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Abstract. In this paper, we establish the generalized Ostrowski type inequality involving local fractional integrals
on fractal sets R* (0 < a < 1) of real line numbers. Some applications for special means of fractal sets R* are

also given. The results presented here would provide extensions of those given in earlier works.
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1. Introduction

In 1938, Ostrowski established the following interesting integral inequality for differentiable

mappings with bounded derivatives [10].

Theorem 1.1. [Ostrowski inequality] Let f : [a,b] — R be a differentiable mapping on (a,b)

whoose derivative f': (a,b) — R is bounded on (a,b), i.e. ||f'||..:= sup |f(¢)| < oo. Then,
te(a,b)
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we have the inequality

a+b

B 1 (X_T)z _ /
(1) f@) i e | ¢

b
1
b—a /f(t)dt =

for all x € [a,b]. The constant } is the best possible.
This inequality is well known in the literature as the Ostrowski inequality. For more informa-

tion recent development on Ostrowski inequality, please refer to [1]-[5], [7], [8] and [11]-[15].

Definition 1.1. [Convex function] The function f : [a,b] C R — R, is said to be convex if the

following inequality holds

flx+(1=t)y) <tf(x)+(1=1)f(y)
for all x,y € [a,b] and t € [0, 1]. We say that f is concave if (—f) is convex.

Theorem 1.2. [Hermite-Hadamard inequality] Let f : I C R —R be a convex function on the
interval I of real numbers and a,b € I with a < b. If f is a convex function then the following

double inequality, which is well known in the literature as the Hermite—Hadamard inequality,

holds [12]
b
@) f("”’) <! /af(x)dxgw.

2 “b—a 2

2. Preliminaries

Recall the set R* of real line numbers and use the Gao-Yang-Kang’s idea to describe the
definition of the local fractional derivative and local fractional integral, see [17, 18] and so on.

Recently, the theory of Yang’s fractional sets [17] was introduced as follows.

For 0 < ¢ <1, we have the following a-type set of element sets:

Z% : The a-type set of integer is defined as the set {0%, 1% +2% ... +n%* ...}.

Q% : The a-type set of the rational numbers is defined as the set {m%* = (%)a i p,q €Z,
q# 0}

o
J%* : The a-type set of the irrational numbers is defined as the set {m%* # <§> 1 p,q €Z,

q#0}.
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R% : The a-type set of the real line numbers is defined as the set R* = Q% UJ%.
If a*,b* and c®* belongs the set R* of real line numbers, then
(1) a* 4+ b* and a*b”* belongs the set R%;
(2) a®*+b*=b*+a% = (a+b)* = (b+a)*;
(3) a® + (b* +c%*) = (a+b)* +c%;
4) a*b®* = b%a® = (ab)* = (ba)*;
(5) a* (b%c*) = (a®*b*) c%;
(6) a* (b* 4 c*) = a*b* + a%*c*
(7) a®* 4+ 0% = 0% +a%* = g% and a%1% = 1%a* = a“%.
The definition of the local fractional derivative and local fractional integral can be given as

follows.

Definition 2.1. [17] A non-differentiable function f : R — R*, x — f(x) is called to be local

fractional continuous at xo, if for any € > 0, there exists 6 > 0, such that

|f(x) = fx0)| < €%

holds for |x —xg| < &, where €,0 € R. If f(x) is local continuous on the interval (a,b), we

denote f(x) € Cy(a,b).

Definition 2.2. [17]The local fractional derivative of f(x) of order & at x = x is defined by

f(“‘)(xo): dx® | _, —)}Lrgo (x—x0)% ’
where A% (£(x) = f(50)) =D+ 1) (/2) = f(x0).

. /—"\ﬁ
If there exists f*+1)%(x) = D%... D% f(x) for any x € I C R, then we denoted f € Dr1ya(l),
where k =0,1,2,...

Definition 2.3. [17] Let f(x) € Cq [a,b]. Then the local fractional integral is defined by,

o 1 R (04
B = T / FOa* = gy Jim, T £6) (80"

with Ar; =11 —t; and At = max {At;,An,...,Aty_1 }, where [tj,lj+1:| ,j=0,...,N—1 and

a=ty<t; <..<ty_1 <ty =Dbis partition of interval [a,b].
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Here, it follows that ./ f(x) = 0 if a = b and I} f(x) = —I f(x) if a < b. If for any
x € [a,b], there exists ,[* f(x), then we denoted by f(x) € I [a,b].

Definition 2.4. [Generalized convex function] [17] Let f : I C R — R*. For any x;,x; € I and

A € [0, 1], if the following inequality
FAxr+(1=2)x2) SA%f(xr) + (1= 24)% f(x2)

holds, then f is called a generalized convex function on /.
Here are two basic examples of generalized convex functions:
(D) f(x) =x,x>0,p> 1
ok

(2) f(x) = Eq(x%), x € R where Eq(x*) = ¥ m is the Mittag-Lrffer function.
k=0

Lemma 2.1. [17] (1) (Local fractional integration is anti-differentiation) Suppose that f(x) =

g9 (x) € Cy [a,b], then we have

aly f(x) = g(b) — 8(a).

