,2,3, ....,m.

Let, Pr[Ai ≤ ti] = 1− pi, where, Ai ∼ G(∑n
j=1 αi j) and 0 < pk < 1. This gives

(13) ti = Gpi(
n

∑
j=1

αi j).

Therefore, from (11) and (13),using above result we have,

(14) [(
1
n

b
′
i +

1
n

n

∑
j=1

βi jx j)
n/

n

∏
j=1

(βi jx j)]−1≥ Gpi(
n

∑
j=1

αi j), i = 1,2,3, ..........,m

where, b
′
i = bi−∑

n
j=1 γi jx j, i = 1,2,3, ..........,m.

Thus, in (14), we have the implicatively reduced deterministic form of the probabilistic con-

straints (5). We can note that the reduced deterministic constraints (14) are nonlinear and hence

the reduced problem is a non-linear optimization problem.

Thus, the implicative reduction to deterministic form of the probabilistic model (1) – (3) is as

follows:

To find X = (x1,x2,x3, ..............,xn) so as to,

(15) Minimize f (X)

subject to the constraints,

(16) [(
1
n

b
′
i +

1
n

n

∑
j=1

βi jx j)
n/

n

∏
j=1

(βi jx j)]−1≥ Gpi(
n

∑
j=1

αi j), i = 1,2,3, ..........,m,

(17) x j ≥ 0 , j = 1,2,3, ...............,n.

2.2.1 Spacial Case:

In case, when 2∑
n
j=1 αi jis a positive integer, then from (12) we have,

(18) 2Ai ∼ χ
2
2∑

n
j=1 αi j

,∀ i = 1,2,3, ........,m.
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Let, Pr[2Ai ≤ ti] = 1− pi, where, 2Ai ∼ χ2
2∑

n
j=1 αi j

,∀ i = 1,2,3, ........,m.

This implies,

(19) ti = χ
2
2∑

n
j=1 αi j

(1− pi), i = 1,2,3, .............,m.

Therefore, from (11) and (19) we have,

(20) [(
1
n

b
′
i +

1
n

n

∑
j=1

βi jx j)
n/

n

∏
j=1

(βi jx j)]−1≥ Gpi(
n

∑
j=1

αi j), i = 1,2,3, ..........,m

where,b
′
i = bi−∑

n
j=1 γi jx j, i = 1,2,3, ..........,m.

Thus, we have the implicative reduction to deterministic form of the probabilistic model (1) –

(3) as follows:

To find X = (x1,x2,x3, ..............,xn)so as to,

(21) Minimize f (X)

subject to the constraints,

(22) [(
1
n

b
′
i +

1
n

n

∑
j=1

βi jx j)
n/

n

∏
j=1

(βi jx j)]−1≥ 1
2

χ
2
2∑

n
j=1 αi j

(1− pi), i = 1,2,3, ..........,m.

(23) x j ≥ 0 , j = 1,2,3, ...............,n.

3. Mathematical model with non-linear constraints
3.1 Mathematical model with non-linear probabilistic constraints

Let us consider an optimization problem having non-linear probabilistic constraints that can be

modeled as follows:

To find X = (x1,x2,x3, ..............,xn)so as to,

(24) Minimize f (X)

subject to chance constraints,
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(25) Pr[
n

∑
i=1

n

∑
j=1

aki jxix j ≤ bk]≥ 1− pk , k = 1,2,3, ..........,m.

(26) xi ≥ 0 , i = 1,2,3, ...............,n.

where, 0 < pk < 1 and bk > 0, for k = 1,2,3, ..........,m, are given constants. Let us consider

that aki j’s are independent one parameter gamma random variable for all or some i, j,k i.e.,

aki j ∼ G(ξki j) for all or some i, j,k or aki j’s are identically zero for some (not all) i, j,k.

3.2 Reduction of the probabilistic model to deterministic form

Let us let us consider the event, ∑
n
i=1 ∑

n
j=1 aki jxix j ≤ bk , k = 1,2,3, ..........,m.

This can be written as,

(27)
n

∑
i=1

n

∑
j=1

(aki j +1)xix j−
n

∑
i=1

n

∑
j=1

xix j ≤ bk , k = 1,2,3, ..........,m.

Applying G.I. on the first term of LHS of (27) we get,

(28)
n

∑
i=1

n

∑
j=1

(aki j +1)xix j ≥ n2[
n

∏
i=1

xi{
n

∏
j=1

(aki j +1)x j}
1
n ]

1
n , k = 1,2,3, ..........,m

Thus from (27) and (28) we get,

n2[
n

∏
i=1

xi{
n

∏
j=1

(aki j +1)x j}
1
n ]

1
n −

n

∑
i=1

n

∑
j=1

xix j ≤ bk, k = 1,2,3, ..........,m

i.e.,

∏
n
i=1 xn

i {∏n
j=1(aki j +1)x j} ≤ {

bk+∑
n
i=1 ∑

n
j=1 xix j

n2 }n2
, k = 1,2,3, ..........,m

i.e.,

(29)
∏

n
i=1 ∏

n
j=1(aki j +1)≤ {bk+∑

n
i=1 ∑

n
j=1 xix j

n2 }n2
/{(∏n

i=1 xn
i )(∏

n
j=1 x j)},

k = 1,2,3, ..........,m.

