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Abstract. In this paper, we consider the initial value problem for first order nonlinear quadratic differential equa-

tions with maxima and we study the existence and approximation of the solutions. The main results are related to

a recent hybrid fixed point theorem of Dhage (2014) in partially ordered normed linear spaces.
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1. Introduction

The study of fixed point theorems for the contraction mappings in partially ordered met-

ric spaces is initiated by Ran and Reurings [13] which are further continued by Nieto and

Rodringuez-Lopez [7] and applied to boundary value problems of nonlinear first order ordinary
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differential equations for proving the existence results under certain monotonic conditions. S-

ince then many mathe- maticians have established several fixed point theorems for different

classes of contraction mappings in partially ordered metric spaces (see, for example [1], [3],

[4], [10], [12]). In this paper we investigate the existence of solutions of quadratic differential

equations with maxima in partially ordered spaces. More precisely, we consider the following

equation,

(1)

d
dt

[
x(t)

f (t,x(t))

]
+λ

[
x(t)

f (t,x(t))

]
= g
(
t, max

a≤ξ≤t
x(ξ )

)
x(a) = x0


for all t ∈ I = [a,b], a,b,x0 and f ,g ∈ I×R→ R are continuous function.

For λ ∈ R,λ > 0 , where f : I×R→ R/0 and g : I×R→ R are continuous functions.

By the solution of the QDE(12),we mean a function x ∈C1(I,R) that satisfies.

(i) t 7→ x
f (t,x) is continuous differentiable function x ∈ R and,

(ii) x-satisfies the equation in (12) on I,where C(I,R) is a space of continuously differentiable

real valued defined on I.

2. Preliminaries

We need the following notions and results.

Definition 2.1. A mapping A : X → X is called isotone or monotone nondecreasing if it pre-

serves the order relation �, that is, if x� y implies A x�A y for all x,y ∈ X .

Definition 2.2. An operator A on a normed linear space X into itself is called compact if A (X)

is a relatively compact subset of X . A is called totally bounded if for any bounded subset S of

X , A (S) is a relatively compact subset of X . If A is continuous and totally bounded, then it is

called completely continuous on X .

Definition 2.3. [Dhage 4] A mapping A : X→ X is called partially continuous at a point a ∈ X

if for ε > 0 there exists a δ > 0 such that ‖A x−A a‖< ε whenever x is comparable to a and

‖x−a‖< δ . A called partially continuous on X if it is partially continuous at every point of it.
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It is clear that if A is partially continuous on X , then it is continuous on every chain C contained

in X .

Definition 2.4. [Dhage 4] An operator A on a partially normed linear space X into itself is

called partially bounded if A(C) is bounded for every chain C in X . A is called uniformly

partially bounded if all chains A (C) in X are bounded by a unique constant. A is called

partially compact if A (C) is a relatively compact subset of X for all totally ordered sets or

chains C in X . A is called partially totally bounded if for any totally ordered and bounded

subset C of X , T (C) is a relatively compact subset of X . If A is partially continuous and

partially totally bounded, then it is called partially completely continuous on X .

Definition 2.5. [Dhage 4] The order relation � and the metric d on a non-empty set X are

said to be compatible if {xn} is a monotone, that is, monotone nondecreasing or monotone

nondecreasing sequence in X and if a subsequence {xnk} of {xn} converges to x∗ implies that

the whole sequence {xn} converges to x∗. Similarly, given a partially ordered normed linear

space (X ,�,‖ ·‖), the order relation � and the norm ‖ ·‖ are said to be compatible if � and the

metric d defined through the norm ‖ · ‖ are compatible.

Definition 2.6. Let (X ,�,‖·‖) be a partially ordered normed linear space. A mapping A : X→

X is called partially nonlinear D-Lipschitz if there exists a D-function ψ : R+→ R+ such that

(2) ‖A x−A y‖ ≤ ψ(‖x− y‖)

for all comparable elements x,y ∈ X , where ψ(0) = 0. If ψ(r) = kr, k > 0, then A is called

a partially Lipschitz with a Lipschitz constant k. If k < 1, A is called a partially contraction

with contraction constant k. Finally, A is called nonlinear D-contraction if it is a nonlinear

D-Lipschitz with ψ(r)< r for r > 0.

Theorem 2.7. Let
(
X ,�,‖ · ‖

)
be a regular partially ordered complete normed linear space

such that the order relation � and the norm ‖ · ‖ are compatible in X. Let A,B : X → X be two

nondecreasing operators such that

(a) A is partially bounded and partially nonlinear D-Lipschitz with D-function ψA,

(b) B is partially continuous and uniformly partially compact, and
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(c) M ψa<r,r>0,where M = sup{‖B(C)‖ C is chain in x }

(d) there exists an element x0 ∈ X such that x0 � Ax0Bx0 or x0 � Ax0Bx0.