(2) (Local fractional integration by parts) Suppose that f(x),g(x) € Dy |a,b] and f(®(x),

¢\ (x) € Cy [a,b], then we have

AP F(0)8 P (x) = f(0)g(x)|2 —a I f P (x)g ().

Lemma 2.2. [17] We have

l) daxka _ F(l —l—k(X) x(k*l)a;
dx® Il+(k-1)a)
Ly, C(1+ka)
. dx)® = pktlo _ ,(k+D)a) 1 =R
W ragnF @) F(1+(k+1)a)< ki) ke
Lemma 2.3. [Generalized Holder’s inequality] [17] Let f,g € Cy [a, D], p,q > 1 with %+é =1,
then
1 b 1 b P 1 b é
- dx)% < —/ P(dx)* —/ 9 (dx)*
e sl < | ot [l @) | oty [ e
a a a

In [9], Mo et al. proved the following generalized Hermite-Hadamard inequality for general-

ized convex function:
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Theorem 2.1. Let f(x) € I¥ [a,b] be generalized convex function on [a,b] with a < b. Then

G) £(557) < e oy < L0

The interested reader is refer to [6],[9],[16]-[22] for local freactional theory.
In this paper, we establish the generalized Ostrowski type inequalities and we obtain some
inequalities using generalized convex function. The results presented here would provide ex-

tensions of those given in earlier works.
3. Main results

Theorem 3.1. Let I C R be an interval, f : I’ CR — R (I0 is the interior of 1) such that

f €Du(I°) and % € Cyla,b] for a,b € I° with a < b. Then, for all x € [a,b], we have the

identity
o oSf@+fb) T'l+a)
(1=m)® f) +h* ===~ b—a) JEF(1)
1 b
- X (@) [0/
B TC(l+a)(b—a)® a/p( ) f1Y(¢) (dt)
where

forallh € 0,1] and a+h25% <x < b—h54.
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Proof. Using the local fractional integration by parts, we have

b—a
2

_ (b—a)“(l—h)“f<x>+(h ) (@) + F(B)] T (1 + o), I%£(0).

If we devide the rsulting equality with (b —a)%, then we complete the proof. U

Corollary 3.1. Under the same assumptions of Theorem with h = 1, then the following equality

holds:

b
a oc_f(a)"”f(b) Fl+a) ,
@ | Pl 0) () = ST S ),

1
I'l+o)(b—a)

a

Remark 3.1. If we choose 2 = 0 in Theorem , then we have the following equality

1
C(l+a)(b—a)®

b
Pl 7 0 ) = 09— = )

which is given by Sarikaya and Budak in [16].
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Theorem 3.2. Suppose that the assumptions of Theorem are satisfied, then we have the in-

equality

@ e e ]

_ @l ra+a
(b—a)®T(1+2a)

b 2a b— 200
(- 232) O ]

forall h € [0,1] anda—i—hb%“ <x< b—hl%.
Proof. Taking modulus in Theorem , we get

) 1) -4 e IO TUE) )

b

2 [ 1pGen)l [0 @n*

IN

IN

flo) 4 3
_ ‘(ba)g [F(lz_a)a/t—(a—i-hbz ) (dr)
b o
+r(1+a)x/t—(b—hb;a> (dt)“]
7|
= % K1+ K.
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Using Lemma , we have

1 X
ko= F(1+oc)/

and similarly

o

(dr)*

K = ﬁ/bt—(b—hb;a>
(hb;a>2a+(b—hb;a—x>2a].

X
Substituting the calculated intagrals K and K3 in (5), then we have

I'l+o)
'l+2a)

‘(1 O R e azs‘f@)'
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b—a 200 a+b 2a
o 2(X _
(57) = ()
(b_a)ZOC

2 2
e e (b—a) "+ (b—a) a]

I ra+a)
(b—a)*T(1+2a)

l7l. ra+a
(b—a)* T(1+20)

2a 2a
o a+b (b_a) 20 20
2 (X_T> —l—z—a[(h—l) +h }

which completes the proof. U

Remark 3.2. If we choose 4 = 0 in Theorem , then we have the following inequality

(x— i) ol fa
40£+ ( 22 ](b_a) )‘oo7

I'l+a)
(b—a)* “

o L(l+a)

o= T2

)| <2

which is given by Sarikaya and Budak in [16].

Remark 3.3. If we choose o = 1 in Theorem , then we have the following inequality

< ’Lf’H; [4([9— ) [(h—l)z—l—hz}—i—(x_a;b)z

which is proved by Dragomir et al. in [8].