Now for all non-negative aki j ’s we have,
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(30) 1+
n

∑
i=1

n

∑
j=1

aki j ≤
n

∏
i=1

n

∏
j=1

(1+aki j),k = 1,2,3, ..........,m.

Thus from (29) and (30) we get,

(31)
∑

n
i=1 ∑

n
j=1 aki j ≤ {

bk+∑
n
i=1 ∑

n
j=1 xix j

n2 }n2
/{(∏n

i=1 xn
i )(∏

n
j=1 x j)}−1,

k = 1,2,3, ..........,m.

Thus, the probabilistic constraints (25) can be written, using the implicative relation (30), as

follows:

(32)
Pr[∑n

i=1 ∑
n
j=1 aki j ≤ {(

bk+∑
n
i=1 ∑

n
j=1 xix j

n2 )n2
/(∏n

i=1 xn
i ∏

n
j=1 x j)}−1]≥ 1− pk,

k = 1,2,3, ..........,m.

Let, Ak = ∑
n
i=1 ∑

n
j=1 aki j,k = 1,2,3, .........,m.

Since, aki j is zero for some (not all) i, j,k and for the rest aki j ∼ G(ξki j). So,

(33) Ak ∼ G(
n

∑
i=1

n

∑
j=1

ξki j),k = 1,2,3, .......,m.

Let, Pr[Ak ≤ tk] = 1− pk,k = 1,2,3, .......,m.

It implies that,

(34) tk = Gpk
(

n

∑
i=1

n

∑
j=1

ξki j),k = 1,2,3, .......,m.

Thus from (32) using (34) we get,

(35)
[{bk+∑

n
i=1 ∑

n
j=1 xix j

n2 )n2
/(∏n

i=1 xn
i ∏

n
j=1 x j)}−1]≥ Gpk

(∑n
i=1 ∑

n
j=1 ξki j),

k = 1,2,3, ..........,m.

Therefore, in (35) we have implicatively reduced deterministic form of the probabilistic con-

straint (25). Also here the reduced constraints are non-linear and the reduced problem is a

non-linear optimization problem.
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Thus, the implicative reduction to deterministic form of the probabilistic model (24) - (26) is as

follows:

To find X = (x1,x2,x3, ..............,xn) so as to,

(36) Minimize f (X)

subject to the constraints,

(37)
[{bk+∑

n
i=1 ∑

n
j=1 xix j

n2 )n2
/(∏n

i=1 xn
i ∏

n
j=1 x j)}−1]≥ Gpk

(∑n
i=1 ∑

n
j=1 ξki j),

k = 1,2,3, ..........,m.

(38) xi ≥ 0 , i = 1,2,3, ...............,n.

3.2.1 Special Case

In particular from (33) we can write,

(39) 2Ak ∼ χ
2
2∑

n
i=1 ∑

n
j=1 ξki j

,k = 1,2,3, .......,m,

if 2∑
n
i=1 ∑

n
j=1 ξki j is positive integers.

Let, Pr[2Ak ≤ tk] = 1− pk,k = 1,2,3, .......,m.

It implies that,

(40) tk = χ
2
2∑

n
i=1 ∑

n
j=1 ξki j

(1− pk),k = 1,2,3, .......,m.

Then, the implicative reduction to deterministic form of the probabilistic model (24) - (26) is as

follows:

To find X = (x1,x2,x3, ..............,xn)so as to,

(41) Minimize f (X)

subject to the constraints,
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(42)
[{bk+∑

n
i=1 ∑

n
j=1 xix j

n2 )n2
/(∏n

i=1 xn
i ∏

n
j=1 x j)}−1]≥ 1

2 χ2
2∑

n
i=1 ∑

n
j=1 ξki j

(1− pk),

k = 1,2,3, ..........,m,

(43) xi ≥ 0 , i = 1,2,3, ...............,n.

4. Solution
We can solve, the non-linear deterministic problems (15) - (17) and (21) - (23) corresponding

to the probabilistic problem (1) - (3) and the non-linear deterministic problems (36) - (38) and

(41) - (43) corresponding to the probabilistic problem (24) - (26), using mathematical program-

ming software LINGO 10 [17]. Since in both the cases the reductions are through implicative

relationship, so we need to verify whether the solution so obtained satisfy the respective prob-

abilistic constraints and we use programming code in MATLAB 7.6 for this verification. If the

solutions satisfy the respective probabilistic constraints, then we can consider those solutions

as the optimal solutions for the probabilistic problems (1) - (3) and (24) - (26) respectively.

5. Numerical Example
5.1 Numerical example for the model having linear probabilistic constraints

Let us consider the following example for illustration.