Then the operator equation AxBx = x has a solution x∗ in X and the sequence {xn} of successive

iterations defined by xn+1 = AxnBxn, n = 0,1, . . ., converges monotonically to x∗.

3. Main results

The QDE (1) is considered in the function space C(I;R) of continuous real-valued functions

defined on I. We define a norm ‖ · ‖ and the order relation � in C(I;R) by

(3) ‖x‖= sup
t∈I
|x(t)|

and

(4) x≤ y⇔ x(t)≤ y(t)

for all t ∈ I respectively. Clearly, C(I;R) is a Banach algebra with respect to above supremum

norm and is also partially ordered w.r.t. the above partially order relation≤. It is known that the

partially ordered Banach algebra C(I;R) has some nice properties w.r.t. the above order relation

in it. The following lemma follows by an application of Arzella-Ascolli theorem.

Lemma 3.1. Let C((I,R),≤,‖.‖) be a partially ordered Banach space with the norm ‖ · ‖ and

the order relation ≤ defined by (3) and (4) respectively. Then ‖ · ‖ and ≤ are compatible in

every partially compact subset of C(I;R).

Proof. Let S be a partially compact subset of C(I;R) and let {xn}n∈N be a monotone nonde-

creasing sequence of points in S. Then we have

x1(t)≤ x2(t)≤ x3(t) · · · ·

for each t ∈ R+ Suppose that a subsequence {xnk}n∈N of {xn}n∈N is convergent and converges

to a point xin S. Then the subsequence {xnk}n∈N of the monotone real sequence {xn}n∈N is

convergent. By monotone characterization, the whole sequence {xn}n∈N is convergent and

converges to a point x(t) ∈R for each t ∈R+. This shows that the sequence {xn}n∈N converges
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point-wise in S. To show the convergence is uniform, it is enough to show that the sequence

{xn}n∈N is equicontinuous. Since S is partially compact, every chain or totally ordered set

and consequently {xn}n∈N is an equicontinuous sequence by Arzella-Ascoli theorem. Hence

{xn}n∈N is convergent and converges uniformly to x. As a result ≤ and ‖.‖ are compatible in S.

This completes the proof. We need the following definition in what follows.

Definition 3.2. A function u ∈ C1(I,R) is said to be a lower solution of the QDE (1) if the

function t 7→ u(t)
f (t,u(t) is continuously differentiable and satisfies

(5)

d
dt

[
u(t)

f (t,u(t))

]
+λ

[
u(t)

f (t,u(t))

]
≤ g
(
t, max

a≤ξ≤t
u(ξ )

)
u(a) = x0


all u ∈ I. We consider the following set of assumptions:

(C0) t 7→ x
f (t,x) is injection for each t ∈ I,

(C1) f defines a function f : I×R→ R,

(C2) There exist a constant M f > 0 such that 0 < f (t,x)≤M f for all t ∈ I and x ∈ R,

(C3) There exist a D-Function φ , such that, o≤ f (t,x)− f (t,y)≤ φ(x− y)

for all t ∈ I and x,y ∈ R,x≤ y,

(C4) g defines a function g : I×R→ R,

(C5) There exists a constant Mg > 0 such that g(t,maxa≤ξ≤t x(ξ )) ≤Mg for all t ∈ I,

(C6) g(t,x) is increaseing in x for all t ∈ I,

(C7) The QDE (1)has a lower solution u ∈C1(I,R).

Lemma 3.3. Suppose that hypothesis (C0) holds. Then a function x ∈C(I,R) is a solution of

the QDE (1), if and only if it is a solution of the nonlinear quadratic integral equation (in short

QIE),

(6) x(t) = [ f (t,x(t))]
(

ce−λ t

f (a,x0)
+
∫ t

a
e−λ (t−s)g(s, max

a≤s≤t
x(s)

)
ds

for all t ∈ I = [a,b],where C = x0eλa.

Theorem 3.4. Assume that hypotheses(C1)-(C7) hold.Furthermore, assume that

(7)
(

x0

f (a,x0)
+Mgb

)
φ(r)< r,r < 0
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then the QDE (12) has a positive solution x∗ defined on I and the sequence {xn} of successive

approximations defined by

(8) xn+1(t) = [ f (t,xn(t))]
(

ce−λ t

f (a,x0)
+
∫ t

a
e−λ (t−s)g(s, max

a≤s≤t
xn(s)

)
ds

for t ∈ R, where x1 = u, converges monotonically to x∗.