Corollary 3.2. Under the same assumptions of Theorem with h = 1, then the following in-

equality holds:

fla)+f(b) T(+a)
20 (b—a)*

(b—a) I'l+o)
2¢ T'(1+2a)

0| < L
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Theorem 3.3. Suppose that the assumptions of Theorem are satisfied, then we have the in-

equality

(1) o) el LO UL g

) |
P I'(l14+qa) q
= oa)® (r<1+<q+1>a>>

orallhe[0,1] and a+h’5% <x<b—h%2 where p>1,1+1=1and || f(®
2 2 P q
by

is defined
p

1
b P

el - (i [l )

a

Proof. Taking madulus in Theorem and using generalized Holder’s inequality, we have

112 ) el OLTO U )

b

1 a o
S s LGOI IO
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Using Lemma , we have

©) Ky = ;/

Hence, the proof is completed. U

Remark 3.4. If we choose 4 = 0 in Theorem , then we have the following inequality

I'l+a)

f(x) - (b_a)a

h ; s
= Ub—a)g‘ (Jf&fﬁim) (=) (o)t

1)
which is given by Sarikaya and Budak in [16].

Corollary 3.3. Under the same assumptions of Theorem with h = 1, then the following in-

equality holds:

fl@+fb) T+a) , (b—a)i [ T(l+qa) \
2% (b “'bf(’)‘s o (sa)

7,
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) P, .
is generalized

Theorem 3.4. Suppose that the assumptions of Theorem are satisfied. If ‘ f (o

convex, then we have the inequality

¢ gl @SB T(+0)
e

= (b _la)‘;‘ (I?((llj202)>p <F(f—§—1(—;—qﬁ ) (Hf ‘ +‘f(a) %) pDE

N (g4 B (g+1) 3 (q+1)] @
xl2(hb2a) —I—(x— (a-l—hbza)) -I—(b—hbza—x) ]

or a € anda+h==<x —h==,wherep>land -4+ - =1.
Nhe(0,1] and a+hb54 <x <b—h%2% wh land  + ;=1

50

Q=

Proof. Taking madulus in Theorem and using generalized Holder’s inequality, we have

ef@+1) T(+a)
2 b-a)”

UN (RO £510)

b

1 o a
< e pmae ] el O]

a

’ b :
(b la ( T'(1+a) /‘f ) (r(11+a)a/l’(x’f)q(df)a)

P
Because of the generalized convexity of ’ £l ) , we find that

b
(8) Faﬁalﬂﬂm,P
@) (b) P b ) FO)(a) P b ]
r<1+a><b’—a>aa/(t“>“(d” *ru’m)(b_a)aa/(bt)“(dr)

0] rava
= mae Tsaw) 0T

= -y [0+ |

1@ rara
b—a T(1+2a) 2%
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If we substitute the inequalities (8) and (6) in (7), then we obtain required inequality, which

completes the proof. U

Remark 3.5. If we choose 2 = 0 in Theorem , then we have the following inequality

I'l+a)
(b—a)®

. F(1+a)\?/ T(+qa) \9
< (b—a)% <F(1+206)) (F(1+(q+1)06))

(lroe] +|r“@f))

00~ JE10)

<R
SIE

< [(e—a) ) 4 (b))

which is given by Sarikaya and Budak in [16].

Corollary 3.4. Under the same assumptions of Theorem with h = 1, then the following in-

equality holds:

fl@) ) Tta)
i

Q=

b—a)® (T(1+a)\? [ T(l+qa)
S T (F(l+2a)) (F(l+(q+l)a))

=

(lFo®f +|f=a@f])

4. Applications to some special means

Let us recall some generalized means:

a%+bp%
Ala,b) = —5—

1

L,(a,b) = ”n,nEZ\{—l,O},a,bER,a#b.

['(l+na) plntha _ ,(ntl)a
L(14(n+1)a) (b—a)®



14 MEHMET ZEKI SARIKAYA, SAMET ERDEN, HUSEYIN BUDAK

Now, let us reconsider the inequality (4):

(@)+f(b) T'l+a)
20 (b—a)*

11 ) 1L £10)

_ @l ra+a
(b—a)*T(1+2a)

2a 2a
o a+b (b_a) 20 20
2 (X_T> —l—z—a[(h—l) +h }

forall h € [0,1] and a+ h%5% <x < b—hb52.

Consider the mapping f : (0,00) — R*, f(x) = x"* n € Z\{—1,0}. Then, 0 < a < b, we

have
ORTICR | )
pa =AW and g o0 = [Lafa )"
I'(14+n n—
e 6, a1
.-
‘% a(n_l)a’ ne (_0071]\{_170}7

and then, we find that

|(1=h)%x*" +h*A(a",b") =T (1+ &) [Ly(a,b)]"|

I'(l1+a) a+b\** (b—a)*® 5
20 [ x— = | (h=1)**+1**|| 8,(a,b
= F(1+2a)(b—a)“[ (x 2) H e (1] | 81(a)
where
I'(1+n n—
‘_F(li(—nfol‘))a) Do n> 1

On(a,b) =

I'(1+n n—
‘—F(l—(k(—n—?))a)‘a( D ne (—eo, 1\ {~1,0},

and h € [0,1], x € [a+h25%,b—h254].
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