To find x1,x2,x3 so as to

(44) Minimizez = 2x2
1 + x2

2 +3x2
3

subject to the chance constraints,

(45)

Pr(a11x1 +a12x2 +a13x3 ≤ b1)≥ 1− p1

Pr(a21x1 +a22x2 +a23x3 ≤ b2)≥ 1− p2

Pr(a31x1 +a32x2 +a33x3 ≤ b3)≥ 1− p3

(46) xi ≥ 0 , i = 1,2,3.

where, ai j ∼ G(αi j) ; i, j = 1,2,3 and αi j’s are given in the following matrix:
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j 1 2 3

i

1 0.2 0.1 0.2

2 0.3 0.1 0.6

3 0.2 0.77 0.03

Also given that, b1 = 2,b2 = 1,b3 = 4 and p1 = 0.01, p2 = 0.05, p3 = 0.1.

5.1.1 Solution of the above problem

Using (21) – (23), the reduced implicative deterministic form of the given problem (44) – (46)

can be written as follows:

To find x1,x2,x3 so as to

(47) Minimizez = 2x2
1 + x2

2 +3x2
3

subject to the constraints,

(48)

[(1
3(2+ x1 + x2 + x3))

3/(x1x2x3)]−1≥ 1
2 χ2

1 (0.99)

[(1
3(1+ x1 + x2 + x3))

3/(x1x2x3)]−1≥ 1
2 χ2

2 (0.95)

[(1
3(4+ x1 + x2 + x3))

3/(x1x2x3)]−1≥ 1
2 χ2

2 (0.90)

(49) xi ≥ 0 , i = 1,2,3.

And from the statistical table we have, χ2
1 (0.99) = 6.63 , χ2

2 (0.95) = 5.99 , χ2
2 (0.90) = 4.61.

Now using LINGO10 [17] we can get the global optimal solution, for the problem (47) – (49),

which are

x1 = 0.52945 ∗ 10−4 , x2 = 0.1323762 ∗ 10−3 , x3 = 0.8797592 ∗ 10−6 and zmin = 0.2313211 ∗

10−7.

Now the above solutions satisfy the constraints (45), which can be verified using MATLAB 7.6

[8]. Thus the above solutions are optimal for the given problem (44) – (46).

5.2 Numerical example for the model having non-linear probabilistic constraints

Let us consider the following example for illustration.
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To find x1,x2,x3 so as to

(50) Minimizez = 2x2
1 + x2

2 +3x2
3

subject to the chance constraints,

(51)
Pr(∑3

i=1 ∑
3
j=1 a1i jxix j ≤ b1)≥ 1− p1

Pr(∑3
i=1 ∑

3
j=1 a2i jxix j ≤ b2)≥ 1− p2

(52) xi ≥ 0 , i = 1,2,3.

where, aki j ∼ G(ξki j) ; i, j = 1,2,3 and k = 1,2 and ξki j’s are given in the following matrices:

For k = 1, ξ1i j’s are

j 1 2 3

i

1 0.2 0.1 0.2

2 0.3 0.1 0.6

3 0.2 0.77 0.03

For k = 2, ξ2i j’s are

j 1 2 3

i

1 0.1 0.2 0.1

2 0.3 0.3 0.1

3 0.1 0.03 0.77

Also given that, b1 = 2,b2 = 3 and p1 = 0.01, p2 = 0.05.

5.2.1 Solution of the above problem

Using (41)-(43), the reduced implicative deterministic form of the given problem (50)-(52) can

be written as follows:

To find x1,x2,x3 so as to

(53) Minimizez = 2x2
1 + x2

2 +3x2
3
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subject to the constraints,

(54)
[{ (2+∑

3
i=1 ∑

3
j=1 xix j)

3∗3 }3∗3/(x1x2x3)
4]−1≥ 1

2 χ2
5 (0.99)

[{ (3+∑
3
i=1 ∑

3
j=1 xix j)

3∗3 }3∗3/(x1x2x3)
4]−1≥ 1

2 χ2
4 (0.95)

(55) xi ≥ 0 , i = 1,2,3.

And from the statistical table we have, χ2
5 (0.99) = 15.1 , χ2

4 (0.95) = 9.49

Again we can find global optimal solution for the problem (53)-(55), using LINGO 10 [17],

which is as follows:

x1 = 0.06279646 , x2 = 0.08667882 , x3 = 0.04885335 and zmin = 0.02255996.

Now the above solutions satisfy the constraints (51), which can be verified using MATLAB [8].

Thus the above solutions are optimal for the given problem (50) - (52).

6. Conclusion
In this paper we have suggested a reduction procedure of probabilistic constraints to determinis-

tic constraints through implicative relationship. During this reduction procedure the event space

under consideration has been enlarged and the implicative reduction calls for verification. We

have to verify that, whether the optimal solution of the transformed deterministic problems un-

der extended region satisfies the original probabilistic constraints or not. Once this verification

gives a positive response, the obtained optimal solution of the extended deterministic problem

becomes the optimal solution of the original CCP. In case of transformation using sharp inequal-

ities including separation of coefficient parameters, if needed under distributional assumption,

the positive response during verification becomes a likely one.

For a gamma setup separation of coefficients from the gamma variables is a must, because

often wise evaluation of the resultant distribution becomes a tedious task. For a normal setup

this separation is redundant.

It may finally be noted that the case exponential distribution can also be studied as a spatial

case of gamma distribution in the step parameters equal to unity.
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