Proof. Set X =C(I,R) and define two operators A and B on X by

(9) Ax(t) = f (t,x(t)), t ∈ I

and

(10) Bx(t) =
ce−λ t

f (a,x0)
+
∫ t

a
e−λ (t−s)g(s, max

a≤s≤t
x(s))ds, t ∈ I.

From the continuity of the integral, it follows that A and B define the maps A,B : X → X . The

QDE (1) is equivalent to the operator equation

(11) Ax(t)Bx(t) = x(t), t ∈ I.

We shall show that the operators A and A satisfy all the conditions of Theorem (2.1). This is

achieved in the series of following steps.

Step I: A and B are nondecreasing on X .

Let x,y ∈ X be such that x≤ y. Then by hypothesis (C3), we obtain

Ax(t) = f (t,x(t))≥ f (t,y(t)) = Ay(t)

for all t ∈ I. This shows that A is nondecreasing operator on X into X . Similarly using hypothesis

(C3), it is shown that the operator B is also nondecreasing on X into itself. Thus, A and B are

nondecreasing positive operators on X into itself

Step II: A is partially bounded and partially D-Lipschitz on X .

Let x ∈ X be arbitrary. Then by (C2),

|Ax(t)|= | f (t,x(t))| ≤M f

for all t ∈ I. Taking supremum over t, we obtain ‖Ax‖ ≤M f and so, A is bounded. This further

implies that A is partially bounded on E.
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Next, let x,y ∈ I be such that x≥ y. Then

|Ax(t)−Ay(t)| = | f (t,x(t)− f (t,y(t)| ≤ φ(|x(t)− y(t)|) for all t ∈ I Taking supremum over t,

we obtain ‖Ax−Ay‖ ≤ φ(‖x− y‖) for all x,y ∈ X , x ≥ y. Hence, A is a partial nonlinear D-

Lipschitz on X which further implies that A is a partially continuous on X.

Step III: B is a partially continuous on X .

Let {xn} be a sequence in a chain C of X such that xn→ x for all n ∈ N. Then, by dominated

convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

ce−λ t

f (a,x0)
+
∫ t

a
e−λ (t−s)g(s, max

a≤s≤t
x(s))ds

=
ce−λ t

f (a,x0)
+
∫ t

a
e−λ (t−s)[ lim

n→∞
g(s, max

a≤s≤t
x(s))]ds

=
ce−λ t

f (a,x0)
+
∫ t

a
e−λ (t−s)g(s, max

a≤s≤t
x(s))ds

= Bx(t).

for all t ∈ I. This shows that Bxn converges monotonically to Bx pointwise on I. Next, we will

show that {Bxn}n∈N is an equicontinuous sequence of functions in X. Let t1, t2 ∈ I with t1 < t2.

Then

∣∣Bxn(t2)−Byn(t1)
∣∣≤ ∣∣∣∣∣ ce−λ t1

f (a,x0)
− ce−λ t2

f (a,x0)

∣∣∣∣∣
+
∣∣∣∫ t1

a
e−λ (t1−s)g(s, max

a≤s≤t
xn(s))ds−

∫ t1

a
e−λ (t2−s)g(s, max

a≤s≤t
xn(s))ds

∣∣∣∣
+
∣∣∣∫ t1

a
e−λ (t1−s)g(s, max

a≤s≤t
xn(s))ds−

∫ t2

a
e−λ (t2−s)g(s, max

a≤s≤t
xn(s))ds

∣∣∣∣
≤
∣∣∣ ce−λ t1

f (a,x0)
− ce−λ t2

f (a,x0)

∣∣∣+ ∣∣∣∫ t1

a

∣∣e−λ (t1−s)− e−λ (t2−s)∣∣|g(s, max
a≤s≤t

xn(s))|ds

∣∣∣∣∣
+
∣∣∣∫ t1

t2
|g(s, max

a≤s≤t
xn(s))ds|

∣∣∣∣
≤

∣∣∣∣∣∣∣∣ ce−λ t

f (a,x0)
− ce−λ t

f (a,x0)

∣∣∣+Mg

∫ b

a

∣∣e−λ (t−s)− e−λ (t−s)∣∣∣∣∣∣∣ds

+Mg|t1− t2
∣∣

→ 0 as t2− t1
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uniformly for all n ∈ N. This shows that the convergence Bxn→ Bx is uniform and hence B is

partially continuous on X .

Step IV: B is uniformly partially compact operator on X .

Let C be an arbitrary chain in X . We show that B(C) is a uniformly bounded and equicontinuous

set in X . First, we show that B(C) is uniformly bounded. Let y ∈ B(C) be any element. Then

there is an element x ∈C, such that y = Bx. Now, by hypothesis (C2),∣∣y(t)∣∣≤ ∣∣∣∣ ce−λ t

f (a,x0)
+
∫ t

a
e−λ (t−s)g(s, max

a≤s≤t
xn(s))ds

∣∣∣∣
≤
∣∣∣ ce−λ t

f (a,x0)

∣∣∣+ ∣∣∣∫ t

a
e−λ (t−s)g(s, max

a≤s≤t
xn(s))ds

∣∣∣∣
≤
∣∣∣ x0

f (a,x0)

∣∣∣+ ∣∣∣∫ b

a
|g(s, max

a≤s≤t
xn(s))ds

∣∣∣∣∣∣
≤
∣∣∣ a

f (a,x0)

∣∣∣+Mgb = M

for all t ∈ I. Taking supremum over t, we obtain ‖y‖= ‖Bx‖ ≤M for all y ∈ B(C). Hence, B(C)

is a uniformly bounded subset of X . Moreover, ‖B(C)‖ ≤M for all chains C in X . Hence, B is

a uniformly partially bounded operator on X .

Next, we will show that B(C) is an equicontinuous set in X . Let t1, t2 ∈ I with t1 < t2. Then,

for any y ∈ B(C), one has∣∣y(t2)− y(t1)
∣∣= |Bx(t2)−Bx(t1)|

+
∣∣∣∫ t1

a
e−λ (t1−s)g(s, max

a≤s≤t
x(s))ds−

∫ t1

a
e−λ (t2−s)g(s, max

a≤s≤t
x(s))ds

∣∣∣∣
+
∣∣∣∫ t1

a
e−λ (t1−s)g(s, max

a≤s≤t
x(s))ds−

∫ t2

a
e−λ (t2−s)g(s, max

a≤s≤t
x(s))ds

∣∣∣∣
≤
∣∣∣ ce−λ t1

f (a,x0)
− ce−λ t2

f (a,x0)

∣∣∣+ ∣∣∣∫ t1

a

∣∣e−λ (t1−s)− e−λ (t2−s)∣∣|g(s, max
a≤s≤t

x(s))|ds

∣∣∣∣∣
+
∣∣∣∫ t1

t2
|g(s, max

a≤s≤t
x(s))ds|

∣∣∣∣
≤

∣∣∣∣∣ ce−λ t1

f (a,x0)
− ce−λ t2

f (a,x0)

∣∣∣+Mg

∫ b

a

∣∣e−λ (t1−s)− e−λ (t2−s)∣∣∣∣∣∣∣ds

+Mg|t1− t2
∣∣

→ 0 as t2− t1→ 0



APPROXIMATING POSITIVE SOLUTIONS 9

uniformly for all y ∈ B(C). HenceB(C) is an equicontinuous subset of X . Now, B(C) is a

uniformly bounded and equicontinuous set of functions in X , so it is compact. Consequently, B

is a uniformly partially compact operator on X into itself.

Step V: u satisfies the operator inequality u≤ AuBu.

By hypothesis (C7), the QDE (1) has a lower solution u defined on I. Then, we have

(12)

d
dt

[
x(t)

f (t,x(t))

]
+λ

[
x(t)

f (t,x(t))

]
= g
(
t, max

a≤ξ≤t
x(ξ )

)
x(a) = x0


for all t ∈ I. Multiplying the above inequality (11) by the integrating factor eλ t, we obtain

(13)
(

eλ t u(t)
f (t,u(t))

)′
≤ eλ tg(t,u(t))

for all t ∈ I. A direct integration of (12) from a to t yields

(14) u(t)≤ [ f (t,u(t)]
( ce−λ t

f (a,x0)
+
∫ t1

a
e−λ (t−s)g(s, max

a≤u≤t
u(s))ds

)
for all t ∈ J. From definitions of the operators A and B, it follows that u(t)≤ Au(t)Bu(t), for all

t ∈ I. Henceu≤ AuBu.

Step VI: D-fuction φ is satisfies the growth condition MφA(r),r > 0

Finally, the D-function φ of the operator A satisfies the inequality given in hypothesis (d) of

Theorem 2.1. Now from the estimate given in Step IV, it follows that

MφA(r)≤
( x0

f (a,x0)
+Mgb

)
φ(r)< r,

for all r > 0.

Thus, A and B satisfy all the conditions of Theorem 2.1 and we apply it to conclude that

the operator equation AxBx = x has a solution. Consequently the integral Equation(6) and

the QDE (1) has a solution x∗ defined on I. Furthermore, the sequence{xn}∞
n=1 of successive

approximations defined by(7) converges monotonically to x∗. This completes the proof.
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